
A Network-Centric Hardware/Algorithm Co-Design to 
Accelerate Distributed Training of Deep Neural Networks

Youjie Li1, Jongse Park2, Mohammad Alian1, Yifan Yuan1, 
Zheng Qu3, Peitian Pan4, Ren Wang5, Alexander Schwing1, 

Hadi Esmaeilzadeh6, Nam Sung Kim1

1UIUC, 2Georgia Tech, 3THU, 
4SJTU, 5Intel, 6UCSD



Training data size (hundreds of TB)
DNN model complexity (hundreds of MB)

Deep learning is growing exponentially!

Training time (weeks or months)



3

DNN
Model
Replica

Data 
Partition

Worker Worker Worker Worker

Aggregator

Gradient
Weights

Distributed learning is essential!
Parallelizing the learning task over multiple nodes.



Significant communication overhead in distributed learning! 

INCEPTIONN framework
• Synchronous training equivalent to TensorFlow
• Five Nodes
• 10 Gb Ethernet 
• OpenMPI 2.0
• Titan Xp GPUs
• CUDA 8.0



Straightforward Solution: Compression

How to reduce communication? 



• Challenge #2: Limited compressibility of weights

Train AlexNet with 16-bit FP truncation Accuracy

Baseline without truncation 80.2 %
Weight truncation Only 00.9%

Gradient truncation Only 79.7%

• Challenge #1: Expensive compression overhead

0 0.2 0.4 0.6 0.8 1 1.2

Communication with 16-bit FP truncation

Original communication time in AlexNet
Communication Compression

Challenges for compression



In-network accelerator for compression

INCEPTIONN

Gradient-centric, decentralized training algorithm 

Hardware-friendly lossy gradient compression algorithm 

A hardware/algorithm co-design to accelerate distributed training



Pushing the compression to network

General-purpose processors

Conventional practice: INCEPTIONN:

Heavy overhead

In-network acceleration

Light overhead

FPGAs 
or

ASICs

Ne
tw

or
k 

In
te

rf
ac

e 
Ca

rd



Requirements:
• High compression ratio
• Hardware-friendliness for acceleration
• Minimal loss in training accuracy

Solution: 
• Customized lossy compression algorithm for gradients

Hardware-friendly lossy gradient compression



High error resilience Limited range and skewness to zero

AlexNet gradient distribution

Early Middle Late

Why gradients?



Key ideas for lossy gradient compression algorithm

Remove exponents in FP representation by setting it to a constant

Remember the diff by shifting on mantissa with a concat’ed 1

Compress more aggressively as values are close to zeros



Aggregator

Gradient
Weights

Limitations
1. Less opportunities for compression
2. Performance bottleneck at aggregators

Compression with worker-aggregator approach

Worker Worker Worker Worker



Gradients

Worker Worker

WorkerWorker

Advantages
1. Maximize opportunities for 

compression
2. Balanced load for 

compression/decompression

Gradient-centric decentralized training

Approach
1. Communicate only gradients
2. Evenly distribute aggregation to 

the workers



14

Implementation



Name HDC AlexNet ResNet-50 VGG-16
Model size 5 MB 230 MB 100 MB 525 MB

Dataset MNIST ImageNet
Mini-batch size 25 64 32 64

Training data size 60,000 1,281,167

System specifications
Number of nodes 4

System software C++, CUDA 8.0, Intel MKL 2018, and OpenMPI 2.0.2

CPU Intel Xeon CPU E5-2640 @2.6 GHz

GPU NVIDIA Titan Xp

FPGA Xilinx VC709 board

Network 10 Gb Ethernet

Evaluated DNN models and system specifications



INC+C offers 76% lower communication time compared to the WA baseline
INC+C offers 2.2~3.1x system-level speedup over the WA baseline

• WA: Worker-aggregator
• INC: INCEPTIONN
• WA+C: WA with compression 
• INC+C: INC with compression 

Training runtime comparison



17

Impact on final training accuracy

Only 1 or 2 more epochs are required to match the same level of accuracy



Conclusion

Gradient-centric, decentralized training algorithm 

Lossy gradient compression algorithm 

In-network acceleration for compression

INCEPTIONN
Hardware-algorithm co-designed in-network acceleration solution
to reduce the communication overhead in distributed DNN training


