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▪GPUs are widely adopted as inference accelerator 

▪ Following requirements must be satisfied:
Serve queries in a bounded time, service-level objective (SLO)

Serve multiple-heterogeneous ML models

Machine Learning (ML) Inference in GPUs
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▪ Batching: Merge inputs to a single large input [1], [2], [3]

▪ Improves throughput and utilization of GPU

▪ Batch size could not be huge due to SLO

Prior Approach: Batching
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Waiting time + execution time < SLO

Inputs waiting in queue

[1] Clipper [ATC’17]
[2] Clockwork [OSDI’20]
[3] Nexus [SOSP’19] 
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input



Prior Approach: Time-Sharing
▪ Time-sharing: Round-based interleaved execution of batches [1]

▪ Increase utilization by reducing idle time on GPU

▪ Guarantee 2 rounds < SLO
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Batching and time-sharing inference, 
underutilize GPUs

Problem with prior approaches



▪Measured latency vs. computing resources w/ varying batch size

Underutilized Resources
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Diminishing return 
beyond 40%
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with better resource utilization

Little improvement in
smaller batch sizes



New Opportunity: Spatio-temporal Scheduling
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▪ Spatio-temporal scheduling: 
▪ Schedule tasks with batching, time-sharing, and spatial sharing

Better utilization ➔ Improved throughput
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▪Need an abstraction of spatial/temporal resource

▪Gpulet: A share of spatial/temporal partition of GPU resource
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Gpulet 1

New Abstraction: Gpulet

TimeGpulet 2

[1] Nexus [SOSP’19] 

Partition size

Duration of Gpulet decided 
by squishy bin-packing [1]

Reserved computational
resource

Gpulet 1 Gpulet 2 Gpulet 1 Gpulet 2



Backend 
Server

Overview of Gpulet Scheduling Framework
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Design Overview of Gpulet Scheduler
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▪ Challenge: Large search space for spatial scheduling
▪ P spatial partitioning choices for N GPUs: 𝑷𝑵 cases to search exhaustively

▪Main idea: Allocate partitions to GPUs incrementally 

Scheduling Gpulets
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▪ Cost-effective: Maximum performance / resource
▪ Cost-effective partition size (resource) = starting point  of diminishing return

▪ Performance is not linearly proportional to resource

▪ Example) GoogLeNet

Cost-effective Partition
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For each partition size

Step ①
Get maximum batch size b
with Latency(b) <  SLO

Step ②
Get throughput 
= b / Latency(b)

Resource 
(Partition size)

Throughput

20% 40% 60% 80% 100%

Start of diminishing return 
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b16

b32



▪ Rules for allocating minimum sum of partitions
① As much as many cost-effective partitions within rate

② One minimum partition for remaining rate

▪ Example: 900 requests per second (rps)

Allocating Partitions to Input Rate
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Resulting Partition Sizes

40 %

20 %

Partition Size Throughput

*40 %   400 rps

20 % 100 rps
40 %

* Cost-effective partition size

Σ = 800 rpsΣ = 900 rps

100 rps still remains!

Rule ①

Rule ②



Design Overview of Gpulet Scheduler
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b’

a’

Scheduling Event for Reorganization
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Dynamic Partition Reorganization 
▪ Challenge: Large overhead exists for preparing a new Gpulet

▪ Overhead: Loading kernels, warming up models

▪ Solution: Hide overhead by shadowing in the background
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Evaluated Benchmarks
▪ Two multi-model applications

▪ game: image/digit recognition

▪ traffic: camera footage analysis

▪ Five multi-model scenarios 
▪ Composed 5 group of models 

by memory footprint size
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Name
Number of models by size 

(small : medium : large)

scen1 2 : 2 : 0

scen2 0 : 1 : 1

scen3 1 : 1 : 1

scen4 1 : 2 : 0

scen5 1 : 2: 1



Evaluation Methodology
▪ Environment: 

▪ 2 multi-GPU servers, each with 2x RTX 2080Ti

▪ Connected with 10G Ethernet network

▪Metric: SLO preserved throughput
▪ Maximum throughput w/ SLO violate rate < 1% 

▪ Schedulers:
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Name
Time

Sharing
Spatial
Sharing

Interference
Prediction

time-share YES NO NO

space-share NO Greedy NO

gpulet YES Cost-effective NO

gpulet + int YES Cost-effective YES
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Best performance when both time and spatial scheduling enabled
throughput increased by an average 61.7% than time-share

Considering interference boosts throughput by 7.5%

space-sharetime-share gpulet gpulet+int



▪ Extended environment: 4x RTX 2080Ti        8x RTX 2080Ti 

Evaluation of Scaling GPUs
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Throughput

Number of GPUs

SLO violation rate

GPUs successfully 
scaled with SLO 

violation rate < 1%



More Results in the Paper

▪ Comparison of spatial partitioning vs. non-partitioning

▪ Comparison of proposed scheduler vs. ideal scheduler

▪ Evaluation of meeting SLO without interference prediction

22/23



Conclusion

▪ML inference performance enhanced by spatio-temporal scheduling

▪ Spatio-temporal scheduling further enhanced by
▪ Minimizing wasted resources with spatial sharing

▪ Scaling resources efficiently by hiding overheads for preparing resources

▪ Predicting interference effect when scheduling

▪Outperformed time-sharing scheduler’s throughput by 61.7%
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