Serving Heterogeneous Machine Learning
Models on Multi-GPU Servers with
Spatio-Temporal Sharing

Seungbeom Chol, Sunho Lee, Yeonjae Kim,
Jongse Park, Youngjin Kwon, Jaehyuk Huh

KAIST CASYS

Machine Learning (ML) Inference in GPUs

®" GPUs are widely adopted as inference accelerator

= Following requirements must be satisfied:
9 Serve queries in a bounded time, service-level objective (SLO)
Serve multiple-heterogeneous ML models

Query Model B
——-
Model A 1 MOdel C
Response

Users = ’5 >

Response time GPU servers
<40ms

Prior Approach: Batching

= Batching: Merge inputs to a single large input (1), [2], 3]
» Improves throughput and utilization of GPU
= Batch size could not be huge due to SLO

Inputs waiting in queue

—
g,
_— o ,

Batched
Execute
—) - input

Waiting time + execution time < SLO

[1] Clipper [ATC’17]
[2] Clockwork [OSDI’20]
[3] Nexus [SOSP’19] 3/23

Prior Approach: Time-Sharing

" Time-sharing: Round-based interleaved execution of batches (1]
" Increase utilization by reducing idle time on GPU
" Guarantee 2 rounds < SLO

<SLO
Round 2

Waiting batch A2,B2

Round 1
Model A Waiting batch A1,B1

Model B “Exec batch A1 || Exec batch B1

e e - -

>
Time

[1] Nexus [SOSP’19]

Problem with prior approaches

Batching and time-sharing inference,
underutilize GPUs

Underutilized Resources

» Measured latency vs. computing resources w/ varying batch size

[bl b2 miwmbd mPmbs m@Pmble *b32]
60 150 o
_ — Diminishing return
D45 2
£ €100 beyond 40%
== ==
230 o
2 s 2 50 Little improvement in
! s .
== — smaller batch sizes
020 207 50 &0 8o 100 020 120750 60 80 100
Resource (%) Resource (%)
(a) GoogLeNet (b) ResNet50

Opportunities for improving performance

with better resource utilization

6/23

New Opportunity: Spatio-temporal Scheduling

= Spatio-temporal scheduling:
= Schedule tasks with batching, time-sharing, and spatial sharing

Batching

|

Scheduling
search space

Spatio-temporal
scheduling

>
Time-sharing

Spatial sharing

Resource

utilization

Resource
utilization

»Time

»Time

Better utilization = Improved throughput

7/23

New Abstraction: Gpulet

* Need an abstraction of spatial/temporal resource

= Gpulet: A share of spatial/temporal partition of GPU resource

-

~

_

J

Reserved computational

resource

[1] Nexus [SOSP’19]

Partition size

)

Gpulet 1

-
)

Gpulet 2

—

!

[Gpulet 1] [Gpulet 2 J [Gpulet 1] [Gpulet 2 J

Duration of Gpulet decided ~Time
by squishy bin-packing [1]

<

Overview of Gpulet Scheduling Framework

Frontend Server

Request
Queues

Gpulet

|
Spatio-temporal |
Scheduling |

1

Scheduler

Profiled latency, SLO

Backend Servers

Backend
Server

Execute

]

Gpulet

Gpulet

Gpulet

Gpulet

G

PU1

GPU 2

I9/23

Design Overview of Gpulet Scheduler

Cost-effective Dynamic Interference
scheduling reorganization prediction
o Scheduling event
[Model][Model]
A B
— Reorganizing Resources - SMe,
hared Res
Minimize _,3 Shared Resources
Resource Usagev (ﬁﬁ\ = ’%%‘ il b
- o - ! H 1
—— | — ! N |
—— [— .
== == S
——— — Please refer to the paper!

Design Overview of Gpulet Scheduler

Cost-effective
scheduling

o
Maximize

Performance

Minimize

Resource Usage.

11/23

Scheduling Gpulets

" Challenge: Large search space for spatial scheduling
= P spatial partitioning choices for N GPUs: PN cases to search exhaustively

BEINE R — — I
| e |

Case 1 Case 2 Case PN
" Main idea: Allocate partitions to GPUs incrementally

l \ é)

| [J [) | Allocate |) Efficient than

: exhaustive search
|

1

. cost-effective partition

—————————————————————

Q) How to find cost-effective partitions?

12/23

Cost-effective Partition

= Cost-effective: Maximum performance / resource
= Cost-effective partition size (resource) = starting point of diminishing return
= Performance is not linearly proportional to resource

= Example) GoogleNet

Thr
60 bl MM b8
y b2 M bl6
E45 N b4 BN b32

530

-

j}j ‘."h\~‘\‘.-l--l.h-.--1.----1.----..[
© 15 TN,

-

0 20 40 50 60 80 100
Resource (%)

| I ——— |

Resource

(Partition size)

For each partition size

Step @
Get maximum batch size b

with Latency(b) < SLO

Step @
Get throughput

= b / Latency(b)

13/23

Allocating Partitions to Input Rate

" Rules for allocating minimum sum of partitions
@ As much as many cost-effective partitions within rate
2 One minimum partition for remaining rate

=" Example: 900 requests per second (rps)

Partition Size Throughput

*40 %
20 %

400 rps
100 rps

* Cost-effective partition size

Resulting Partition Sizes

2 =900 rps

100 rps still remains!

14/23

Design Overview of Gpulet Scheduler

Dynamic
reorganization

Scheduling event

4

— Reorganizing Resources -

—/i
——\ = ——)

AANAOE
NNNNNE
OO0
0000

Scheduling Event for Reorganization

Model A

Requests
Per Second

Model B

Requests
Per Second

Sudden change

Monitor

periodically Gpulet
Scheduler

Reorganize

toa’:b’

A 4

Gpulet

I

Gpulet

GPU

a
v
a
A 4

bl

16/26

Dynamic Partition Reorganization

» Challenge: Large overhead exists for preparing a new Gpulet
» QOverhead: Loading kernels, warming up models

= Solution: Hide overhead by shadowing in the background

Event (Reorganize a’:b’)

. N

i |

Active -

| 1 . I - . |) 17

context |[Serving a:b } : [Serving a:b] I[Serving a’:b
| : .
Shadow | , ——— :
context | : [Preparing a’:b } :
|

Gpulet : a b

Evaluated Benchmarks

= game: image/digit recognition] Input —
. . : ! SSD MDbIlENetV1
= traffic: camera footage analysis e ! Detected Img

Select + Resize

ResNet50 LeNetl gX} LeNet6

(Qutputl) (Output2)

GooglLeNet

Qutput?2

Number of models by size

® Five multi-model scenarios \ETT

(small : medium : large)

= Composed 5 group of models scenl 2-2:0
by memory footprint size ccen? 0:1:1
scen3 1:1:1
scen4 1:2:0

scen5 1:2:1 18/23

Evaluation Methodology

=" Environment:
= 2 multi-GPU servers, each with 2x RTX 2080Ti
= Connected with 10G Ethernet network

" Metric: SLO preserved throughput
= Maximum throughput w/ SLO violate rate < 1%

= Schedulers:

Time Spatial Interference
Sharing Sharing Prediction
time-share YES NO NO
space-share NO Greedy NO
gpulet YES Cost-effective NO
gpulet + int YES Cost-effective YES

19/23

SLO Preserved Throughput Comparison
1 gpulet B soulet+int

time-share .space—share

3000

o

r——
I——l

1'|'|‘z I

traffic scenl scen2 scen3 scend scenb

SLO Preserved
hp
th
()
o

Best performance when both time and spatial scheduling enabled
throughput increased by an average 61.7% than time-share

Considering interference boosts throughput by 7.5%

20/23

Evaluation of Scaling GPUs

= Fxtended environment: 4x RTX 2080Ti =» 8x RTX 2080Ti

MobileNet-V2 mmmm= \/GG16 wemmm ResNet50

3000
2500
2000
1500

1500 ==p Throughput

Thpt. (req/s)

9)
o
o

0 400 800 1200 1600 2000 2400 2800 3200

2 GPUs successfully
44,_,—__,“_,—’—'_,_%1"1 scaled with SLO
2

violation rate < 1%

0 400 800 1200 1600 2000 2400 2800 3200

==p SLO violation rate

SLO Violation Num of GPUs
w
X

0% J I il L I | x | R A .
0 400 800 1200 1600 2000 2400 2800 3200

Time (sec)

21/23

More Results in the Paper

= Comparison of spatial partitioning vs. non-partitioning

»" Comparison of proposed scheduler vs. ideal scheduler

" Evaluation of meeting SLO without interference prediction

Conclusion

" ML inference performance enhanced by spatio-temporal scheduling

" Spatio-temporal scheduling further enhanced by
* Minimizing wasted resources with spatial sharing
= Scaling resources efficiently by hiding overheads for preparing resources
" Predicting interference effect when scheduling

» Qutperformed time-sharing scheduler’s throughput by 61.7%

