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On-Device AI:
Local Intelligence for Autonomous Systems

RoboticsUAV System

Surveillance
System

Autonomous
Vehicle

Mobile Device

On-Device AI Chips in industry

The autonomous system market is expected to
grow to $28.5 billion by 2028

with an annual growth rate of 43.0%*

*MarketsandMarkets Autonomous AI and Autonomous Agent Market



Deployment of On-Device AI

▪ Data drift: Changes of input data distribution

▪ On-device DNNs are lightweight due to constrained resources
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Considerations of Inherent Features: Data Drift and Model Capacity

On-device DNNs are sensitive to data drift due to low model capacity

Input data distribution changes over time On-device DNNs have low model capacity

>

Server-Level GPU
On-Device



Runtime DNN adaptation

Retrain DNN over time

On-Device DNNs Suffer from Data Drift
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Accuracy degradation from data drift

Solution



Existing Solution: Continuous Learning

▪ Continuous learning (CL): Keep retraining DNN model over time

◦ Recent advances in systems and architecture [NSDI’22,23, MM’23, ASPLOS’24, HPCA’24]
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Workflow of Continuous Learning
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Network

GPU Server

Schedule CL workloads[1,2,3]

[1] Bhardwaj et al., “Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers,” NSDI 2022
[2] Khani et al., “RECL: Responsive Resource-Efficient Continuous Learning for Video Analytics,” NSDI 2023
[3] Kong et al., “Edge-Assisted On-Device Model Update for Video Analytics in Adverse Environments,” MM 2023

Workflow of Continuous Learning
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Problems of CL with GPU server:

(1) Privacy, (2) network availability, and (3) latency concerns

We aim to build on-device continuous learning system



Performance

Challenge 3:
How to achieve efficient CL system?

Challenge 2:
How to schedule retraining & labeling?

Retrain Label

Challenges of On-Device CL System

7

Challenge 1:
How to share resource across kernels?

Inference Retraining
Labeling



Challenge 1: Resource Sharing

▪ Naïve solution: Time-sharing across kernels

▪ Problem: Different computational demands between kernels
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Executing Three Key Kernels Using On-Device Resources

Inference Retraining
Labeling

Resource inefficiency occurs

Temporal
Sharing

Three main CL kernels

On-Device
NPU
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Solution: Spatial Partitioning
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Vertically Partitionable
Systolic Array
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to satisfy FPS requirements
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Challenge 2: Resource Scheduling
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Scheduling Retraining and Labeling Kernels for Model Adaptation

Resource scheduling affects
accuracy improvement
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Solution: Fine-Grained Retraining and Labeling

▪ Frequent model adaptation intervals

▪ Data drift detection by monitoring accuracy

▪ Additional labeling at data drift
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Challenge 3: Resource-Constrained System

▪ On-device resources hinders optimal performance of CL system

▪ Inefficiency of CL system degrades adaptability to data drift
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We need to design performant and effective on-device CL system

CL system on limited resources Low performance and adaptability



Solution: Flexible Low-Precision Arithmetic
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Dynamic Quantization Using Block Floating Point (BFP) Format

Retraining Labeling
Inference

Higher precision (MX9) Lower precision (MX6)

Different precision levels suitable for each kernel

Achieving faster responses from
retraining and labeling kernels

Quantization

*Use Microsoft MX, a variant of BFP formats



Microarchitecture for Dynamic Precisions

▪ Reconfigurable PEs supporting two different precisions
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*More details in paper

Hierarchical MAC units 



Evaluation Methodology
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Scenario

▪ A series of frames from BDD100K

▪ Real-world datasets with data drifts

Dataset

▪ BDD100K driving dataset

Baselines

▪ Ekya[1]

▪ EOMU[2]

*Both baselines target high-performance GPU systems

Cycle-accurate simulator

▪ DaCapo system simulator: modified SCALE-Sim

▪ RTL synthesis and verification

◦ Using Synopsys Design Compiler and CACTI

[1] Bhardwaj et al., “Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers,” NSDI 2022
[2] Kong et al., “Edge-Assisted On-Device Model Update for Video Analytics in Adverse Environments,” MM 2023
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End-to-End Accuracy

▪ DaCapo achieves optimal performance under on-device resources

▪ 6.5% and 5.5% higher accuracy than Ekya and EOMU, respectively



Inference Accuracy Over Time

▪ Baselines struggle with data drifts, showing low accuracy trends

▪ DaCapo recovers accuracy from data drifts by adequate scheduling
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ResNet18 & WideResNet50 Comparing to Baselines

: Allocate more labeling time



Additional Results in Paper
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Analysis of
Scheduling Decision

Extreme Data Drift
Evaluation

Power/Area Analysis

7.6% higher accuracy5.9% accuracy improvement 256x less power consumption
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Conclusion

DaCapo is available!

▪ DaCapo
o On-device CL acceleration solution for autonomous systems

▪ Contributions
o Spatially partitionable systolic array architecture

o Fine-grained resource scheduling to handle data drift

o PE microarchitecture using flexible low-precision arithmetic

▪ Result
o 6.5% and 5.5% higher accuracy than

GPU-based CL solutions, Ekya and EOMU, respectively
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