BIHIWE: Mixed-Signal Charge-Domain Acceleration

Soroush Ghodrati

PhD Student at Computer Science and Engineering Alternative Computing Technologies (ACT) Lab

University of California, San Diego

Challenges in Analog Computing

Challenges in Analog Computing

Wide, Interleaved, and Bit-Partitioned Vector Dot-Product

Wide, Interleaved, and Bit-Partitioned Vector Dot-Product

Mixed-Signal Bit-Partitioned MACC Array: A wide array of low-bitwidth MACC units share single A/D converter

Mixed-Signal Bit-Partitioned MACC Array: MACC Operations and Private Accumulation

Mixed-Signal Bit-Partitioned MACC Array: Accumulating across MACCs and starting A/D conversion

A charge proportional to the magnitude of X is stored on C_x

The sampled charge by C_x is shared by C_w .

A charge proportional to |X||W| is stored on C_w and a multiplication happens

The sampled charge by C_w is transferred to C_{ACC} and accumulated there

While the result of the multiplication is being accumulated, a new input is sampled and a new round begins

Basic Dot-Product Engine

Our Dot-Product Engine: MS-WAGG

BIHIWE Microarchitecture: Design Decisions & Tradeoffs

Improvement in Power; Step-by-Step Analysis

BIHIWE Microarchitecture: Design Decisions & Tradeoffs

Improvement in Area; Step-by-Step Analysis

BIHIWE Hierarchical Clustered Architecture

Mixed-Signal Non-Idealities and Their Mitigation

Injecting the non-idealities to the model and fine-tuning the parameters of the model by retraining the network

Mixed-Signal Non-Idealities and Their Mitigation

BIHIWE Compilation Stack

Comparison with TETRIS

4.9x speedup and 2.4x energy reduction over TETRIS, an optimized 3D-stacked fully-digital accelerator for DNNs

Comparison with GPUs

BIHIWE delivers 70.1x and 35.4x higher Performance-per-Watt compared to Nvidia Titan Xp and RTX 2080 TI

Design Space Exploration for Bit-Partitioning

2-bit bit-partitioning is the optimal choice based on this design style and technology node

Design Space Exploration for # of cores

Each cluster (vault) of the BIHIWE consists of four accelerator cores

Design Space Exploration for MS-BPMAcc

Each MS-BPMAcc in BIHIWE has an array of 8 low-bitwidth MACC units which perform operations for 32 cycles before A/D conversion

Evaluating Circuitry Non-Idealities

DNN Model	Dataset	Top-1 Accuracy (With Non-Idealities)	Top-1 Accuracy (After Fine-Tuning)	Top-1 Accuracy (Ideal)	Final Accuracy Loss
AlexNet	Imagenet	53.12%	56.64%	57.11%	0.47 %
CIFAR-10	CIFAR-10	90.82%	91.01%	91.03%	0.02 %
GoogLeNet	Imagenet	67.15%	68.39%	68.72%	0.33 %
ResNet-18	Imagenet	66.91%	68.96%	68.98%	0.02 %
ResNet-50	Imagenet	74.5%	75.21%	75.25%	0.04 %
VGG-16	Imagenet	70.31%	71.28%	71.46%	0.18%
VGG-19	Imagenet	73.24%	74.20%	74.52%	0.32 %
YOLOv3	Imagenet	75.92%	77.1%	77.22%	0.21 %
PTB-RNN	Penn TreeBank	1.1 BPC	1.6 BPC	1.1 BPC	0.0 BPC
PTB-LSTM	Penn TreeBank	97 PPW	170 PPW	97 PPW	0.0 PPW

BIHIWE has no virtual impact on the classification accuracy of the DNN models