
Serving Heterogeneous Machine Learning
Models on Multi-GPU Servers with

Spatio-Temporal Sharing

Seungbeom Choi, Sunho Lee, Yeonjae Kim,

Jongse Park, Youngjin Kwon, Jaehyuk Huh

▪GPUs are widely adopted as inference accelerator

▪ Following requirements must be satisfied:
Serve queries in a bounded time, service-level objective (SLO)

Serve multiple-heterogeneous ML models

Machine Learning (ML) Inference in GPUs

2/23

Response time
< 40ms

Query

Response

1

1

2

Users

Model A

Model B
Model C

2

GPU servers

▪ Batching: Merge inputs to a single large input [1], [2], [3]

▪ Improves throughput and utilization of GPU

▪ Batch size could not be huge due to SLO

Prior Approach: Batching

3/23

Waiting time + execution time < SLO

Inputs waiting in queue

[1] Clipper [ATC’17]
[2] Clockwork [OSDI’20]
[3] Nexus [SOSP’19]

Execute
Batched

input

Prior Approach: Time-Sharing
▪ Time-sharing: Round-based interleaved execution of batches [1]

▪ Increase utilization by reducing idle time on GPU

▪ Guarantee 2 rounds < SLO

4/23
[1] Nexus [SOSP’19]

Waiting batch A1,B1

Time

Round 1

Exec batch A1 Exec batch B1

Round 2

Model A

Model B

Waiting batch A2,B2

< SLO

Prior Approach: Time-Sharing
▪ Time-sharing: Round-based interleaved execution of batches [1]

▪ Increase utilization by reducing idle time on GPU

▪ Guarantee 2 rounds < SLO

5/23
[1] Nexus [SOSP’19]

Waiting batch A1,B1

Time

Round 1

Exec batch A1 Exec batch B1

Round 2

Model A

Model B

Waiting batch A2,B2

< SLO

Batching and time-sharing inference,
underutilize GPUs

Problem with prior approaches

▪Measured latency vs. computing resources w/ varying batch size

Underutilized Resources

6/23

Diminishing return
beyond 40%

1.3x

1.7x

2.2x

1.4x

Opportunities for improving performance
with better resource utilization

Little improvement in
smaller batch sizes

New Opportunity: Spatio-temporal Scheduling

7/23

▪ Spatio-temporal scheduling:
▪ Schedule tasks with batching, time-sharing, and spatial sharing

Better utilization ➔ Improved throughput

Batching

Time-sharing

Spatial sharing

Prior approach
Spatio-temporal

scheduling

Resource
utilization

Time

Resource
utilization

Time

Scheduling
search space

▪Need an abstraction of spatial/temporal resource

▪Gpulet: A share of spatial/temporal partition of GPU resource

8/23

Gpulet 1

New Abstraction: Gpulet

TimeGpulet 2

[1] Nexus [SOSP’19]

Partition size

Duration of Gpulet decided
by squishy bin-packing [1]

Reserved computational
resource

Gpulet 1 Gpulet 2 Gpulet 1 Gpulet 2

Backend
Server

Overview of Gpulet Scheduling Framework

9/23

Frontend Server Backend Servers

Gpulet
Scheduler

Request
Queues

Profiled latency, SLO

Spatio-temporal
Scheduling

Gpulet GpuletGpulet Gpulet

GPU 1 GPU 2

Execute

Design Overview of Gpulet Scheduler

10/23

Cost-effective
scheduling

Dynamic
reorganization

Scheduling event

Maximize
Performance

Minimize
Resource Usage

Reorganizing Resources

Interference
prediction

Model
A

Shared Resources

Model
B

Please refer to the paper!

Design Overview of Gpulet Scheduler

11/23

Cost-effective
scheduling

Dynamic
reorganization

Scheduling event

Maximize
Performance

Minimize
Resource Usage

Reorganizing Resources

Interference
prediction

Model
A

Shared Resources

Model
B

Please refer to the paper!

▪ Challenge: Large search space for spatial scheduling
▪ P spatial partitioning choices for N GPUs: 𝑷𝑵 cases to search exhaustively

▪Main idea: Allocate partitions to GPUs incrementally

Scheduling Gpulets

12/23

Gpulet Gpulet

Gpulet
Gpulet

Q) How to find cost-effective partitions?

Gpulet

Gpulet
Gpulet

Gpulet

Gpulet

cost-effective partition

Try
Gpulet

Gpulet
Gpulet

Allocate

…

Gpulet Gpulet

Gpulet
Efficient than

exhaustive search

Case 1 Case 2 Case 𝑷𝑵

▪ Cost-effective: Maximum performance / resource
▪ Cost-effective partition size (resource) = starting point of diminishing return

▪ Performance is not linearly proportional to resource

▪ Example) GoogLeNet

Cost-effective Partition

13/23

For each partition size

Step ①
Get maximum batch size b
with Latency(b) < SLO

Step ②
Get throughput
= b / Latency(b)

Resource
(Partition size)

Throughput

20% 40% 60% 80% 100%

Start of diminishing return

b1

b2

b4

b8

b16

b32

▪ Rules for allocating minimum sum of partitions
① As much as many cost-effective partitions within rate

② One minimum partition for remaining rate

▪ Example: 900 requests per second (rps)

Allocating Partitions to Input Rate

14/23

Resulting Partition Sizes

40 %

20 %

Partition Size Throughput

*40 % 400 rps

20 % 100 rps
40 %

* Cost-effective partition size

Σ = 800 rpsΣ = 900 rps

100 rps still remains!

Rule ①

Rule ②

Design Overview of Gpulet Scheduler

15/23

Cost-effective
scheduling

Dynamic
reorganization

Scheduling event

Maximize
Performance

Minimize
Resource Usage

Reorganizing Resources

Interference
prediction

Model
A

Shared Resources

Model
B

Please refer to the paper!

b’

a’

Scheduling Event for Reorganization

16/26

Model A

Time

Requests
Per Second

Monitor
periodically Gpulet

Scheduler

Model B

Time

Requests
Per Second

Reorganize
to a’:b’

Gpulet

Gpulet

Gpulet

Gpulet

Sudden change

Sudden change
a

b

GPU

Dynamic Partition Reorganization
▪ Challenge: Large overhead exists for preparing a new Gpulet

▪ Overhead: Loading kernels, warming up models

▪ Solution: Hide overhead by shadowing in the background

17/23

Event (Reorganize a’:b’)

Gpulet

Active
context

Serving a:b

a b

Serving a:b

Preparing a’:b’

a’ b’

Serving a’:b’

Shadow
context

a b

Evaluated Benchmarks
▪ Two multi-model applications

▪ game: image/digit recognition

▪ traffic: camera footage analysis

▪ Five multi-model scenarios
▪ Composed 5 group of models

by memory footprint size

18/23

Name
Number of models by size

(small : medium : large)

scen1 2 : 2 : 0

scen2 0 : 1 : 1

scen3 1 : 1 : 1

scen4 1 : 2 : 0

scen5 1 : 2: 1

Evaluation Methodology
▪ Environment:

▪ 2 multi-GPU servers, each with 2x RTX 2080Ti

▪ Connected with 10G Ethernet network

▪Metric: SLO preserved throughput
▪ Maximum throughput w/ SLO violate rate < 1%

▪ Schedulers:

19/23

Name
Time

Sharing
Spatial
Sharing

Interference
Prediction

time-share YES NO NO

space-share NO Greedy NO

gpulet YES Cost-effective NO

gpulet + int YES Cost-effective YES

0

500

1000

1500

2000

2500

3000

game traffic scen1 scen2 scen3 scen4 scen5

SL
O

 P
re

se
rv

e
d

Th

ro
u

gh
p

u
t

(r
p

s)
SLO Preserved Throughput Comparison

20/23

Best performance when both time and spatial scheduling enabled
throughput increased by an average 61.7% than time-share

Considering interference boosts throughput by 7.5%

space-sharetime-share gpulet gpulet+int

▪ Extended environment: 4x RTX 2080Ti 8x RTX 2080Ti

Evaluation of Scaling GPUs

21/23

Throughput

Number of GPUs

SLO violation rate

GPUs successfully
scaled with SLO

violation rate < 1%

More Results in the Paper

▪ Comparison of spatial partitioning vs. non-partitioning

▪ Comparison of proposed scheduler vs. ideal scheduler

▪ Evaluation of meeting SLO without interference prediction

22/23

Conclusion

▪ML inference performance enhanced by spatio-temporal scheduling

▪ Spatio-temporal scheduling further enhanced by
▪ Minimizing wasted resources with spatial sharing

▪ Scaling resources efficiently by hiding overheads for preparing resources

▪ Predicting interference effect when scheduling

▪Outperformed time-sharing scheduler’s throughput by 61.7%

23/23

