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Need for Secure GPU Computing 
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We need to consider Secure GPU computing !
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• Trusted Execution Environment (TEE)
- Intel SGX, ARM TrustZone

• Existing TEEs does not provide TEE on GPUs

Trusted GPU Computing
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• HIX [ASPLOS ‘19]: Securing I/O Path from CPU to GPU
- All device I/O accesses to GPU are controlled by trusted device driver

Prior Work : HIX
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Secure Channel

• Graviton [OSDI ‘18]: Trusted GPU by changing GPU HW
- Trusted Command Processor handles critical GPU operations instead of driver 

Prior Work : Graviton
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• HIX [ASPLOS ‘19]: Securing I/O Path from CPU to GPU

• Graviton [OSDI ‘18]: Trusted GPU by changing GPU HW

Limitations of Prior Work
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Assumption : Stacked GPU Memory 
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• Main Contributions
- Provide secure GPU memory with low performance overheads

- Exploit unique memory update behavior of common GPU applications 

- Reduce the average performance overhead to 2.9 % 

Goal: Secure GPU Memory
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Threat Model & Assumptions 

• Threat Model
- Attackers can fully control operating system/hypervisor

- Attackers can physically access the whole system

• Trusted Computing Base (TCB)
- GPU processor & GPU software running on the GPU

- CPU chip & user application in an CPU Enclave

• Out of Scope
- Denial of Service(DoS) attacks

- Side-channel attacks
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Outline 

• Introduction 

• Background & Motivation

• Common Counter 
- Main Idea
- Additional Metadata
- Common Counter Mechanism

• Evaluation
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• Memory Encryption
- Counter mode encryption

- Split Counter scheme 

Background : Securing Memory 

AES-CTR OTP

Counter = Major | Minor

Key

Address Counter

Encrypted 
Data

Data

Cache block :128B
→ 128 minor counters

Minor Counters(7-bit for each)

...Major
Ctr

64-bit

Incremented after data update  
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• Memory Integrity Verification
- Message Authentication Code (MAC)

- Counter Integrity Tree 

Background : Securing Memory 

Data
Cryptographic

Hash
Data 
MAC

Data Blocks Counters

On-chip secured

Counter 
Integrity Tree 

Processor DRAM

Our baseline : SC-128
128-ary (Split Counter + Counter integrity tree)

Replay Attack

(older copy)

{Data1,MAC1, Ctr1}

Sniff 

{Data0, MAC0, Ctr0}
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Problem : Performance Overhead 

• Secure memory require additional meta-data requests

Last-Level Cache
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• GPU memory protection overhead result for GPU benchmark suites
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Performance Breakdown Analysis 
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Data
Data 
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For data MAC overhead

[1] :SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories, HPCA’18

With ECC memory, 
Data & MAC can be provided by 
1 memory access using Synergy[1]

+ 22.4% 
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Counter mode encryption is one of the key bottlenecks
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• Memory segment: Contiguous memory region 

• Uniformly updated segment: Read-only + uniformly written

Uniformly Updated Segments 

Data
Blocks

Block  Block Block  ... 

32KB/ 128B = 256 Data cache blocks 

Block  Block Block  ... 

256 cache blocks 

Data
Blocks

0 0 0  ... Counters

Block  Block Block  ... 

256 cache blocks 

Data
Blocks

0 0 0  ... Counters

1. Read-only 2. Uniformly written

Example granularity: 32KB

2 2 2
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• Analyze memory read/write behavior by using NVBit [MICRO ‘19]
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We choose 128KB granularity for evaluation 

32KB 128KB 512KB 2MB
Observation 1: GPU programs tend to uniformly update memory

Observation 2: The number of distinct counter values is small 
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Outline 

• Introduction 

• Background & Motivation

• Common Counter 
- Main Idea
- Additional Metadata
- Common Counter Mechanism

• Evaluation
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Common Counter : Main Idea

• Use coarse-grained counters for uniformly updated segments
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• Common Counter Status Map (CCSM) 
- Check whether a memory segment uses a common counter or not

Finding Uniformly Updated Segments

Segment 1 Segment Value

1 2

2 Invalid

3 1

4 15

Segment 2

Segment 3

Segment 4

CCSM Table

Index of common counter
Invalid : not uniformly updated segment

Common ctr set 

Common Ctr 1

Common Ctr  15

Common Ctr 2

…

15 Registers 

Can be cached in CCSM cache
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Updating CCSM Table

• Initialized at application launch

• Scanning Procedure 
- When? After a kernel is completed

Segment Value

1

2 0

CCSM Table

Updated Memory Region Map 

Segment 1 Segment 2

. . .

Counter 1 Counter 2

. . . ...

...

Invalid1

2MB
Region 
Scan

Uniformly updated!

1

Bit vector for recording memory 
update status at 2MB granularity

... ...

01 ...0

11 ...1 11 ...1
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LLC Miss Handling with Common Counters

Last Level Cache
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GPU Execution with Common Counter
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Outline 

• Introduction 

• Background & Motivation

• Common Counter 
- Main Idea
- Additional Metadata
- Common Counter Mechanism

• Evaluation
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Methodology

• Simulator: GPGPU-Sim

• Workloads: ISPASS, Rodinia, Polybench, Pannotia

• System configuration: Models NVIDIA TITAN X Pascal GPU 

GPU Core Configuration

System overview 28 SMs, 64 warps per SM

Shader core 1,417 MHz, GTO Scheduler

Cache & Memory Configuration

L1 cache 48 KB

L2 cache 3 MB

DRAM GDDR5X 1,251 MHz, 12 GB

Counter cache, Hash cache 16 KB

CCSM cache 1 KB

Segment size 128 KB

Number of common ctrs 15
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Performance: Separate MACs

• Performance overhead analysis (Baseline: Non-secure GPU)
- SC-128: 128-arity split counter

- Morphable Counter [MICRO ‘18]: 256-arity split counter 

- Common_Ctr: Implemented on top of  SC-128 (128-arity)

13.9%

With Separate MACs
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Performance: Synergy In-line MACs

• Common counter reduces the performance degradation to 2.9%

With Synergy[1] in-line MACs  
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2.9% 

[1] :SYNERGY: Rethinking Secure-Memory Design for Error-Correcting Memories, HPCA’18

color, mis,lib,bfs : As kernel runs, # of requests 
served by common counters decreases.



26

More Results in the Paper

• Uniformly updated ratios of real-world GPU Applications

• Hardware area/energy cost for common counter mechanism

• Ratios of LLC misses served by common counters 

• Scanning Overheads

• Counter cache sensitivity experiments 

Please Refer to our paper for more details!
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Conclusion

• Result
- Common Counter reduces the performance degradation to 2.9% 

• Problem 
- Memory encryption is one of the critical bottlenecks for secure GPU memory

• Key Observation 
- GPU programs tend to uniformly update memory 

- The number of distinct common counters is small

• Our Approach
- Common Counter provides compressed representation of per-block counters
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Type of Physical Attacks  

Unauthorized 
Data Leak

Unauthorized 
Data Modification 

Replay Attack

Secure memory needs to protect against these attacks !

Cold Boot Attack DMA Attack

Data A

Data B

Man in the middle attack

Processor DRAM

Data 1

MAC 1

Data 0

MAC 0

Reuse old pair
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• Analyze memory read/write behavior by using NVBit [1]
- Collect traces for load/store instructions
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[1] : NVBit: A Dynamic Binary Instrumentation Framework for NVIDIA GPUs, MICRO’19
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GPU SW Memory Write Patterns

• Analyze  

Result for GPU Benchmark Suite

Result for Real-World GPU Applications



32

Result for GPU Benchmark Suite

Result for Real-World GPU Applications

GPU SW Memory Write Analysis 
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• Coverage comparison 

Coverage 

Scheme Granularity Per-block Coverage 

split counter 128B data block 128 * 16KB  = 16KB data 

Common counter 128 KB data block 256 * 128KB = 32MB data 

2048x efficient coverage 
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Performance Result & Counter Coverage

With Synergy in-line MACs 
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Counter Cache Miss ratio 
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Scanning Overhead

• Evaluate scanning procedure

Neglig


