
Common Counters:

Compressed Encryption Counters

for Secure GPU Memory

Seonjin Na, Sunho Lee, Yeonjae Kim, Jongse Park, Jaehyuk Huh

KAIST, School of Computing

2

Need for Secure GPU Computing

Untrusted
Device Driver

Trained DNN
Parameters

Training Data
& DNN Model

PCIe bus

Privileged SW Attack

Physical
Attack

We need to consider Secure GPU computing !

3

• Trusted Execution Environment (TEE)
- Intel SGX, ARM TrustZone

• Existing TEEs does not provide TEE on GPUs

Trusted GPU Computing

Device
Driver

GPU
GPU

MemoryData

Enclave

Code

Protected by
Hardware

PCIe-bus

Attack Surface

4

• HIX [ASPLOS ‘19]: Securing I/O Path from CPU to GPU
- All device I/O accesses to GPU are controlled by trusted device driver

Prior Work : HIX

Trusted
Device
Driver

User
Enclave

Untrusted
OS

GPU

Secure Channel

Protected
PCIe-pathData CMD

No GPU HW
Modification

GPU Enclave

5

Secure Channel

• Graviton [OSDI ‘18]: Trusted GPU by changing GPU HW
- Trusted Command Processor handles critical GPU operations instead of driver

Prior Work : Graviton

Untrusted
Device Driver

Trusted
Command
Processor

Unprotected
Memory Region

Protected
Memory Region

Accesses from device driver are not allowed

Data CMD

Stacked GPU Memory

GPU

6

• HIX [ASPLOS ‘19]: Securing I/O Path from CPU to GPU

• Graviton [OSDI ‘18]: Trusted GPU by changing GPU HW

Limitations of Prior Work

Trusted
Device
Driver

User
Enclave

GPU

Secure Channel

Monitor
PCIe-packetData CMD

No GPU HW
Modification

Untrusted
OS

Out-of-scope
: GPU Physical Attack

Secure Channel

Untrusted
Device Driver

Trusted
Command
Processor

Unprotected
Memory Region

Protected
Memory Region

Accesses from device driver are not allowed

Data CMD

Stacked GPU Memory

GPU

Assumption : Stacked GPU Memory

7

• Main Contributions
- Provide secure GPU memory with low performance overheads

- Exploit unique memory update behavior of common GPU applications

- Reduce the average performance overhead to 2.9 %

Goal: Secure GPU Memory

User
App

Enclave

CPU
GPU

Crypto
Engine

Integrity
Engine

GDDRx GPU Memory

Our Focus

Security
Meta-data

Encrypted Data
Encryption
& Integrity

verification

PCIe

Protected by prior work

Trusted
Device
Driver

8

Threat Model & Assumptions

• Threat Model
- Attackers can fully control operating system/hypervisor

- Attackers can physically access the whole system

• Trusted Computing Base (TCB)
- GPU processor & GPU software running on the GPU

- CPU chip & user application in an CPU Enclave

• Out of Scope
- Denial of Service(DoS) attacks

- Side-channel attacks

9

Outline

• Introduction

• Background & Motivation

• Common Counter
- Main Idea
- Additional Metadata
- Common Counter Mechanism

• Evaluation

10

• Memory Encryption
- Counter mode encryption

- Split Counter scheme

Background : Securing Memory

AES-CTR OTP

Counter = Major | Minor

Key

Address Counter

Encrypted
Data

Data

Cache block :128B
→ 128 minor counters

Minor Counters(7-bit for each)

...Major
Ctr

64-bit

Incremented after data update

11

• Memory Integrity Verification
- Message Authentication Code (MAC)

- Counter Integrity Tree

Background : Securing Memory

Data
Cryptographic

Hash
Data
MAC

Data Blocks Counters

On-chip secured

Counter
Integrity Tree

Processor DRAM

Our baseline : SC-128
128-ary (Split Counter + Counter integrity tree)

Replay Attack

(older copy)

{Data1,MAC1, Ctr1}

Sniff

{Data0, MAC0, Ctr0}

12

Problem : Performance Overhead

• Secure memory require additional meta-data requests

Last-Level Cache
(LLC)

1. Data
Request

Counter
Cache

Hash
Cache

Encrypted
Data

Encryption
Counters

Tree
Nodes

Data
MAC

On-chip
Boundary

OTP

2. Data MAC
Request

3. Counter
Request

4. Counter Tree
Requests

5. Decryption
& Data MAC check

Untrusted GPU Memory

Trusted

Untrusted

Secure memory adds decryption latency

and increases memory bandwidth

13

• GPU memory protection overhead result for GPU benchmark suites

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 IP

C

SC_128

SC_128+Ideal_MAC

SC_128+Ideal_Ctr

SC_128+Ideal_Ctr+Ideal_MAC

Performance Breakdown Analysis

+ 2.4%
+ 11.8%

Data
Data
MAC

For data MAC overhead

[1] :SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories, HPCA’18

With ECC memory,
Data & MAC can be provided by
1 memory access using Synergy[1]

+ 22.4%

SC_128 SC_128+
Ideal MAC

SC_128+
Ideal Ctr

SC_128+
Ideal (Ctr+ MAC)

Counter mode encryption is one of the key bottlenecks

14

• Memory segment: Contiguous memory region

• Uniformly updated segment: Read-only + uniformly written

Uniformly Updated Segments

Data
Blocks

Block Block Block ...

32KB/ 128B = 256 Data cache blocks

Block Block Block ...

256 cache blocks

Data
Blocks

0 0 0 ... Counters

Block Block Block ...

256 cache blocks

Data
Blocks

0 0 0 ... Counters

1. Read-only 2. Uniformly written

Example granularity: 32KB

2 2 2

15

• Analyze memory read/write behavior by using NVBit [MICRO ‘19]

0.62
0.56

0.43

0.27

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 U
n

if
o

rm
ly

 U
p

d
at

e
d

Se

gm
e

n
t

R
at

io
32KB 128KB 512KB 2MB

Observation : GPU SW Write Patterns

Result of GPU Benchmark Suite

We choose 128KB granularity for evaluation

32KB 128KB 512KB 2MB
Observation 1: GPU programs tend to uniformly update memory

Observation 2: The number of distinct counter values is small

16

Outline

• Introduction

• Background & Motivation

• Common Counter
- Main Idea
- Additional Metadata
- Common Counter Mechanism

• Evaluation

17

Common Counter : Main Idea

• Use coarse-grained counters for uniformly updated segments

Data
Blocks

Per-block
Ctr Blocks

Use a common counter

Block

Common
Counter

Data
Blocks

Block Block

Block

2

Block Block

2 2...

...

...

Block

1

Block Block

3 6...

...

Uniformly Updated Segment

Block

1

Block Block

3 6

Non-uniform Segment

Use per-block counters

...

18

• Common Counter Status Map (CCSM)
- Check whether a memory segment uses a common counter or not

Finding Uniformly Updated Segments

Segment 1 Segment Value

1 2

2 Invalid

3 1

4 15

Segment 2

Segment 3

Segment 4

CCSM Table

Index of common counter
Invalid : not uniformly updated segment

Common ctr set

Common Ctr 1

Common Ctr 15

Common Ctr 2

…

15 Registers

Can be cached in CCSM cache

19

Updating CCSM Table

• Initialized at application launch

• Scanning Procedure
- When? After a kernel is completed

Segment Value

1

2 0

CCSM Table

Updated Memory Region Map

Segment 1 Segment 2

. . .

Counter 1 Counter 2

.

...

Invalid1

2MB
Region
Scan

Uniformly updated!

1

Bit vector for recording memory
update status at 2MB granularity

... ...

01 ...0

11 ...1 11 ...1

20

LLC Miss Handling with Common Counters

Last Level Cache
(L2 cache)

CCSM
Cache

Counter
Cache

GPU Memory

On-chip
Boundary Trusted

Untrusted

Data
Request

1. CCSM cache access

2. Miss :
CCSM request

3. Invalid
Segment 1. Hit: Use

Common ctr

Common ctr can reduce
counter cache access.

4. Use
per-block ctrs

LLC
Miss

21

GPU Execution with Common Counter

GPU Context
Initialization

Kernel
Execution

Scanning
Procedure

1. Meta-data
Initialization

2. Meta-data
Update

3. Scan updated
memory region

Kernel
Launch

Updated Memory Region Map

Common Ctr set

Ctr
1

... Ctr
15

Segment Value

1 0

2 0

CCSM Table

...

...

Enc key

Ctr blocks

00 ...0

Segment

...

00 ...0

22

Outline

• Introduction

• Background & Motivation

• Common Counter
- Main Idea
- Additional Metadata
- Common Counter Mechanism

• Evaluation

23

Methodology

• Simulator: GPGPU-Sim

• Workloads: ISPASS, Rodinia, Polybench, Pannotia

• System configuration: Models NVIDIA TITAN X Pascal GPU

GPU Core Configuration

System overview 28 SMs, 64 warps per SM

Shader core 1,417 MHz, GTO Scheduler

Cache & Memory Configuration

L1 cache 48 KB

L2 cache 3 MB

DRAM GDDR5X 1,251 MHz, 12 GB

Counter cache, Hash cache 16 KB

CCSM cache 1 KB

Segment size 128 KB

Number of common ctrs 15

24

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 IP

C

SC_128 Morphable Common_Ctr

Performance: Separate MACs

• Performance overhead analysis (Baseline: Non-secure GPU)
- SC-128: 128-arity split counter

- Morphable Counter [MICRO ‘18]: 256-arity split counter

- Common_Ctr: Implemented on top of SC-128 (128-arity)

13.9%

With Separate MACs

25

Performance: Synergy In-line MACs

• Common counter reduces the performance degradation to 2.9%

With Synergy[1] in-line MACs

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 IP

C

SC_128 Morphable Common_Ctr
2.9%

[1] :SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories, HPCA’18

color, mis,lib,bfs : As kernel runs, # of requests
served by common counters decreases.

26

More Results in the Paper

• Uniformly updated ratios of real-world GPU Applications

• Hardware area/energy cost for common counter mechanism

• Ratios of LLC misses served by common counters

• Scanning Overheads

• Counter cache sensitivity experiments

Please Refer to our paper for more details!

27

Conclusion

• Result
- Common Counter reduces the performance degradation to 2.9%

• Problem
- Memory encryption is one of the critical bottlenecks for secure GPU memory

• Key Observation
- GPU programs tend to uniformly update memory

- The number of distinct common counters is small

• Our Approach
- Common Counter provides compressed representation of per-block counters

Backup Slides

29

Type of Physical Attacks

Unauthorized
Data Leak

Unauthorized
Data Modification

Replay Attack

Secure memory needs to protect against these attacks !

Cold Boot Attack DMA Attack

Data A

Data B

Man in the middle attack

Processor DRAM

Data 1

MAC 1

Data 0

MAC 0

Reuse old pair

30

• Analyze memory read/write behavior by using NVBit [1]
- Collect traces for load/store instructions

0

0.2

0.4

0.6

0.8

1

GoogLeNet Dijkstra CDP_Qtree SobelFilter FS_FatCloud

R
at

io

32KB 128KB 512KB 2MB

GPU SW Memory Write Patterns

Result of Real-World GPU Applications

[1] : NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs, MICRO’19

0

2

4

6

GoogLeNet Dijkstra CDP_QTree SobleFilter FS_FatCloud#
o

f
D

is
ti

n
ct

 C
o

u
n

te
rs

32KB 128KB 512KB 2MB

0.62
0.56

0.43

0.27

0

0.2

0.4

0.6

0.8

1

average

R
at

io

32KB 128KB 512KB 2MB

0

2

4
M

ax
im

u
m

N

u
m

b
er

 o
f

D
is

ti
n

ct
 C

o
u

n
te

rs

32KB 128KB 512KB 2MB

Result of GPU Benchmark Suite

31

GPU SW Memory Write Patterns

• Analyze

Result for GPU Benchmark Suite

Result for Real-World GPU Applications

32

Result for GPU Benchmark Suite

Result for Real-World GPU Applications

GPU SW Memory Write Analysis

33

• Coverage comparison

Coverage

Scheme Granularity Per-block Coverage

split counter 128B data block 128 * 16KB = 16KB data

Common counter 128 KB data block 256 * 128KB = 32MB data

2048x efficient coverage

34

Performance Result & Counter Coverage

With Synergy in-line MACs

0
0.2
0.4
0.6
0.8

1

C
o

m
m

o
n

 C
o

u
n

te
r

C
o

ve
ra

ge

Read Only Non Read Only

0
0.2
0.4
0.6
0.8

1

N
o

rm
al

iz
e

d
 IP

C

SC_128 Morphable Common_Ctr

35

Counter Cache Miss ratio

0

0.2

0.4

0.6

0.8

1

M
is

s
R

at
io

BMT SC_128 MORPHABLE

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
e

d
 IP

C

SC_128 Morphable Common_Ctr

36

Scanning Overhead

• Evaluate scanning procedure

Neglig

