LLMServingSim: A HW/SW Co-Simulation Infrastructure for LLM Inference Serving at Scale

Jaehong Cho

Minsu Kim Hyunmin Choi Guseul Heo Jongse Park

KAIST

IISWC 2024

LLM Inference Serving

LLM Inference Service

Input Prompt

"Large Language Model"

Output Response

"Large Language Model is awesome and used in many real-world applications."

Systems for LLM Inference Serving

Computation

GPT4

1.8 T model 10,000 users

1,024 tokens

Memory

Limitations of Existing ML System Simulators

Lack of Support for Heterogeneous Hardware

or Support for freterogeneous fraidware

Limitations of Existing ML System Simulators

Lack of Support for Dynamically Changing Workload

LLM Inference Serving System

Autoregressive Generation

Request from Users at Random Time

Limitations of Existing ML System Simulators

Lack of Support for Dynamically Changing Workload

HW/SW Co-Simulation Infrastructure for LLM Inference Serving

LLMServingSim

awesome

and

Autoregressive Generation

Request from Users at Random Time

Overview of LLMServingSim

Challenges

- 1 Autoregressive LLM inference
- **3** Slow hardware simulation time

2 LLM specific parallelism

4 Heterogeneity Support

Solutions

2 Layer-Specific Processing
Non-Attention Layer
O O O O
Attention Layer
O O O O

③ Computation Reuse

4 Heterogeneous System

Challenge 1: Autoregressive LLM

Existing simulators run static workloads

In LLM inference, workload dynamically changes at runtime

Solution 1: Iterative Workflow

LLMServingSim operates in an iterative manner

Astalia Refugicion de la composita della composita della composita della compo

Challenge 2: LLM Specific Parallelism

- Existing graph converter splits input evenly
- Attention should only be applied within the same request

Solution 2: Layer-Specific Processing

- Execution Engine runs different operators according to the layer type
- Graph Converter distributes operators according to the layer type

Challenge 3: Slow HW Simulation Time

- Simulation time of other LLM hardware simulators
- Batch: 32, Sequence length: 512

Solution 3: Computation Reuse

Leveraging the Repetitive Structure of LLM

- Split the model into 6 layers and compile it once
- Combine traces to make full model

Solution 3: Computation Reuse

Leveraging the Locality of LLM Inference

- Non-attention layers use same number of tokens each iteration
- Generation phase occurs more frequently than initiation phase

Solution 3: Computation Reuse

Leveraging the Locality of LLM Inference

- Reuse the model trace by swapping out the attention layer
- Eliminates most time-consuming hardware simulation

Challenge 4: Heterogeneity Support

Heterogeneous accelerators with different characteristics

Arithmetic Intensity (FLOPS/byte)

Solution 4: Operator Mapping

- Map each operator to specific hardware type
- Each execution engine compiles and simulates mapped operators

Solution 4: Operator Scheduling

- Schedule each operator to specific hardware
- Scheduling algorithm based on system topology and dependencies
- Flexible algorithm configuration

System Topology

Layer Dependencies

Evaluation Methodology

Real-System Baseline

ovLLM Framework with 4 NVIDIA RTX 3090 GPUs

Simulator Baseline

- o mNPUsim^[1]
- GeneSys^[1] Used in LLMServingSim
- NeuPIMs^[2]
- [1] NPU simulator
- [2] NPU-PIM simulator

Dataset

- ShareGPT
- Alpaca

NPU Configuration	
Systolic Array	128x128
Vector Unit	128x1
Frequency	1GHz
Memory Capacity	24GB
Internal Bandwidth	936GB/s
PIM Configuration	
Banks / Bankgroup	4
Banks / Channel	32
Frequency	1GHz
Memory Capacity	32GB
Internal Bandwidth	1TB/s
Inter-device Link Configuration	
Bandwdith	64GB/s
Latency	100ns

Validation of LLMServingSim

NPU Homogeneous System

- High similarity between real-system and LLMServingSim
- Average error rate 14.7%

Validation of LLMServingSim

NPU-PIM Heterogeneous System

- High similarity between NPU-PIM simulator and LLMSergvingSim
- Average error rate 8.88%

Simulation Time Comparison

- 491.0x, 34.7x, 45.0x faster than mNPUsim, GeneSys, NeuPIMs
- LLMServingSim achieved fast simulation through computation reuse

LLMServingSim

HW/SW co-simulation infrastructure for LLM inference serving

Contributions

- Iterative workflow for autoregressive LLM inference
- Layer-specific processing for LLM specific parallelism
- Computation reuse to reduce simulation time
- Heterogeneous accelerators support with easy integration

Performance
14.7%
Error Rate
91.5x
Faster Simulation