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Output Response

/ ASPLOS stands for \

"Architectural Support for
Programming Languages
and Operating Systems.”
It is a top-tier conference in
computer science,
specifically focusing on
computer architecture,
programming languages,
and operating systems.
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Batched Inference

Weight-activation operation

Model weight parameter are reusable
Possible to batch

Activation-activation operation
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Processing in Memory (PIM) for GEMV

* Processing unit in memory, utilizing high internal bandwidth
« Efficient to bandwidth-bound operations such as GEMV
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NPU+PIM Integration

LLM

| batched ]}
A inference 4

Compute-centric accelerator Bandwidth-centric accelerator
Computation power High internal bandwidth
Effective for GEMM Effective for GEMV
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We aim to leverage NPU+PIM heterogeneous acceleration
for efficient batched inference of LLM



NPU+PIM Integration for LLM

= NPU+PIM integration suffers from resource underutilization
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Challenge 1: Blocked Mode PIM
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Solution 1: Dual Row Buffer PIM

PIM Bank _ |
« Concurrent execution of PIM computation
B m and memory access for NPU
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Challenge 2: GEMM-GEMYV Dependency

= GEMM and GEMV dependency in single batch of LLM inference
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Solution 2: Sub-batch Interleaving

= Divide one large batch into two sub-batches and alternate them
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Networks Networks
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Solution 2: Sub-batch Interleaving

= Divide one large batch into two sub-batches and alternate them
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Example of 3 Decoder Blocks

NPU+PIM non interleaving

Repeated 3 times

Sub-batch interleaving
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Example of 3 Decoder Blocks

NPU+PIM non interleaving

NPU

PIM

Repeated 3 times

Sub-batch interleaving
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NeuPIMs System

NeuPIMs Scheduler

Request Pool Table
Input | # Generated
Length Tokens

LLM Inference Requests | g 43 7
Sub-batch

107 :
Interleaving

Host CPU i
NPU :6 Scheduler PIM bank with dual row buffers
=20 5 ¥

A A

Channel

ngh BandW|dth Interconnect

HEIEET

NeuPIMs System Systolic PIM Channel 2
Array

[Row [‘);coder|
]

9
=

AN : : Column
Decoder

N I. PIM Channel 32

NeuPIMs Accelerator



Greedy Min-Load Bin Packing Algorithm

= Distribute requests to PIM channels

Round-robin Algorithm
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NeuPIMs Performance

Batch size = 64 Batch size = 128 Batch size = 256

LN
o

LN
o

LN
o

GPU-only
NPU-only
B NPU+PIM

daaa b daaal ddad ¥

B B B 3 B )

W
o
W
o
W
o

—
o
-
o
—
o

Throughput (1K Token/s)
N
o
Throughput (1K Token/s)
N
o
Throughput (1K Token/s)
N
o

o

= Dual row buffer PIM architecture and sub-batch interleaving boosted performance
= The benefits increase with larger batch sizes
= 2.4x speedup over NPU-only, 1.6x speedup over NPU+PIM
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More Results Iin Paper

= Utilization improvement

= Ablation study

= Model parallelism sensitivity

» Hardware overhead (area/power)

= Comparison with prior PIM-only solution
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Our simulator code is available EZJc

CO |1 CI u S I O |1 https://github.com/casys-kaist/NeuPIMs

* NeuPIMs
- NPU+PIM heterogeneous acceleration system for LLM batched inference

« Contributions
> PIM microarchitecture equipped with dual row buffer for concurrent execution
> Sub-batch interleaving technique to overlap NPU execution and PIM execution

Dual row buffer PIM Sub-batch interleaving Throughput
«® «® Improvement

), ), 2.4X%

._I over NPU-only

PIM <=—>MEM 1.6x

Concurrent Execution over naive NPU+PIZI\£|




