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Video Understanding (VU)

Classification —_ Localization
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Foundational Model (FM)
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FMs Use Transformers

Task
Head

/////////

Vision Transformer
Encoder Feature

Video data High-level insight



Computational Cost of Transformers

— CLIP FLAVA  — VideoMAE  — InternVideo
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Quadratic complexity w.r.t. sequence length Number of sampled frames

VU over long videos (which means long sequence length) are impractical



How Humans Understand Long Video

f T Bl / _
% '™
v Yy A :
L o [ / y = g ’
& / - — - - —
A\ E : B
. W : ¥ % \ 2
] » 42 & .
\ / _
: o
3 " AT
B, 2. ST A

eSS

(O Let's watch and summarize the clip--

QOO



How Humans Understand Long Video

“A man is talking to his cat.”



How Humans Understand Long Video

ﬂ“ “A man is talking to his cat."I
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(O Now let's summarize the whole video--

DQO




How Humans Understand Long Video
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(O Now let's summarize the whole video-- But should we watch again?
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How Humans Understand Long Video

“"A man is talking to his cat.” | WY ¥ ‘
| \ | l | \ |
“A man is wearing a blue shirt.” “A man is walking on Lego.”
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How Humans Understand Long Video
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“A man is wearing a blue shirt.” “A man is walking on Lego.”
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“A man wears blue shirts, talks to his cat, and walks on Lego."
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LVS: Learned Video Storage
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LVS: Learned Video Storage
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Challenges

Reuse [«
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1. How to implement mgrge operation?
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Challenges

2. How to select features for reuse?
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1. How to implement mgrge operation?
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Requirement

clips M FM features
X
Y xV > F X F
Proposed path
s> Q
Conventional path 1 4
FM
Y > F
1 clip 1 feature

Computing feature from subfeatures should give same results with using full video

(or, Q should be a monoid homomorphism)



MLP

Such feature fusion can be approximated with MLP

Concat

» FC Layers

A) MLP

y

Concat

» FC Layers

» Mean Pooling
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B) MLP + AVG
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Challenges

2. How to select features for reuse?

Reuse [«
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1. How to implement mgrge operation?
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Cost Estimation

“A man is talking to his cat.”

“A man holds his cat and walks on Lego.”

(O Which memoized feature should | pick to summarize the whole video?

DOO
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Cost Estimation

(O Let's estimate the cost of FM for each case!

QOO
c; is the ith subclip being used

— {1, if ¢; needs decoding and FM
;=

n
COST({cy, ¢y, ", cp}) =rn + z m;l; where 0, if c; is already saved as feature
i=1

r is a constant factor

[; is the length of ¢;

The case with the least FM cost is selected (using a SMT solver)
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Evaluation: Methodology

Foundational Model
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CLIP, FLAVA,
VideoMAE, InternVideo

Dataset

N
N

UCF101, MSR-VTT,
Charades, Long Videos

System

2x Intel Xeon 6326 Gold,
NVIDIA Geforce RTX 3090
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Evaluation: Embedding Accuracy

CLIP, Charades
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Model type and layer count

MLP + Average models give cosine embedding loss <0.025
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Evaluation: End Task Accuracy

CLIP InternVideo
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<1% accuracy degradation for UCF101 classification task



Evaluation: Inference Latency

— No caching — LVS decode & FM
_ High locality (o = 50) Medium locality (o = 300) Low locality (uniform distribution)
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When query locality is high, speedup increases. Up to 1.59x less latency

(Overhead from SMT solver ignored)
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Conclusion

- We propose Learned Video Storage (LVS) that reuses features in future queries

 LVS includes MLP-based technique to perform feature fusion
and feature selection technique using a cost estimation function

« LVS brings up to 1.59x speedup w/ negligible accuracy degradation (<1%)

25



) W \
7
[\ [I
= \
[
S ?
S

LVS: A Learned Video Storage for
Fast and Efficient Video Understanding

Yunghee Lee, Jongse Park
{yhlee, jspark}@casys.kaist.ac.kr

KAIST
Computer Architecture
& System Lab

CASYS




	슬라이드 1: LVS: A Learned Video Storage for  Fast and Efficient Video Understanding
	슬라이드 2: Video Understanding (VU)
	슬라이드 3: Foundational Model (FM)
	슬라이드 4: FMs Use Transformers
	슬라이드 5: Computational Cost of Transformers
	슬라이드 6: How Humans Understand Long Video
	슬라이드 7: How Humans Understand Long Video
	슬라이드 8: How Humans Understand Long Video
	슬라이드 9: How Humans Understand Long Video
	슬라이드 10: How Humans Understand Long Video
	슬라이드 11: How Humans Understand Long Video
	슬라이드 12: LVS: Learned Video Storage
	슬라이드 13: LVS: Learned Video Storage
	슬라이드 14: Challenges
	슬라이드 15: Challenges
	슬라이드 16: Requirement
	슬라이드 17: MLP
	슬라이드 18: Challenges
	슬라이드 19: Cost Estimation
	슬라이드 20: Cost Estimation
	슬라이드 21: Evaluation: Methodology
	슬라이드 22: Evaluation: Embedding Accuracy
	슬라이드 23: Evaluation: End Task Accuracy
	슬라이드 24: Evaluation: Inference Latency
	슬라이드 25: Conclusion
	슬라이드 26: LVS: A Learned Video Storage for  Fast and Efficient Video Understanding

