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LLM Inference Serving
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Systems for LLM Inference Serving

Computation Memory

1019 FLOPs
5,000x

1.8 T model
10,000 users
1,024 tokens

NVIDIA H100 GPUs NVIDIA H100 GPUs



Limitations of Existing ML System Simulators

Lack of Support for Heterogeneous Hardware
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Limitations of Existing ML System Simulators
Lack of Support for Dynamically Changing Workload

LLM Inference Serving System

Request #1 Request #2
Large Language Model What - IISWC ? 8
Large Language Model is
Request #3
Large Language Model is
Summarize this document in
awesome -
two pages
Large Language Model is
awesome and

Autoregressive Generation Request from Users at Random Time



HW/SW Co-Simulation Infrastructure for
LLM Inference Serving

LLMServingSim



Overview of LLMServingSim

Challenges

@ Autoregressive LLM inference @ Slow hardware simulation time
@ LLM specific parallelism @ Heterogeneity Support

Solutions

@ Iterative @ Layer-Specific ¥ @ Computation Y @ Heterogeneous
workflow Processing Reuse System
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Challenge 1: Autoregressive LLM

= Existing simulators run static workloads

Workload #1 Workload #2 Workload #3 XX Workload #N

Offline Determined Workloads

Workload #1 simulation Workload #2 simulation Workload #N simulation

Simulation Timeline Time
= In LLM inference, workload dynamically changes at runtime
Request #1 Request #2 Request #3
(1] i [ 3] (112]3] ] Arrival of New Inference Requests

Workload #1 simulation Workload #2 simulation Workload #3 simulation
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[ ]:token Simulation Timeline Time



Solution 1: Iterative Workflow

= LLMServingSim operates in an iterative manner
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Challenge 2: LLM Specific Parallelism

= Existing graph converter splits input evenly

= Attention should only be applied within the same request
|:|:token

Batched Input LayerNorm
Request#1 [ 1 [ 2 [ 3 ] Request#3 [ 1 | ‘|1|2|3|1|2|1|1|2| y
Request #2 Request #4
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) Same Requests
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NPU - NPU ~ ® Feed-Forward
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- .- ! . @ : Non-Attention Layers
Existing Graph Converter | Different Requests (): Attention Layer
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Solution 2: Layer-Specific Processing

= Execution Engine runs different operators according to the layer type
= Graph Converter distributes operators according to the layer type

QKV g

BE B gS

Execution
Engine

Trace of batched request Trace of attention layer per request Trace of batched request
NPU NPU NPU NPU NPU NPU
Weight1 ” Weight2 :13 2 | ﬁ Weight1 ﬁ Weight2
Graph I I Aggregate I I Aggregate I I
Converter Redistribute Redistribute
NPU e NPU NPU s NPU NPU e NPU
Weight3 Weight4 Weight3 Weight4

Even Distribution Per-Request Distribution Even Distribution
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Challenge 3: Slow HW Simulation Time

» Simulation time of other LLM hardware simulators

= Batch: 32, Sequence length: 512
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Solution 3: Computation Reuse

Leveraging the Repetitive Structure of LLM

= Split the model into 6 layers and compile it once
= Combine traces to make full model
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Solution 3: Computation Reuse

Leveraging the Locality of LLM Inference

= Non-attention layers use same number of tokens each iteration

= Generation phase occurs more frequently than initiation phase

Generation Phase #1

[ ]: KV cache

: New tokens

Request #1| 1 | 2

3

LayerNorm

QKV
Generation

Score
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Attend

Request #2 | 1
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Use 2 Tokens
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Generation Phase #2

[ ]: KV cache

: New tokens
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Solution 3: Computation Reuse

Leveraging the Locality of LLM Inference

= Reuse the model trace by swapping out the attention layer
» Eliminates most time-consuming hardware simulation
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Challenge 4: Heterogeneity Support

= Heterogeneous accelerators with different characteristics
Bandwidth Bound Compute Bound
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Solution 4: Operator Mapping

= Map each operator to specific hardware type
= Each execution engine compiles and simulates mapped operators

Execution Engine Stack

LayerNorm
ieeee g
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Solution 4: Operator Scheduling

= Schedule each operator to specific hardware
= Scheduling algorithm based on system topology and dependencies

= Flexible algorithm configuration
Layer 1 Layer 2 Layer 3
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Evaluation Methodology

NPU Configuration

= Real-System Baseline

oVLLM Framework with 4 NVIDIA RTX 3090 GPUs Systolic Aray 128x128
Vector Unit 128x1
) _ Frequency 1GHz
= Simulator Baseline Memory Capacity 4GB
o mNPUsim(!! Internal Bandwidth 936GB/s
o0 GeneSyslil - Used in LLMServingSim PIM Configuration
o NeuPIMs!2] Banks / Bankgroup 4
[1] NPU simulator Banks / Channel 32
[2] NPU-PIM simulator Frequency 1GHz
= Dataset Memory Capacity 32GB
Internal Bandwidth 1TB/s
o ShareGPT — - -
Inter-device Link Configuration
o Alpaca .
Bandwdith 64GB/s
Latency 100ns .




Validation of LLMServingSim

Generation Throughput

NPU Homogeneous System

] vLLM Framework ] LLMServingSim
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= High similarity between real-system and LLMServingSim

= Average error rate 14.7%

Time duration (s)

20



Validation of LLMServingSim

NPU-PIM Heterogeneous System

[] NeuPIMs [ LLMServingSim

= GPT3-7B GPT3-13B GPT3-30B
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= High similarity between NPU-PIM simulator and LLMSergvingSim

= Average error rate 8.88%



Simulation Time Comparison

[ mNPUsim [ GeneSys [ NeuPIMs [ LLMServingSim

GPT3-7B GPT3-13B GPT3-30B

= 491.0x, 34.7x, 45.0x faster than mNPUsim, GeneSys, NeuPIMs
= LLMServingSim achieved fast simulation through computation reuse
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Our simulator code is available

CO n CI u S I 0 n https://github.com/casys-kaist/LLMServingSim

= LLMServingSim
= HW/SW co-simulation infrastructure for LLM inference serving

= Contributions
= Jterative workflow for autoregressive LLM inference
= | ayer-specific processing for LLM specific parallelism
= Computation reuse to reduce simulation time
» Heterogeneous accelerators support with easy integration

Iterative Layer-Specific Computation Heterogeneous Performance
Workflow Processing Reuse System
14.7%
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