

DaCapo: Accelerating Continuous Learning in Autonomous Systems for Video Analytics

Yoonsung Kim

Changhun Oh Jinwoo Hwang Wonung Kim Seongryong Oh Yubin Lee Hardik Sharma†* Amir Yazdanbakhsh‡ Jongse Park

KAIST

†*Meta

‡Google DeepMind

*This work was done at Google

On-Device AI: Local Intelligence for Autonomous Systems

*MarketsandMarkets[™] Autonomous AI and Autonomous Agent Market

Deployment of On-Device AI

Considerations of Inherent Features: Data Drift and Model Capacity

- **Data drift: Changes of input data distribution**
- **On-device DNNs are lightweight due to constrained resources**

Input data distribution changes over time On-device DNNs have low model capacity

On-device DNNs are **sensitive to data drift** due to **low model capacity**

On-Device DNNs Suffer from Data Drift

Accuracy degradation from data drift

Runtime DNN adaptation

Retrain DNN over time

Existing Solution: Continuous Learning

▪ **Continuous learning (CL): Keep retraining DNN model over time**

◦ Recent advances in systems and architecture [NSDI'22,23, MM'23, ASPLOS'24, HPCA'24]

Workflow of Continuous Learning

Workflow of Continuous Learning

Retraining Problems of CL with GPU server:

GPU Server <u>UIK AVAIK</u> (1) Privacy, (2) network availability, and (3) latency concerns

We aim to build on-device continuous learning system

[1] Bhardwaj et al., "Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers," NSDI 2022 [2] Khani et al., "RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics," NSDI 2023 [3] Kong et al., "Edge-Assisted On-Device Model Update for Video Analytics in Adverse Environments," MM 2023

Challenges of On-Device CL System

Challenge 1: Resource Sharing

Executing Three Key Kernels Using On-Device Resources

- **Naïve solution: Time-sharing across kernels**
- **Problem: Different computational demands between kernels**

Three main CL kernels

Resource inefficiency occurs

Solution: Spatial Partitioning

Challenge 2: Resource Scheduling

Scheduling Retraining and Labeling Kernels for Model Adaptation

Solution: Fine-Grained Retraining and Labeling

- **Frequent model adaptation intervals**
- **Data drift detection by monitoring accuracy**
- **Additional labeling at data drift**

Short period of retraining and labeling for adapting model

Challenge 3: Resource-Constrained System

- **On-device resources hinders optimal performance of CL system**
- **Inefficiency of CL system degrades adaptability to data drift**

We need to design **performant** and **effective** on-device CL system

Solution: Flexible Low-Precision Arithmetic

Dynamic Quantization Using Block Floating Point (BFP) Format

Different precision levels suitable for each kernel

*Use **Microsoft MX**, a variant of BFP formats

Achieving **faster responses** from retraining and labeling kernels

Quantization

Microarchitecture for Dynamic Precisions

▪ **Reconfigurable PEs supporting two different precisions**

Evaluation Methodology

Dataset

BDD100K driving dataset

GEOBOD100K

Baselines

- \blacksquare Ekya^[1]
- \blacksquare EOMU $[2]$

*Both baselines target high-performance GPU systems

Scenario

- A series of frames from BDD100K
- Real-world datasets with data drifts

Cycle-accurate simulator

- DaCapo system simulator: modified SCALE-Sim
- RTL synthesis and verification
	- Using Synopsys Design Compiler and CACTI

End-to-End Accuracy

- **DaCapo achieves optimal performance under on-device resources**
- **6.5% and 5.5% higher accuracy than Ekya and EOMU, respectively**

Inference Accuracy Over Time

ResNet18 & WideResNet50 Comparing to Baselines

- **Example 1 Baselines struggle with data drifts, showing low accuracy trends**
- **DaCapo recovers accuracy from data drifts by adequate scheduling**

Additional Results in Paper

Analysis of Scheduling Decision

Extreme Data Drift

Evaluation Power/Area Analysis

5.9% accuracy improvement **7.6%** higher accuracy **256x** less power consumption

Conclusion

▪ **DaCapo**

 \circ On-device CL acceleration solution for autonomous systems

▪ **Contributions**

- \circ Spatially partitionable systolic array architecture
- o Fine-grained resource scheduling to handle data drift
- \circ PE microarchitecture using flexible low-precision arithmetic

▪ **Result**

o **6.5%** and **5.5%** higher accuracy than GPU-based CL solutions, Ekya and EOMU, respectively DaCapo is available!