

DaCapo: Accelerating Continuous Learning in Autonomous Systems for Video Analytics

Yoonsung Kim

Changhun Oh Jinwoo Hwang Wonung Kim Seongryong Oh Yubin Lee Hardik Sharma†* Amir Yazdanbakhsh‡ Jongse Park

KAIST

+*Meta

‡Google DeepMind

KAIST Meta Google DeepMind

*This work was done at Google

On-Device AI: Local Intelligence for Autonomous Systems

*MarketsandMarkets[™] Autonomous AI and Autonomous Agent Market

Deployment of On-Device AI

Considerations of Inherent Features: Data Drift and Model Capacity

- Data drift: Changes of input data distribution
- On-device DNNs are lightweight due to constrained resources

Input data distribution changes over time

On-device DNNs have low model capacity

On-device DNNs are sensitive to data drift due to low model capacity

On-Device DNNs Suffer from Data Drift

Accuracy degradation from data drift

Runtime DNN adaptation

Retrain DNN over time

Existing Solution: Continuous Learning

Continuous learning (CL): Keep retraining DNN model over time

• Recent advances in systems and architecture [NSDI'22,23, MM'23, ASPLOS'24, HPCA'24]

Workflow of Continuous Learning

Workflow of Continuous Learning

Problems of CL with GPU server:

(1) Privacy, (2) network availability, and (3) latency concerns

We aim to build on-device continuous learning system

Bhardwaj et al., "Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers," NSDI 2022
Khani et al., "RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics," NSDI 2023
Kong et al., "Edge-Assisted On-Device Model Update for Video Analytics in Adverse Environments," MM 2023

Challenges of On-Device CL System

Challenge 1: Resource Sharing

Executing Three Key Kernels Using On-Device Resources

- Naïve solution: Time-sharing across kernels
- Problem: Different computational demands between kernels

Three main CL kernels

Resource inefficiency occurs

Solution: Spatial Partitioning

Challenge 2: Resource Scheduling

Scheduling Retraining and Labeling Kernels for Model Adaptation

Solution: Fine-Grained Retraining and Labeling

- Frequent model adaptation intervals
- Data drift detection by monitoring accuracy
- Additional labeling at data drift

Short period of retraining and labeling for adapting model

Challenge 3: Resource-Constrained System

- On-device resources hinders optimal performance of CL system
- Inefficiency of CL system degrades adaptability to data drift

CL system on **limited resources**

Low performance and adaptability

We need to design **performant** and **effective** on-device CL system

Solution: Flexible Low-Precision Arithmetic

Dynamic Quantization Using Block Floating Point (BFP) Format

*Use Microsoft MX, a variant of BFP formats

Quantization

Achieving **faster responses** from retraining and labeling kernels

Microarchitecture for Dynamic Precisions

Reconfigurable PEs supporting two different precisions

Evaluation Methodology

Dataset

BDD100K driving dataset

BDD100K

Baselines

- Ekya^[1]
- EOMU^[2]

*Both baselines target high-performance GPU systems

Scenario

- A series of frames from BDD100K
- Real-world datasets with data drifts

Cycle-accurate simulator

- DaCapo system simulator: modified SCALE-Sim
- RTL synthesis and verification
 - $\circ~$ Using Synopsys Design Compiler and CACTI

End-to-End Accuracy

- DaCapo achieves optimal performance under on-device resources
- 6.5% and 5.5% higher accuracy than Ekya and EOMU, respectively

Inference Accuracy Over Time

ResNet18 & WideResNet50 Comparing to Baselines

- Baselines struggle with data drifts, showing low accuracy trends
- DaCapo recovers accuracy from data drifts by adequate scheduling

Additional Results in Paper

Analysis of Scheduling Decision

5.9% accuracy improvement

3

Extreme Data Drift Evaluation

7.6% higher accuracy

Power/Area Analysis

256x less power consumption

Conclusion

DaCapo

 $_{\odot}~$ On-device CL acceleration solution for autonomous systems

Contributions

- $_{\odot}~$ Spatially partitionable systolic array architecture
- $_{\odot}~$ Fine-grained resource scheduling to handle data drift
- $_{\odot}~$ PE microarchitecture using flexible low-precision arithmetic

Result

6.5% and 5.5% higher accuracy than
GPU-based CL solutions, Ekya and EOMU, respectively

DaCapo is available!