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Machine Learning (ML) Inference in GPUs

®" GPUs are widely adopted as inference accelerator

= Following requirements must be satisfied:
9 Serve queries in a bounded time, service-level objective (SLO)
Serve multiple-heterogeneous ML models
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Prior Approach: Batching

= Batching: Merge inputs to a single large input (1), [2], 3]
» Improves throughput and utilization of GPU
= Batch size could not be huge due to SLO
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Prior Approach: Time-Sharing

" Time-sharing: Round-based interleaved execution of batches (1]
" Increase utilization by reducing idle time on GPU
" Guarantee 2 rounds < SLO
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Problem with prior approaches

Batching and time-sharing inference,
underutilize GPUs



Underutilized Resources

» Measured latency vs. computing resources w/ varying batch size
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New Opportunity: Spatio-temporal Scheduling

= Spatio-temporal scheduling:
= Schedule tasks with batching, time-sharing, and spatial sharing
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New Abstraction: Gpulet

* Need an abstraction of spatial/temporal resource

= Gpulet: A share of spatial/temporal partition of GPU resource
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Overview of Gpulet Scheduling Framework
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Design Overview of Gpulet Scheduler

Cost-effective Dynamic Interference
scheduling reorganization prediction
o Scheduling event
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Design Overview of Gpulet Scheduler
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Scheduling Gpulets

" Challenge: Large search space for spatial scheduling
= P spatial partitioning choices for N GPUs: PN cases to search exhaustively
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Cost-effective Partition

= Cost-effective: Maximum performance / resource
= Cost-effective partition size (resource) = starting point of diminishing return
= Performance is not linearly proportional to resource

= Example) GoogleNet
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Allocating Partitions to Input Rate

" Rules for allocating minimum sum of partitions
@ As much as many cost-effective partitions within rate
2 One minimum partition for remaining rate

=" Example: 900 requests per second (rps)
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100 rps still remains!
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Design Overview of Gpulet Scheduler
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Scheduling Event for Reorganization
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Dynamic Partition Reorganization

» Challenge: Large overhead exists for preparing a new Gpulet
» QOverhead: Loading kernels, warming up models

= Solution: Hide overhead by shadowing in the background
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Evaluated Benchmarks
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Evaluation Methodology

=" Environment:
= 2 multi-GPU servers, each with 2x RTX 2080Ti
= Connected with 10G Ethernet network

" Metric: SLO preserved throughput
= Maximum throughput w/ SLO violate rate < 1%

= Schedulers:

Time Spatial Interference
Sharing Sharing Prediction
time-share YES NO NO
space-share NO Greedy NO
gpulet YES Cost-effective NO
gpulet + int YES Cost-effective YES
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SLO Preserved Throughput Comparison
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Best performance when both time and spatial scheduling enabled
throughput increased by an average 61.7% than time-share

Considering interference boosts throughput by 7.5%
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Evaluation of Scaling GPUs

= Fxtended environment: 4x RTX 2080Ti =» 8x RTX 2080Ti
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More Results in the Paper

= Comparison of spatial partitioning vs. non-partitioning

»" Comparison of proposed scheduler vs. ideal scheduler

" Evaluation of meeting SLO without interference prediction



Conclusion

" ML inference performance enhanced by spatio-temporal scheduling

" Spatio-temporal scheduling further enhanced by
* Minimizing wasted resources with spatial sharing
= Scaling resources efficiently by hiding overheads for preparing resources
" Predicting interference effect when scheduling

» Qutperformed time-sharing scheduler’s throughput by 61.7%



