Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with Spatio-Temporal Sharing

Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, Jaehyuk Huh

Machine Learning (ML) Inference in GPUs

- GPUs are widely adopted as inference accelerator
- Following requirements must be satisfied:
 - **1** Serve queries in a bounded time, *service-level objective* (SLO)
 - 2 Serve multiple-heterogeneous ML models

Prior Approach: Batching

- Batching: Merge inputs to a single large input [1], [2], [3]
 - Improves throughput and utilization of GPU
 - Batch size could not be huge due to SLO

Waiting time + execution time < SLO

[1] Clipper [ATC'17][2] Clockwork [OSDI'20][3] Nexus [SOSP'19]

Prior Approach: Time-Sharing

- Time-sharing: Round-based interleaved execution of batches [1]
 - Increase utilization by reducing idle time on GPU
 - Guarantee 2 rounds < SLO</p>

Time

Prior Approach: Time-Sharing

Time-sharing: Round-based interleaved execution of batches in
Increas Problem with prior approaches
Guarantee 2 rounds < SLO

Batching and time-sharing inference, underutilize GPUs

Time

Underutilized Resources

Measured latency vs. computing resources w/ varying batch size

Opportunities for improving performance with better resource utilization

New Opportunity: Spatio-temporal Scheduling

Spatio-temporal scheduling:

Schedule tasks with batching, time-sharing, and spatial sharing

7/23

New Abstraction: Gpulet

- Need an abstraction of spatial/temporal resource
- Gpulet: A share of spatial/temporal partition of GPU resource

resource

Overview of Gpulet Scheduling Framework

Design Overview of Gpulet Scheduler

Design Overview of Gpulet Scheduler

Scheduling Gpulets

Challenge: Large search space for spatial scheduling

P spatial partitioning choices for N GPUs: P^N cases to search exhaustively

Q) How to find cost-effective partitions?

Cost-effective Partition

Cost-effective: Maximum performance / resource

- Cost-effective partition size (resource) = starting point of diminishing return
- Performance is **not** linearly proportional to resource

Allocating Partitions to Input Rate

- Rules for allocating minimum sum of partitions
 - 1) As much as many cost-effective partitions within rate
 - ② **One minimum partition** for remaining rate
- Example: 900 requests per second (rps)

Partition Size	Throughput	
*40 %	400 rps	
20 %	100 rps	

* Cost-effective partition size

Resulting Partition Sizes

Σ = 900 rps

100 rps still remains! 14/23

Design Overview of Gpulet Scheduler

Scheduling Event for Reorganization

Dynamic Partition Reorganization

- Challenge: Large overhead exists for preparing a new Gpulet
 - Overhead: Loading kernels, warming up models
- Solution: Hide overhead by shadowing in the background

Evaluated Benchmarks

- Two multi-model applications
 - game: image/digit recognition
 - traffic: camera footage analysis

- Five multi-model scenarios
 - Composed 5 group of models by memory footprint size

Name	Number of models by size (small : medium : large)		
scen1	2:2:0		
scen2	0:1:1		
scen3	1:1:1		
scen4	1:2:0		
scen5	1:2:1		

Evaluation Methodology

- Environment:
 - 2 multi-GPU servers, each with 2x RTX 2080Ti
 - Connected with 10G Ethernet network
- Metric: SLO preserved throughput
 - Maximum throughput w/ SLO violate rate < 1%</p>
- Schedulers:

Name	Time Sharing	Spatial Sharing	Interference Prediction
time-share	YES	NO	NO
space-share	NO	Greedy	NO
gpulet	YES	Cost-effective	NO
gpulet + int	YES	Cost-effective	YES

SLO Preserved Throughput Comparison

Best performance when **both time and spatial** scheduling enabled throughput increased by an average **61.7%** than *time-share*

Considering interference boosts throughput by 7.5%

Evaluation of Scaling GPUs

More Results in the Paper

- Comparison of spatial partitioning vs. non-partitioning
- Comparison of proposed scheduler vs. ideal scheduler
- Evaluation of meeting SLO without interference prediction

Conclusion

- ML inference performance enhanced by spatio-temporal scheduling
- Spatio-temporal scheduling further enhanced by
 - Minimizing wasted resources with spatial sharing
 - Scaling resources efficiently by hiding overheads for preparing resources
 - Predicting interference effect when scheduling

Outperformed time-sharing scheduler's throughput by 61.7%