

LVS: A Learned Video Storage for Fast and Efficient Video Understanding

Yunghee Lee, Jongse Park KAIST

Video Understanding (VU)

Foundational Model (FM)

FMs Use Transformers

Computational Cost of Transformers

$$Attention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_{\mathbf{K}}}}\right)\mathbf{V}$$

Quadratic complexity w.r.t. sequence length

VU over long videos (which means long sequence length) are impractical

LVS: Learned Video Storage

LVS: Learned Video Storage

Challenges

Challenges

Requirement

Computing feature from subfeatures should give same results with using full video

(or, Q should be a monoid homomorphism)

MLP

Such feature fusion can be approximated with MLP

Challenges

Cost Estimation

"A man is talking to his cat."

"A man holds his cat and walks on Lego."

Which memoized feature should I pick to summarize the whole video?

Cost Estimation

Let's estimate the cost of FM for each case!

$$COST(\{c_1, c_2, \cdots, c_n\}) = rn + \sum_{i=1}^{n} m_i l_i \qquad \text{where}$$

 c_i is the *i*th subclip being used

$$m_i = \begin{cases} 1, & \text{if } c_i \text{ needs decoding and FM} \\ 0, & \text{if } c_i \text{ is already saved as feature} \end{cases}$$

r is a constant factor

 l_i is the length of c_i

The case with the least FM cost is selected (using a SMT solver)

Evaluation: Methodology

Foundational Model

CLIP, FLAVA, VideoMAE, InternVideo Dataset

UCF101, MSR-VTT, Charades, Long Videos System

2× Intel Xeon 6326 Gold, NVIDIA Geforce RTX 3090

Evaluation: Embedding Accuracy

MLP + Average models give cosine embedding loss < 0.025

Evaluation: End Task Accuracy

<1% accuracy degradation for UCF101 classification task

Evaluation: Inference Latency

When query locality is high, speedup increases. Up to 1.59× less latency

(Overhead from SMT solver ignored)

Conclusion

- We propose Learned Video Storage (LVS) that reuses features in future queries
- LVS includes MLP-based technique to perform feature fusion and feature selection technique using a cost estimation function
- LVS brings up to 1.59× speedup w/ negligible accuracy degradation (<1%)

LVS: A Learned Video Storage for Fast and Efficient Video Understanding

Yunghee Lee, Jongse Park {yhlee, jspark}@casys.kaist.ac.kr

