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Wide, Interleaved, and Bit-Partitioned
Vector Dot-Product
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Using low-bitwidth operands provides
larger headroom between value
encoding in analog domain and

reduces the energy/area overhead
of A/D and D/A converters
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BIHIWE Microarchitecture
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Mixed-Signal Bit-Partitioned MACC Array:
A wide array of low-bitwidth MACC units share single A/D converter




BIHIWE Microarchitecture
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Mixed-Signal Bit-Partitioned MACC Array: MACC
Operations and Private Accumulation




BIHIWE Microarchitecture
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Mixed-Signal Bit-Partitioned MACC Array:

Accumulating across MACCs and starting A/D conversion




Low-Bitwidth Switched-Capacitor MACC
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Low-Bitwidth Switched-Capacitor MACC
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The sampled charge by C, is shared by C, .




Low-Bitwidth Switched-Capacitor MACC
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A charge proportional to |X||W| is stored on C, and a multiplication happens




Low-Bitwidth Switched-Capacitor MACC
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The sampled charge by C, is transferred to C,.. and accumulated there




Low-Bitwidth Switched-Capacitor MACC
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While the result of the multiplication is being accumulated,
a new input is sampled and a new round begins




BIHIWE Microarchitecture

Basic Dot-Product Engine
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Our Dot-Product Engine:
MS-WAGG




BIHIWE Microarchitecture: Design Decisions &

Tradeoffs
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BIHIWE Microarchitecture: Design Decisions &
Tradeoffs
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BIHIWE Hierarchical Clustered Architecture
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Mixed-Signal Non-ldealities and Their Mitigation
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flnjecting the non-idealities to the model and fine-tuning
the parameters of the model by retraining the network




Mixed-Signal Non-ldealities and Their Mitigation
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BIHIWE Compilation Stack
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Comparison with TETRIS
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4.9x speedup and 2.4x energy reduction over TETRIS,
an optimized 3D-stacked fully-digital accelerator for DNNs




Comparison with GPUs
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BIHIWE delivers 70.1x and 35.4x higher Performance-per-Watt
compared to Nvidia Titan Xp and RTX 2080 Tl




Design Space Exploration for Bit-Partitioning
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2-bit bit-partitioning is the optimal choice based
on this design style and technology node




Desigh Space Exploration for # of cores
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Each cluster (vault) of the BIHIWE consists of four accelerator cores




Design Space Exploration for MS-BPMAcc
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Each MS-BPMAcc in BIHIWE has an array of 8 low-bitwidth MACC units
which perform operations for 32 cycles before A/D conversion




Evaluating Circuitry Non-ldealities

Top-1 Accuracy Top-1Accuracy  Top-1Accuracy Final Accuracy

DNN Model Dataset

(With Non-ldealities) (After Fine-Tuning) (Ideal) Loss
AlexNet Imagenet 53.12% 56.64% 57.11% 0.47 %
CIFAR-10 CIFAR-10 90.82% 91.01% 91.03% 0.02 %
GooglLeNet Imagenet 67.15% 68.39% 68.72% 0.33 %
ResNet-18 Imagenet 66.91% 68.96% 68.98% 0.02 %
ResNet-50 Imagenet 74.5% 75.21% 75.25% 0.04 %
VGG-16 Imagenet 70.31% 71.28% 71.46% 0.18 %
VGG-19 Imagenet 73.24% 74.20% 74.52% 0.32 %
YOLOv3 Imagenet 75.92% 771% 77.22% 0.21 %
PTB-RNN Penn TreeBank 1.1 BPC 1.6 BPC 1.1 BPC 0.0 BPC
PTB-LSTM Penn TreeBank 97 PPW 170 PPW 97 PPW 0.0 PPW

BIHIWE has no virtual impact on the classification accuracy of the DNN models




