NeuPIMs: NPU-PIM Heterogeneous Acceleration for Batched LLM Inferencing

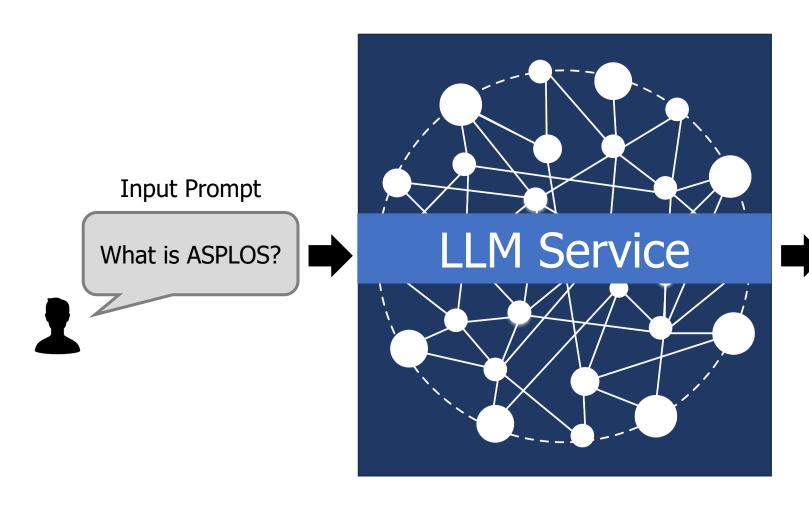
Guseul Heo

Sangyeop Lee
Jaehong Cho
Hyunmin Choi
Sanghyeon Lee
Hyungkyu Ham[†]
Gwangsun Kim[†]
Divya Mahajan[§]
Jongse Park

KAIST

POSTECH[†]

Georgia Institute of Technology§



Output Response

ASPLOS stands for
"Architectural Support for
Programming Languages
and Operating Systems."
It is a top-tier conference in
computer science,
specifically focusing on
computer architecture,
programming languages,
and operating systems.

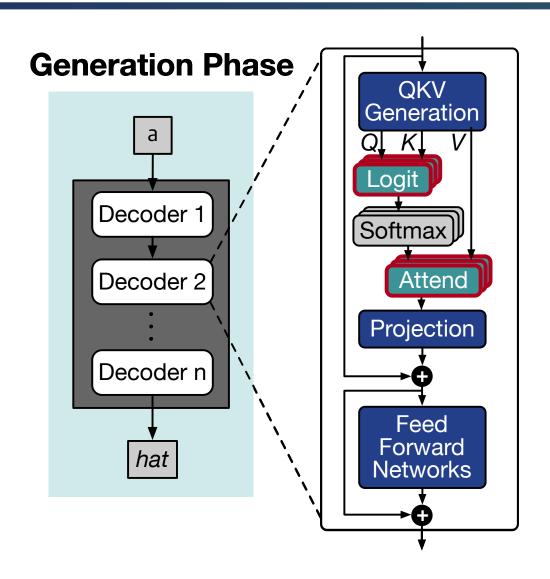
Input Prompt

Summarization Phase x 1

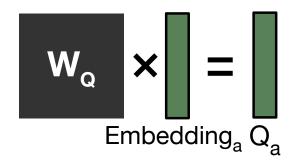
Generation Phase x N

Output Response

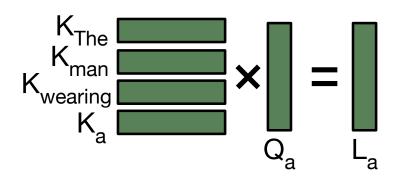
GEMV in Generation Phase



1. Weight-activation operation



2. Activation-activation operation

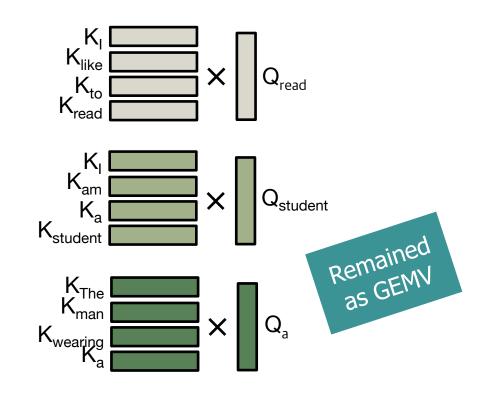


Batched Inference

Weight-activation operation

$W_{Q} \times \left[\begin{array}{c} w_{Q} \times \left[w_{Q} \times \left[\begin{array}{c} w_{Q} \times \left[w_{Q} \times \left$

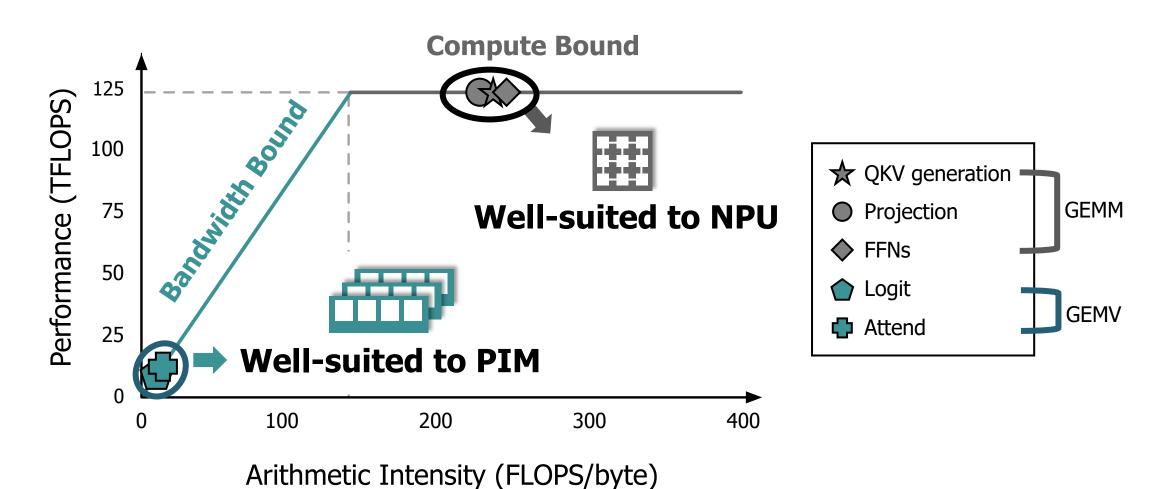
Activation-activation operation



- Model weight parameter are reusable
- Possible to batch

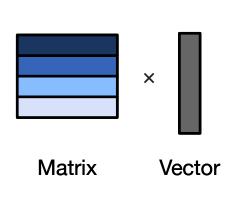
- No reusable parameters
- Cannot be batched

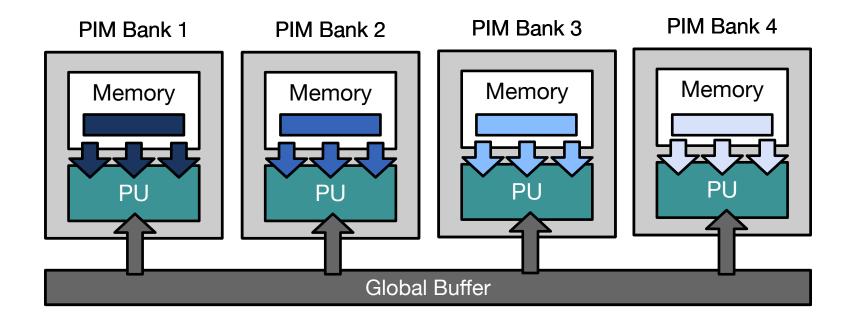
Arithmetic Intensity



Processing in Memory (PIM) for GEMV

- Processing unit in memory, utilizing high internal bandwidth
- Efficient to bandwidth-bound operations such as GEMV





NPU+PIM Integration

Compute-centric accelerator
Computation power
Effective for GEMM

Bandwidth-centric accelerator High internal bandwidth Effective for **GEMV**

NPU+PIM Integration

We aim to leverage NPU+PIM heterogeneous acceleration for efficient batched inference of LLM

Compute-centric accelerator

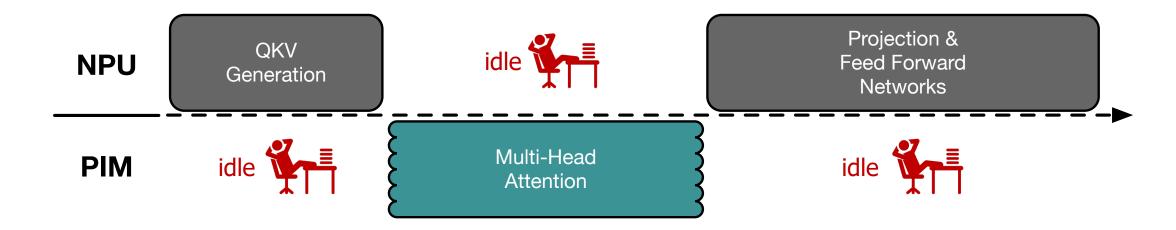
Computation power

Effective for GEMM

Bandwidth-centric accelerator
High internal bandwidth
Effective for GEMV

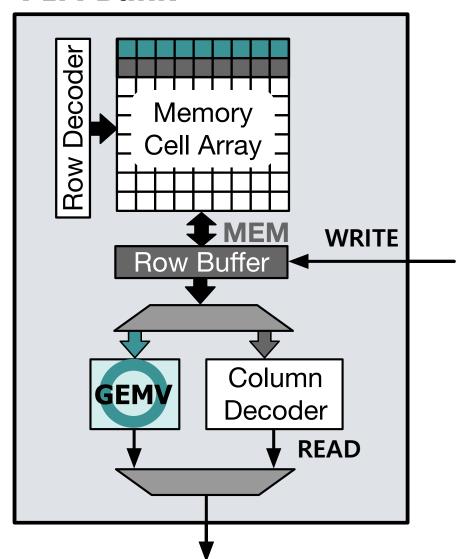
NPU+PIM Integration for LLM

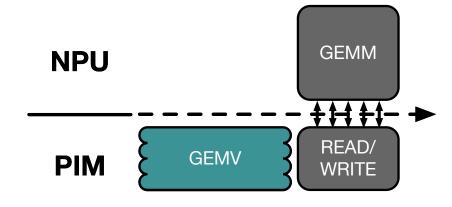
NPU+PIM integration suffers from resource underutilization



Challenge 1: Blocked Mode PIM

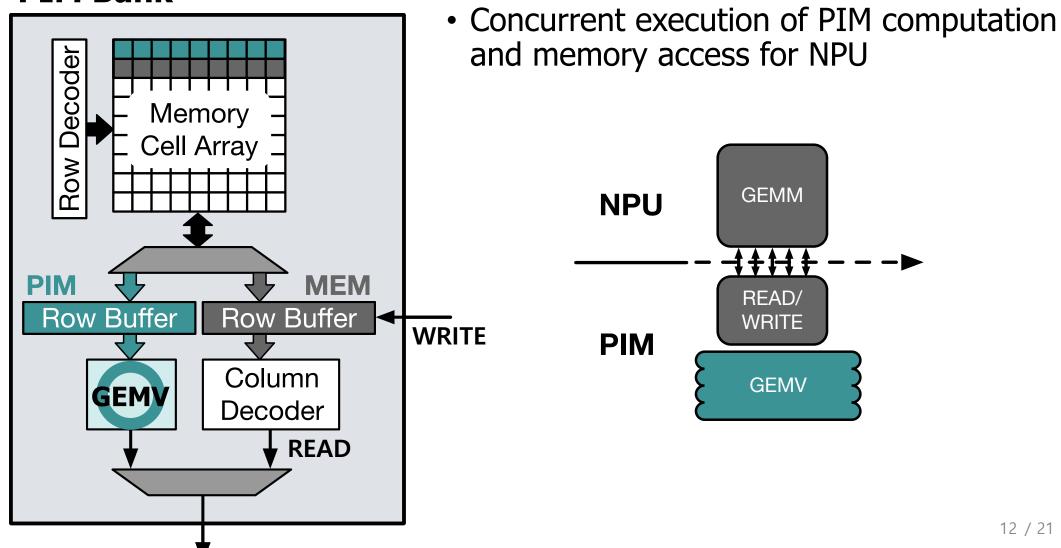
PIM Bank





Solution 1: Dual Row Buffer PIM

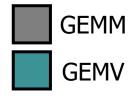
PIM Bank



Challenge 2: GEMM-GEMV Dependency

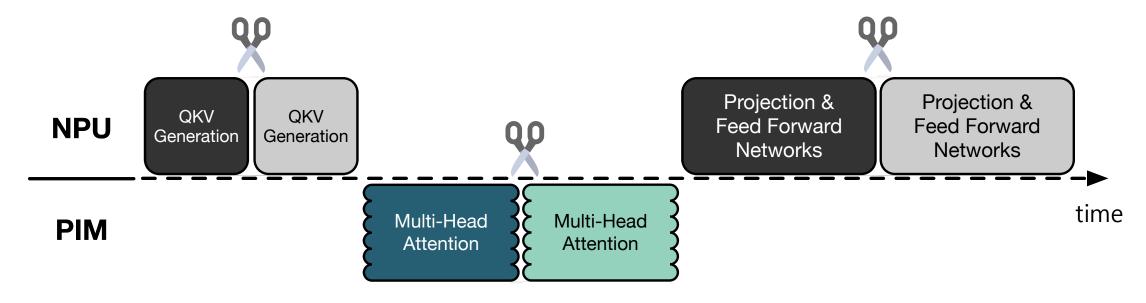
GEMM and GEMV dependency in single batch of LLM inference





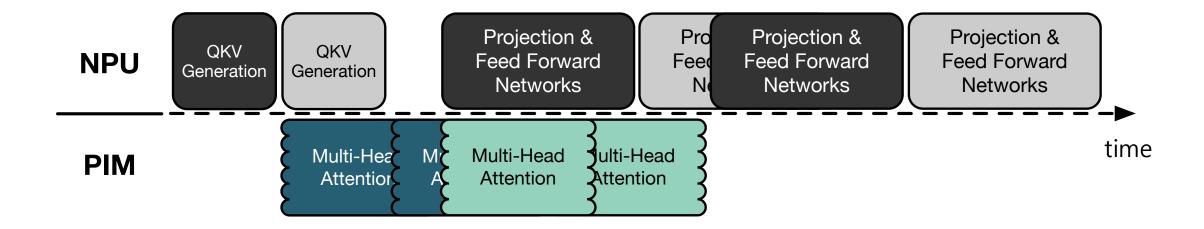
Solution 2: Sub-batch Interleaving

Divide one large batch into two sub-batches and alternate them



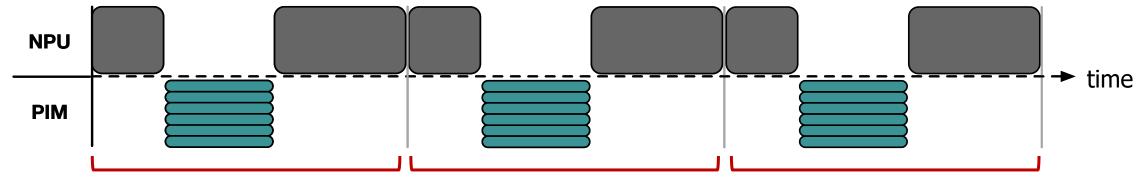
Solution 2: Sub-batch Interleaving

Divide one large batch into two sub-batches and alternate them



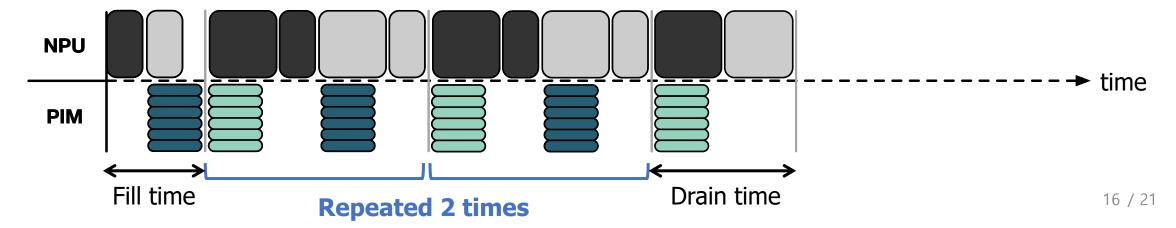
Example of 3 Decoder Blocks

NPU+PIM non interleaving

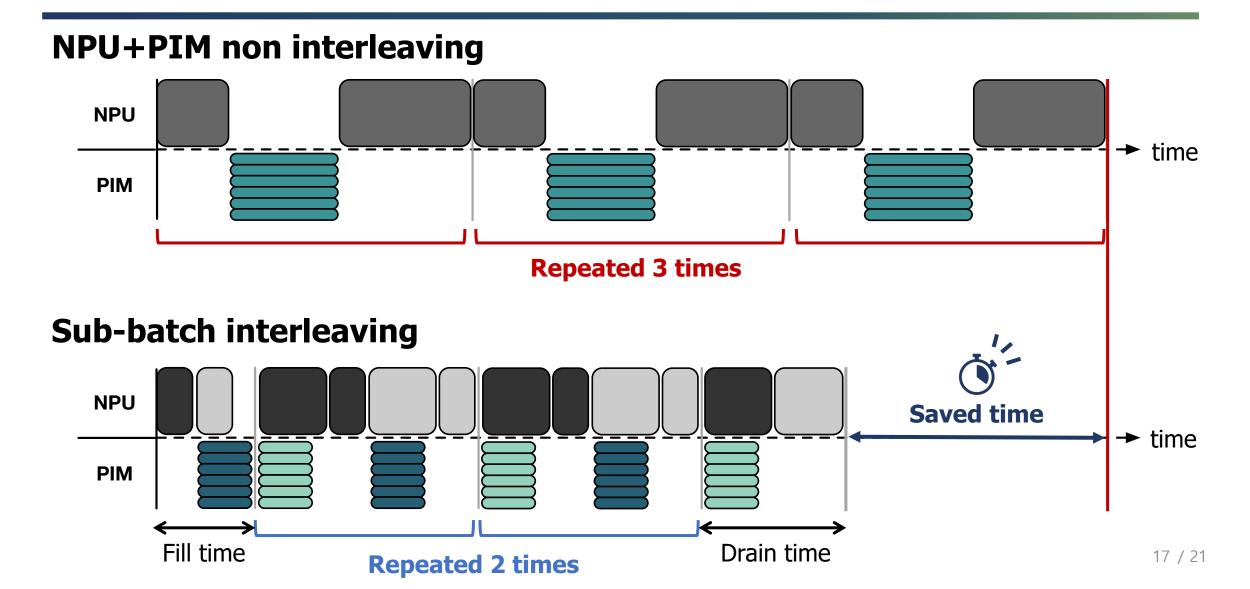


Repeated 3 times

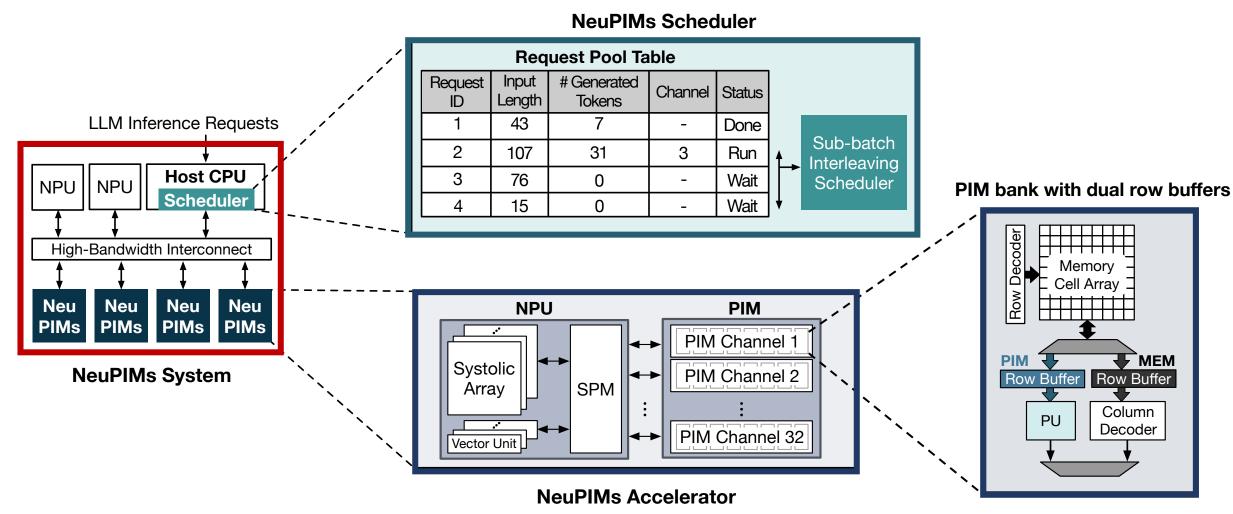
Sub-batch interleaving



Example of 3 Decoder Blocks

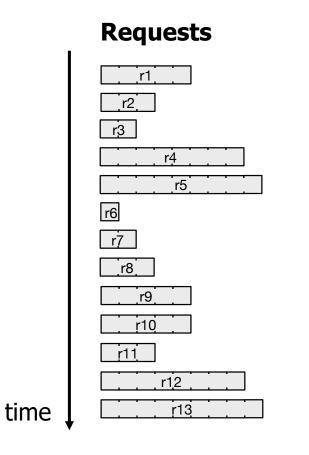


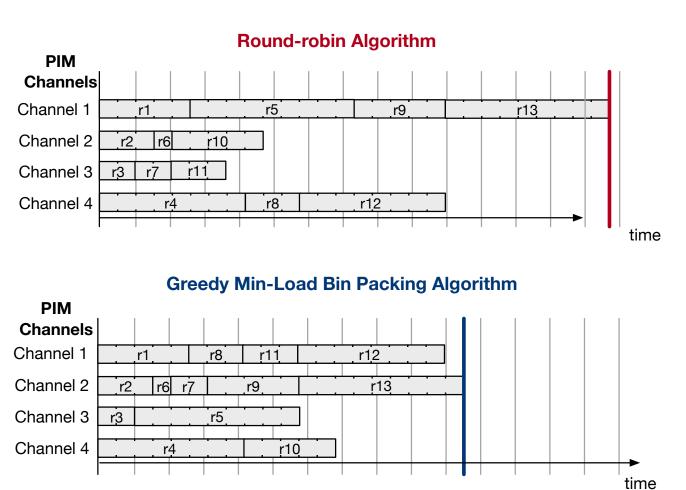
NeuPIMs System



Greedy Min-Load Bin Packing Algorithm

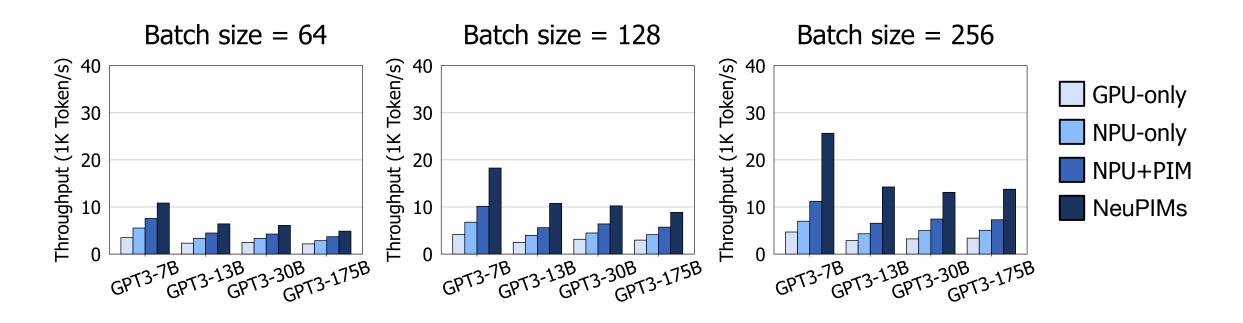
Distribute requests to PIM channels





NeuPIMs Performance

Dataset: ShareGPT



- Dual row buffer PIM architecture and sub-batch interleaving boosted performance
- The benefits increase with larger batch sizes
- 2.4x speedup over NPU-only, 1.6x speedup over NPU+PIM

More Results in Paper

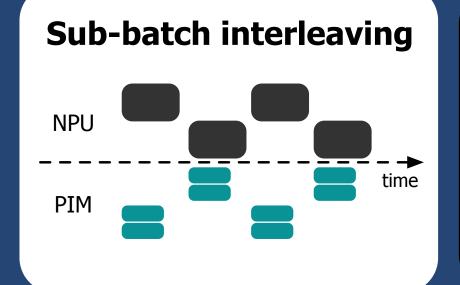
- Utilization improvement
- Ablation study
- Model parallelism sensitivity
- Hardware overhead (area/power)
- Comparison with prior PIM-only solution

NeuPIMs

• NPU+PIM heterogeneous acceleration system for LLM batched inference

Contributions

- PIM microarchitecture equipped with dual row buffer for concurrent execution
- Sub-batch interleaving technique to overlap NPU execution and PIM execution



Throughput improvement

2.4×
over NPU-only

1.6×
over naïve NPU+PIM