Accelerating String-key Learned Index Structures via Memoization-based Incremental Training

Minsu Kim

Jinwoo Hwang

Guseul Heo

Seiyeon Cho

Divya Mahajan[†]

Jongse Park

KAIST

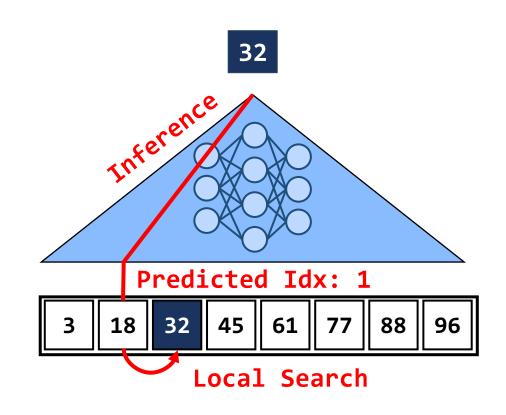
Georgia Institute of Technology[†]

Learned Index Structure

Traditional Index Structure

Queried 32 50 80 20 **Structure** 10 40 70 90 **Key-Value** 45 18 96 88

Learned Index Structure



Array

Key

Index

Learned Index Structure

	Traditional Index	Learned Index
Time Complexity		
Performance		
Index Size		

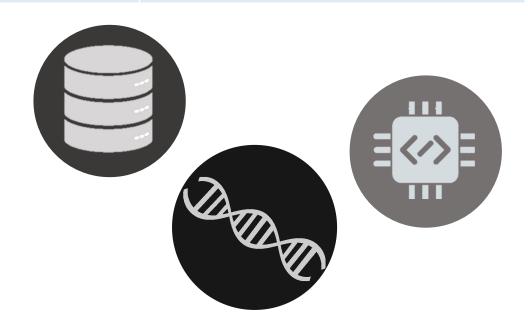
Example Applications

O Database: BOURBON (2020)

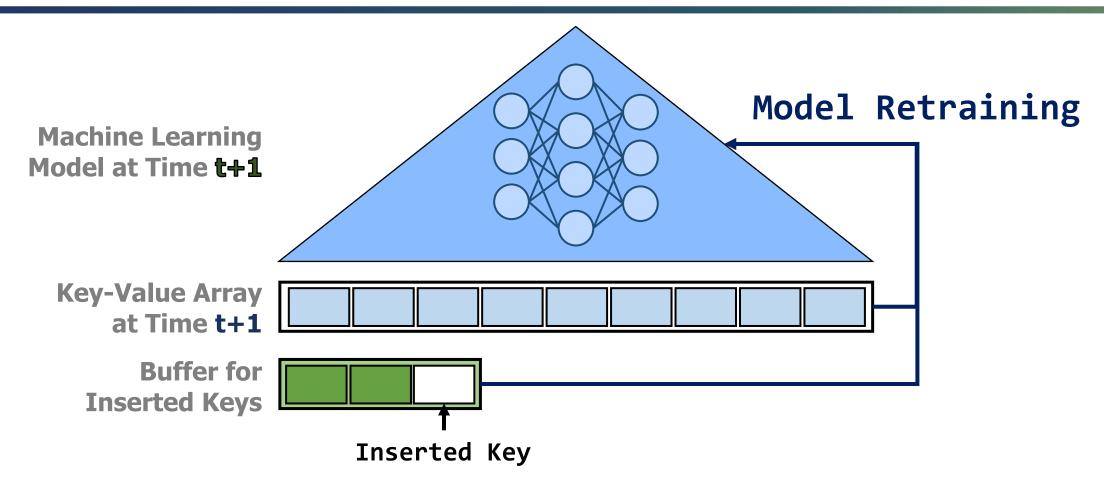
Learned Bigtable (2020)

ODNA Sequencing: BLESS (2024)

• Embedded Sensor: SENSORNETS (2023)



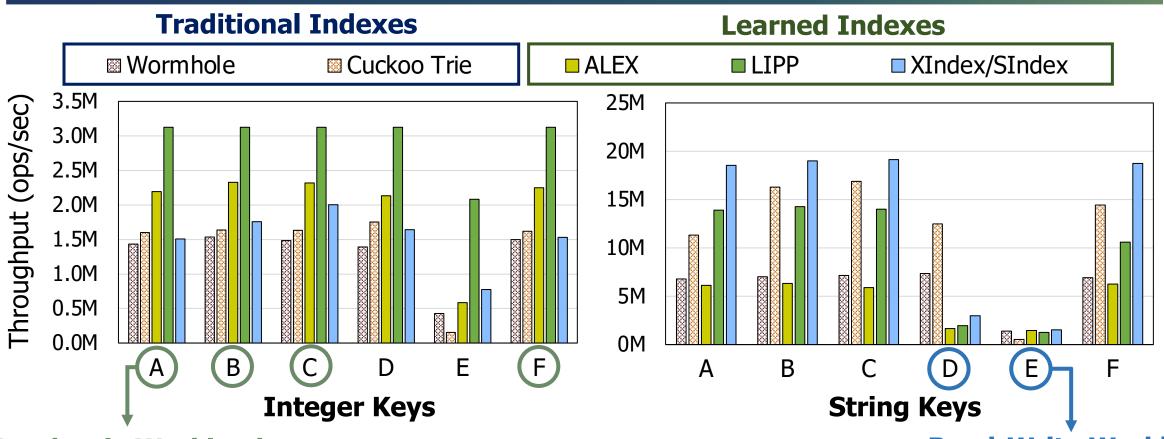
Updatable Learned Index



Updatable learned indexes require periodic retraining using the entire keys

Performance of Updatable Indexes

* Used YCSB (Yahoo Cloud Serving Benchmark) workloads



Read-only Workload

Read-Write Workload

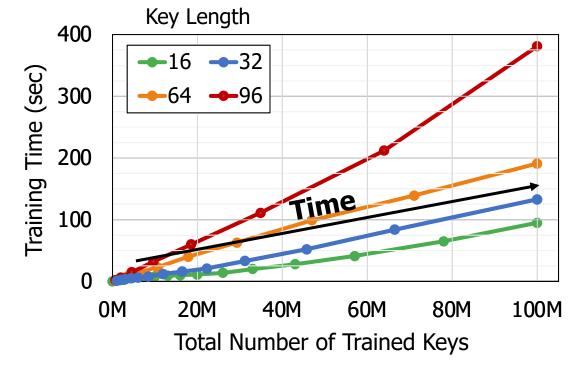
String-key learned indexes show poor performance for read-write workloads

Bottlenecks of Learned Index Training

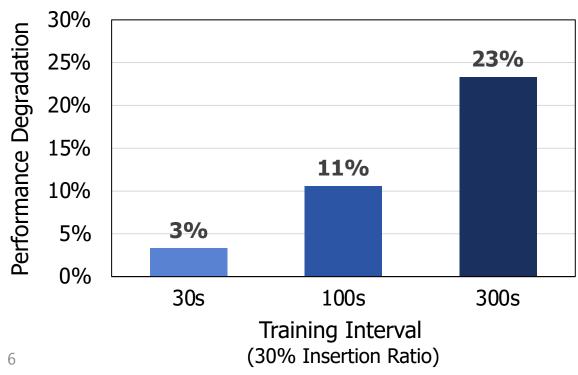
1. Bad scalability & performance due to accumulated keys

Accumulated keys **degrade the performance** of learned index by delaying updates of ML model

Increasing Training Time



Performance Degradation with Slow Training



Bottlenecks of Learned Index Training

2. QR Decomposition Operations are Expensive

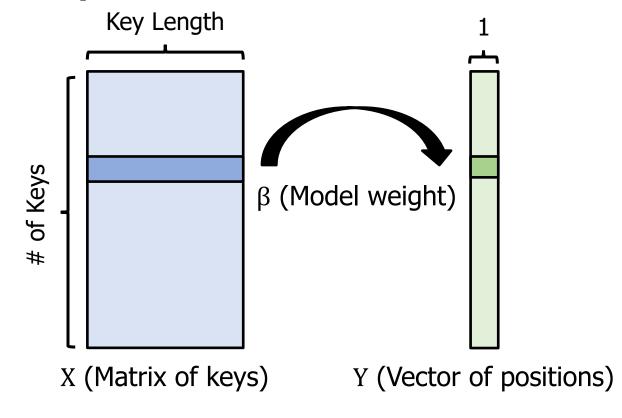
- Most learned indexes use linear regression for their ML model
- Solving linear regression involves QR decomposition

Linear Regression Model

$$X\beta = Y$$

Linear Regression Solution

$$\beta = \left(\mathbf{R}^{-1}\mathbf{R}^{-1^{T}}\right)\mathbf{X}^{T}\mathbf{Y}$$
, where $\mathbf{X} = \mathbf{Q}\mathbf{R}$



Bottlenecks of Learned Index Training

2. QR Decomposition Operations are Expensive

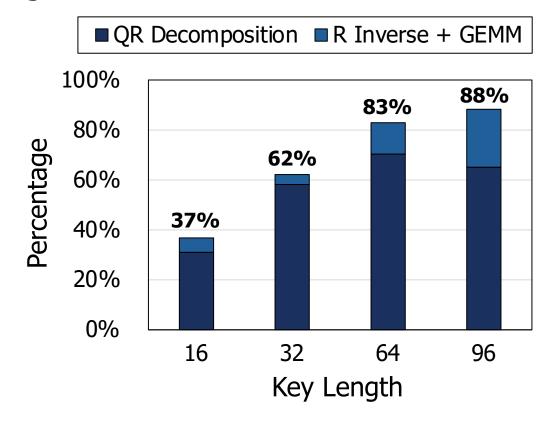
- QR decomposition is the major bottleneck when training
- R Inverse and GEMM are the second longest

Linear Regression Model

$$X\beta = Y$$

Linear Regression Solution

$$\beta = \left(\mathbf{R}^{-1}\mathbf{R}^{-1^{T}}\right)\mathbf{X}^{T}\mathbf{Y}$$
, where $\mathbf{X} = \mathbf{Q}\mathbf{R}$

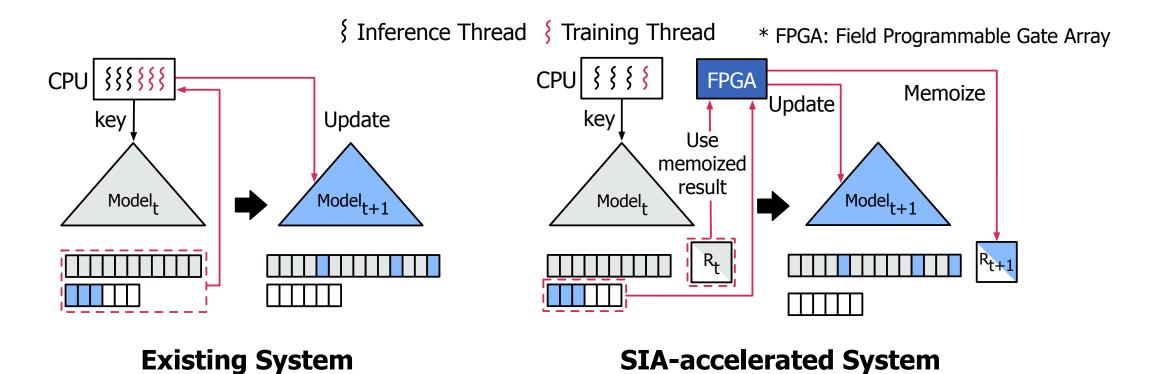


Existing String-key Learned Index SystemsOffer Limited Performance

SIA: System Overview

Algorithm-Hardware Co-designed String-key Learned Index System

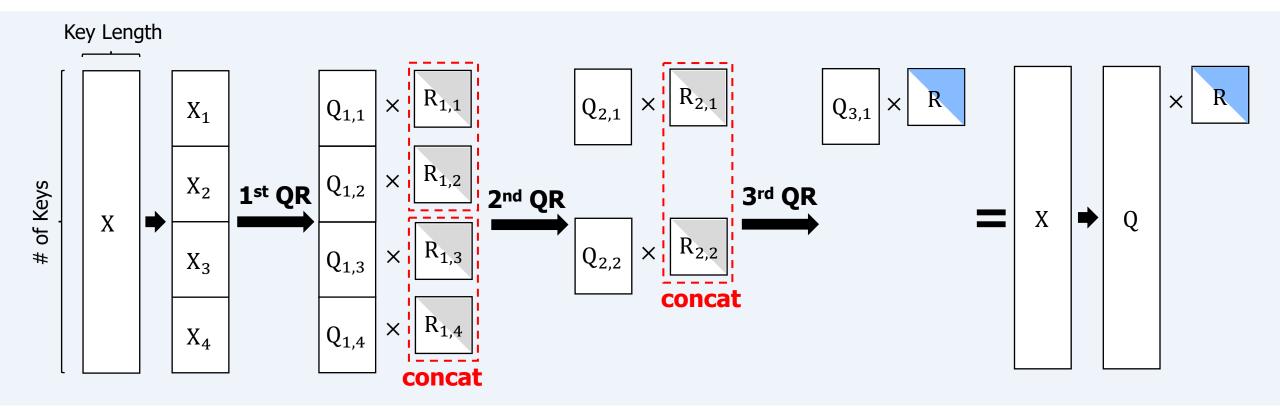
- ① Algorithm that reuses memoized intermediate results
- ② Hardware that offloads index training with FPGA accelerator



10

Insight from Parallel QR Decomposition

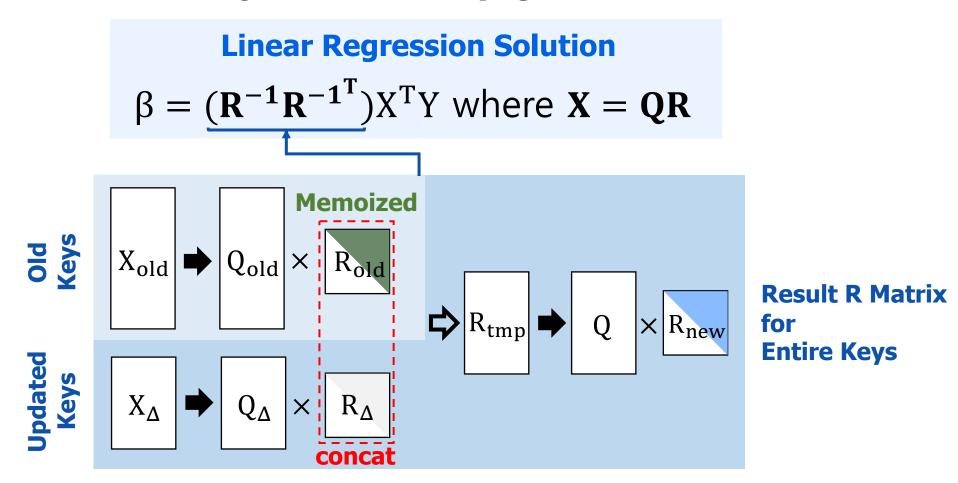
- Existing parallel QRD offers advantage to tall-and-skinny matrices
- Parallel QRD ensures mathematical equivalence



Algorithm Design

Incremental Index Learning

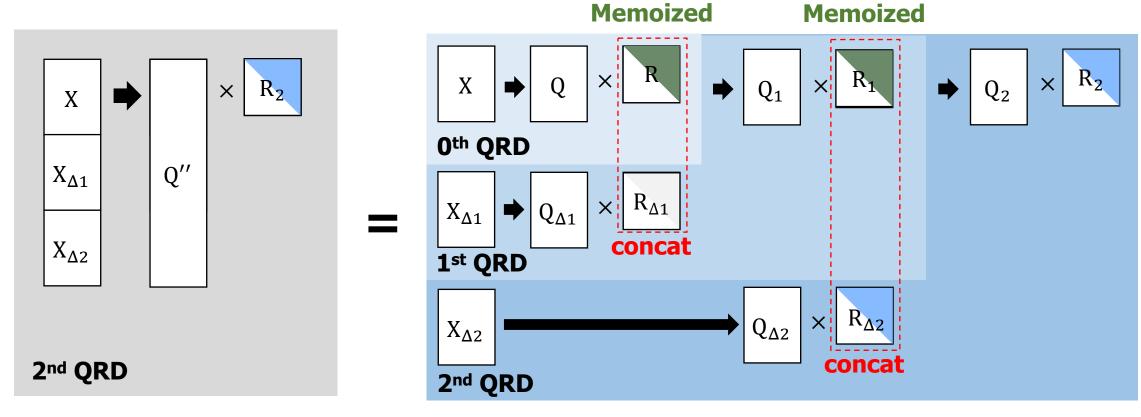
Incremental index learning reduces costly QRD via memoization



Algorithm Design

Incremental Index Learning

There is no need to perform QRD for entire key matrix



Naive QR Decomposition

Memoized QR Decomposition

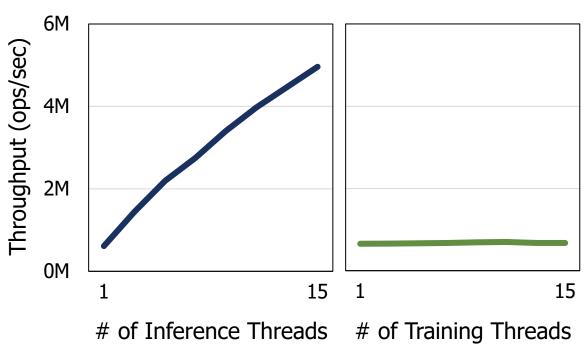
Why Do We Need Hardware Acceleration?

CPU-only solution is still slow due to low efficiency in training

Training Time with Incremental Learning

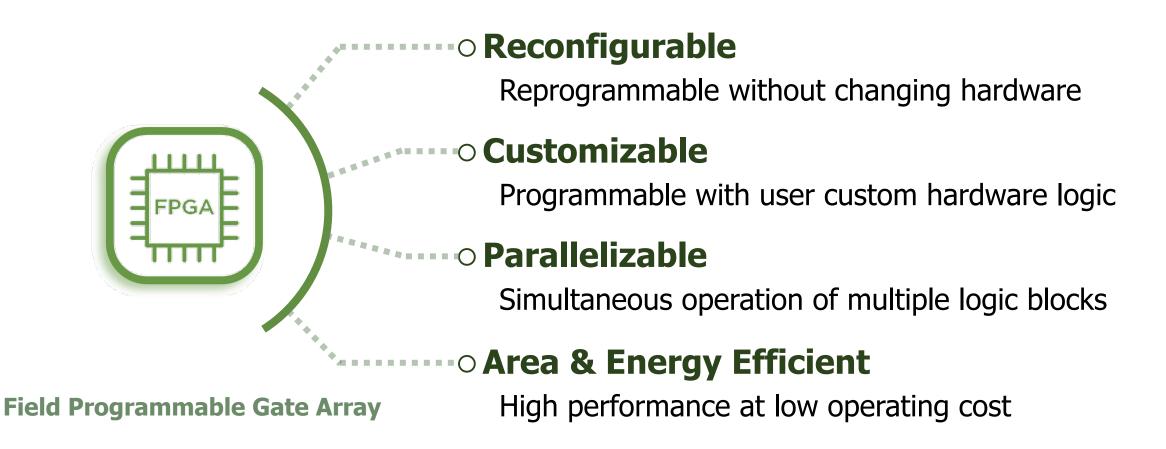
400 -16 -32 -64 -96 -96 0 0M 20M 40M 60M 80M 100M Total Number of Trained Keys

Throughput with Varying CPU Threads



Hardware Design

Hardware Selection: FPGA



Hardware Design

FPGA Accelerator Architecture

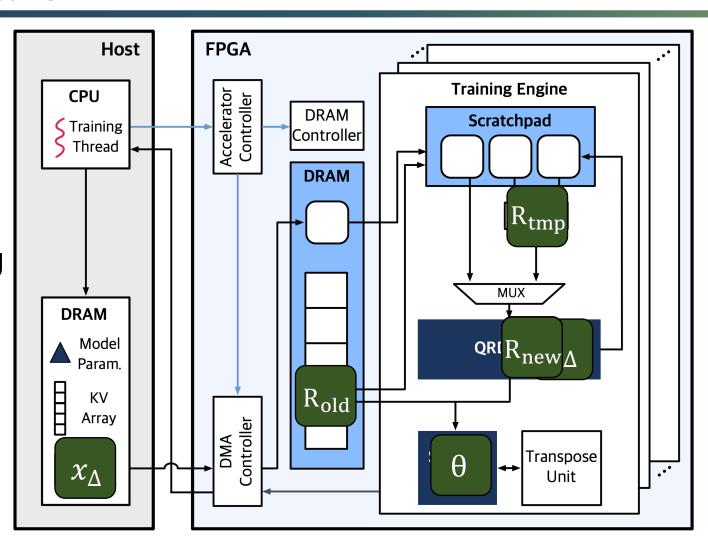
Linear Regression Solution

$$\boldsymbol{\beta} = (\boldsymbol{R^{-1}}\boldsymbol{R^{-1}}^T)\boldsymbol{X}^T\boldsymbol{Y}$$
 where $\boldsymbol{X} = \boldsymbol{Q}\boldsymbol{R}$

FPGA accelerator calculates $\theta = \left(\mathbf{R}^{-1}\mathbf{R}^{-1^{\mathrm{T}}}\right)$

with incremental index learning

Calculation result is returned to host CPU



Evaluation Methodology

Baselines

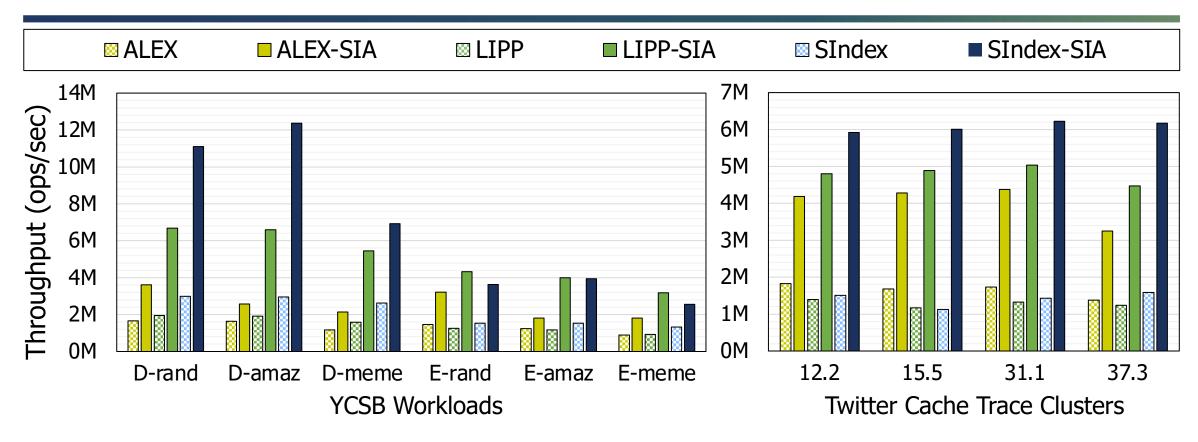
- Wormhole^[1]
- Cuckoo Trie [1]
- SIndex [2]
- O ALEX [2]
- 0 LIPP [2]
- [1] Traditional indexes
- [2] Updatable learned indexes

FPGA

Intel Arria 10 GX-1150(Synthesized to 272MHz)

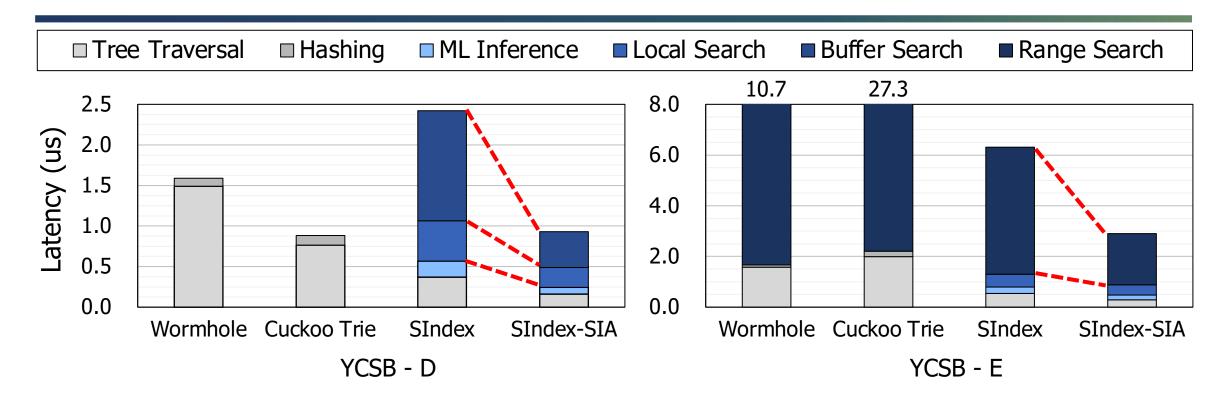
Dataset	Workload	
"amaz" Amazon review dataset		
" <i>meme"</i> Memetracker dataset	YCSB – D Read & Insert queries	YCSB – E Range & Insert queries
"rand" Randomly generated strings		·
Twitter Cache Trace 12.2, 15.5, 31.1, 37.3	Twitter Cache Trace 12.2, 15.5, 31.1, 37.3 Read & Insert Queries	

Performance Evaluation



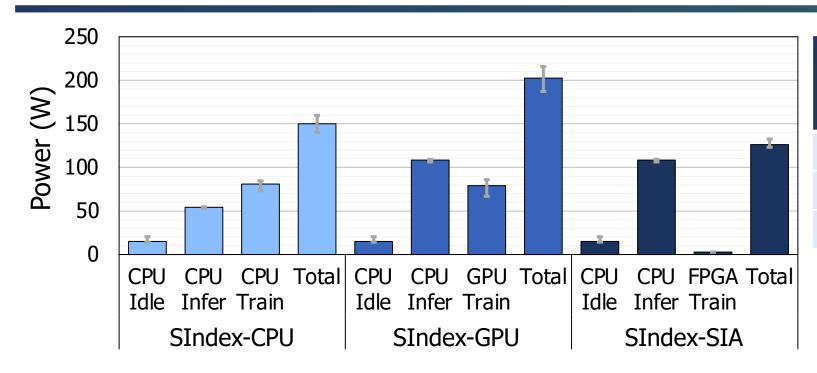
Learned indexes with SIA shows an average of **2.9x throughput improvement** compared to learned indexes without SIA

Latency Breakdown



Learned Index with SIA benefits from **reduced search time** due to "freshness" of learning model

Energy Efficiency Evaluation



	Normalized Performance per Watt
SIndex-CPU	1.00x
SIndex-GPU	1.67x
SIndex-SIA	2.89x

* CPU: Intel Xeon Gold 6226R

* GPU: NVIDIA RTX 2080 TI

SIA achieves higher energy efficiency with low energy usage of FPGA

(28x less than NVIDIA RTX 2080 TI GPU)

Suitable for continuous retraining of learned index system

More Results in Paper

- Hardware Resource Utilization
- Memory Consumption Comparison
- Ablation Study
- Throughput with Different Query Distribution
- Implication of Lazy Delete Query Handling

Conclusion

SIA

Algorithm-hardware co-designed string-key learned index system

Contributions

- Identifies and mitigates bottleneck of current learned index structures
- Accelerates model retraining via memoization-based algorithmic approach
- FPGA-based hardware design further reducing the training time

Results

2.9x higher throughput than learned indexes without SIA