NeuPIMs: NPU-PIM
Heterogeneous Acceleration

for Batched LLM Inferencing

Guseul Heo

Sangyeop Lee KAIST | I(AI ST
Jaehong Cho

Fyunmin Chol POSTECH' POSTECH
Sanghyeon Lee

Hyungkyu Ham? Georgia Institute of Technologys Georgia
Gwangsun Kim* Tech

Divya Mahajans3
Jongse Park £ ASPLOS 2024

Output Response

/ ASPLOS stands for \

"Architectural Support for
Programming Languages
and Operating Systems.”
It is a top-tier conference in
computer science,
specifically focusing on
computer architecture,
programming languages,
and operating systems.

Input Prompt

What is ASPLOS?] »

©

2 /21

Input Prompt

Summarization Phase x 1

Output Response

3 /21

Generation Phase x N

GEMYV iIn Generation Phase

Generation Phase

\ 4
QKV
Generation

[éoftmax]]]

Attend

Projection

Feed
Forward
Networks

1. Weight-activation operation

Embedding, Q

2. Activation-activation operation

K x
Weanng _

4 /21

Batched Inference

Weight-activation operation

Model weight parameter are reusable
Possible to batch

Activation-activation operation

KK|I:|
e
]

read

K

Kam X
K. C——]
Kstudent :

Kine
Kinn [

Kwearlizg
a

e X

C)read

Qstuden’[

No reusable parameters

Cannot be batched

5/ 21

Arithmetic Intensity

Compute Bound

—
9]

o

QO 100

& Y% QKV generation

N’ . .

Q 75 Well-suited to NPU | © Projection :]GEMM
- @ FFNs

e 50 i

= @ Logit ey
qa__) 5 gy Attend

¥

= Well-suited to PIM

0 100 200 300 400

o

Arithmetic Intensity (FLOPS/byte)

6 /21

Processing in Memory (PIM) for GEMV

* Processing unit in memory, utilizing high internal bandwidth
« Efficient to bandwidth-bound operations such as GEMV

x I

Matrix

Vector

PIM Bank 1 PIM Bank 2 PIM Bank 3 PIM Bank 4

Memory

L]
A A 2
PU

Memory

| |
AN
PU

Memory

_ = > <
PU PU

Memory

Global Buffer

7 /21

NPU+PIM Integration

LLM

| batched]}
A inference 4

Compute-centric accelerator Bandwidth-centric accelerator
Computation power High internal bandwidth
Effective for GEMM Effective for GEMV

8 /21

We aim to leverage NPU+PIM heterogeneous acceleration
for efficient batched inference of LLM

NPU+PIM Integration for LLM

= NPU+PIM integration suffers from resource underutilization

Projection &
Feed Forward
Networks

10 / 21

Challenge 1: Blocked Mode PIM

PIM mode m MEM mode

PIM Bank

n Memory _
’: Cell Array _

Row Decoder

MEM WRITE
Row Buffer

@ Column
Decoder

i * READ

+ 11 /21

Solution 1: Dual Row Buffer PIM

PIM Bank _ |
« Concurrent execution of PIM computation
B m and memory access for NPU
) [—
Sl Memory -
2’: Cell Array
i NPU

Row Buffer Row Buffer WITE BIM

COlumn GEMV
Decoder

READ

* 12 / 21

Challenge 2: GEMM-GEMYV Dependency

= GEMM and GEMV dependency in single batch of LLM inference

QKV Projection &

NPU Generation Feﬁgtsv%r:’i‘(’:rd

Multi-Head
PIM Attention

13 / 21

Solution 2: Sub-batch Interleaving

= Divide one large batch into two sub-batches and alternate them

Projection & Projection &
Feed Forward Feed Forward
Networks Networks

Multi-Head
Attention

14 / 21

Solution 2: Sub-batch Interleaving

= Divide one large batch into two sub-batches and alternate them

Projection & Pra Projection & Projection &
NPU G er%lfg{cl on e er?e'fg{u on Feed Forward Fee Feed Forward Feed Forward
Networks Networks Networks

VP Ea AR Multi-Head %ulti—Head % time

Attentior. A Attention ttention

15 / 21

Example of 3 Decoder Blocks

NPU+PIM non interleaving

Repeated 3 times

Sub-batch interleaving

J3 _my my s
B EEHE =

J€

FHtm Drain time

Repeated 2 times

Example of 3 Decoder Blocks

NPU+PIM non interleaving

NPU

PIM

Repeated 3 times

Sub-batch interleaving

1 0l i e

-- —>1 > time

- BE B E B =

j€ >
Drain time 17 / 21

F'” time Repeated 2 times

NeuPIMs System

NeuPIMs Scheduler

Request Pool Table
Input | # Generated
Length Tokens

LLM Inference Requests | g 43 7
Sub-batch

107 :
Interleaving

Host CPU i
NPU :6 Scheduler PIM bank with dual row buffers
=20 5 ¥

A A

Channel

ngh BandW|dth Interconnect

HEIEET

NeuPIMs System Systolic PIM Channel 2
Array

[Row [‘);coder|
]

9
=

AN : : Column
Decoder

N I. PIM Channel 32

NeuPIMs Accelerator

Greedy Min-Load Bin Packing Algorithm

= Distribute requests to PIM channels

Round-robin Algorithm

Requests PIM
Channels
Channel 1 r1 | r5 | r9 | r13
2
Channel 2| r2 |rd| r10 |
Channel3| 3 | r7 | 11 |
| r4 |
| =] Channel 4 r4 [r8” | 12 R
time
- Greedy Min-Load Bin Packing Algorithm
Channels
r10 Channel 1 r1 [8 | r1 | r12
Channel2 [2 |[r6] r7 | r9 | r13
: iz | Channel 3 | r3 | r5 |
i r13 |
time v Channel 4 r4 | r10 |

time 19 / 21

NeuPIMs Performance

Batch size = 64 Batch size = 128 Batch size = 256

LN
o

LN
o

LN
o

GPU-only
NPU-only
B NPU+PIM

daaa b daaal ddad ¥

B B B 3 B)

W
o
W
o
W
o

—
o
-
o
—
o

Throughput (1K Token/s)
N
o
Throughput (1K Token/s)
N
o
Throughput (1K Token/s)
N
o

o

= Dual row buffer PIM architecture and sub-batch interleaving boosted performance
= The benefits increase with larger batch sizes
= 2.4x speedup over NPU-only, 1.6x speedup over NPU+PIM

20 / 21

More Results Iin Paper

= Utilization improvement

= Ablation study

= Model parallelism sensitivity

» Hardware overhead (area/power)

= Comparison with prior PIM-only solution

21 /21

Our simulator code is available EZJc

CO |1 CI u S I O |1 https://github.com/casys-kaist/NeuPIMs

* NeuPIMs
- NPU+PIM heterogeneous acceleration system for LLM batched inference

« Contributions
> PIM microarchitecture equipped with dual row buffer for concurrent execution
> Sub-batch interleaving technique to overlap NPU execution and PIM execution

Dual row buffer PIM Sub-batch interleaving Throughput
«® «® Improvement

),), 2.4X%

._I over NPU-only

PIM <=—>MEM 1.6x

Concurrent Execution over naive NPU+PIZI\£|

