A Network-Centric Hardware/Algorithm Co-Design to Accelerate Distributed Training of Deep Neural Networks

Youjie Li¹, **Jongse Park**², Mohammad Alian¹, Yifan Yuan¹, Zheng Qu³, Peitian Pan⁴, Ren Wang⁵, Alexander Schwing¹, Hadi Esmaeilzadeh⁶, Nam Sung Kim¹

¹UIUC, ²Georgia Tech, ³THU, ⁴SJTU, ⁵Intel, ⁶UCSD

Deep learning is growing exponentially!

Training time (weeks or months)

Training data size (hundreds of TB) DNN model complexity (hundreds of MB)

Distributed learning is essential!

Parallelizing the learning task over multiple nodes.

Significant communication overhead in distributed learning!

INCEPTIONN framework

- Synchronous training equivalent to TensorFlow
- Five Nodes
- 10 Gb Ethernet
- OpenMPI 2.0
- Titan Xp GPUs
- CUDA 8.0

How to reduce communication?

Straightforward Solution: Compression

Challenges for compression

Challenge #1: Expensive compression overhead

• Challenge #2: Limited compressibility of weights

Train AlexNet with 16-bit FP truncation	Accuracy
Baseline without truncation	80.2 %
Weight truncation Only	00.9%
Gradient truncation Only	79.7%

INCEPTIONN

A hardware/algorithm co-design to accelerate distributed training

Gradient-centric, decentralized training algorithm

Hardware-friendly lossy gradient compression algorithm

In-network accelerator for compression

In-network acceleration Pushing the compression to network

Conventional practice:

INCEPTIONN:

Light overhead

Hardware-friendly lossy gradient compression

Requirements:

- High compression ratio
- Hardware-friendliness for acceleration
- Minimal loss in training accuracy

Solution:

• Customized lossy compression algorithm for *gradients*

Why gradients?

High error resilience

Limited range and skewness to zero

AlexNet gradient distribution

Key ideas for lossy gradient compression algorithm

Remove exponents in FP representation by setting it to a constant

Remember the diff by shifting on mantissa with a concat'ed 1

Compress more aggressively as values are close to zeros

Compression with worker-aggregator approach

Limitations

- **1.** Less opportunities for compression
- 2. Performance bottleneck at aggregators

Gradient-centric decentralized training

Approach

- 1. Communicate only gradients
- 2. Evenly distribute aggregation to the workers

Advantages

- 1. Maximize opportunities for compression
- 2. Balanced load for compression/decompression

Implementation

Evaluated DNN models and system specifications

Name	HDC	AlexNet	ResNet-50	VGG-16
Model size	5 MB	230 MB	100 MB	525 MB
Dataset	MNIST	ImageNet		
Mini-batch size	25	64	32	64
Training data size	60,000	1,281,167		

System specifications		
Number of nodes	4	
System software	C++, CUDA 8.0, Intel MKL 2018, and OpenMPI 2.0.2	
CPU	Intel Xeon CPU E5-2640 @2.6 GHz	
GPU	NVIDIA Titan Xp	
FPGA	Xilinx VC709 board	
Network	10 Gb Ethernet	

Training runtime comparison

- WA: Worker-aggregator
- INC: INCEPTIONN
- WA+C: WA with compression
- INC+C: INC with compression

INC+C offers **76% lower communication time** compared to the WA baseline INC+C offers **2.2~3.1x** system-level speedup over the WA baseline

Impact on final training accuracy

Only 1 or 2 more epochs are required to match the same level of accuracy

Conclusion

INCEPTIONN

Hardware-algorithm co-designed in-network acceleration solution to reduce the communication overhead in distributed DNN training

Gradient-centric, decentralized training algorithm Lossy gradient compression algorithm In-network acceleration for compression