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Data	grows	at	an	unprecedented	rate

900,000
Logins

3.5	Million	
Search	Queries

70,107	Hours
Watched

452,000
Tweets	Sent

156	Million
Emails	Sent

46,200
Posts	Uploaded

342,000
Apps	Downloaded

$751,522
Spent	Online

1.8	Millions
Snaps	Created

40,000
Hours	Listened

1	minute	over	the	internet
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Machines	learn	to	extract	insights	from	data

Unseen	Data

Training	Data

Training	Phase
Trained	Model

Inference	Phase

Predictions
ML	Algorithm
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Two	disjoint	solutions	for	ML	training
Single-Node	

FPGA/ASIC	AcceleratorsDistributed	Computing
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Challenges

How	to	distribute	
ML	training?

How	to	design	
customizable	accelerators?

How	to	reduce	the	overhead	
of	distributed	coordination?	
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We	need	a	full	stack
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CoSMIC
Computing	Stack	for	ML	Acceleration	In	the	Cloud

Programming	layer

Compilation	layer

System	layer

Architecture	layer

Circuit	layer

High-level	mathematical	language

Accelerator	operation	scheduling	and	data	mapping

System	software	orchestrating	distributed	accelerators

Multi-threaded	template	architecture

Constructing	RTL	Verilog
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Intermediate	
Model

Predicted	Output	(Y)	

Training	Data
Output (Y*)
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How	to	distribute?	
Understanding	machine	learning
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Learning	is	solving	an	iterative	optimization	problem!

Trained	Model

Algorithmic	commonalities
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Abstraction	between	algorithm	and	scale-out	
acceleration	system

Support	
Vector	

Machines

Regression	
Analysis

Back	
Propagation

Collaborative	
Filtering

Kalman	
Filters

Machine	Learning	Algorithms

Gradient
Loss

Function

Gradient
Loss

Function

Gradient
Loss

Function

Gradient
Loss

Function

Gradient
Loss

Function

Parallelized	Stochastic	Gradient	Descent	Solver
(Abstraction	between	Hardware	and	Software)
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CoSMIC programming	
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Math	formulations CoSMIC programming

aggregator(n)	{
w[i]	=	(sum[j](w[i]))	/	n;

}

h =	sum[i](w[i]	*	x[i]);
d =	h	– y
g[i]	=	d	*	x[i]



CoSMIC compilation
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CoSMIC programming

aggregator(n)	{
w[i]	=	(sum[j](w[i]))	/	n;

}

h =	sum[i](w[i]	*	x[i]);
d =	h	– y
g[i]	=	d	*	x[i]

Software	aggregator

Dataflow	graph

CoSMIC compilation
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PE1,1 PE1,2 PE1,N

PE2,1 PE2,2 PE2,N

PEm-1,1 PEm-1,2 PEm-1,N

PEm,1 PEm,2 PEm,N

Memory	Interface

M	rows

N	columns

How	to	design	customizable	accelerator?
Template	architecture
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Multi-threading	acceleration



Worker	
Thread	
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Connectivity	and	bussing
Refer	the	paper



PE	architecture

Data	Buffer

Model	Buffer

Interim	Buffer

Le3	PE

Shared	Bus

Right	PE
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How	to	reduce	overhead	of	distributed	coordination?	
Specialized	system	software	in	CoSMIC
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Delta	Node
Software

Sigma	Node	Software

Delta	Node
Software

Network	handler

Networking
Thread Pool

Aggregation
Thread Pool

AggregatorCircular	Buffers

Internally	Managed	Thread	Pools	
for	Networking	and	Aggregation

Block	by	block	Produced-Consumer	Semantics



Benchmarks	for	distributed	learning

netflix

movielens

cancer1

tumor

texture

stock

acoustic

mnist

Name

cancer2

face

2,854	KB

1,176	KB

24	KB

8	KB

64	KB

31	KB

1,527	KB

2,432	KB

Model	
Size	(KB)

28	KB

7	KB

2.0	GB

0.6	GB

13.5	GB

10.4	GB

17.9	GB

14.7	GB

5.6	GB

2.9	GB

Training	Data	
Size	(GB)

20.0	GB

15.9	GB
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Algorithm

Backpropagation

Linear
Regression

Logistic
Regression

Collaborative
Filtering

Support	Vector	
Machine

Netflix	recommender	system	

Movielens recommender	system	

Prostate	cancer	diagnosis	

Tumor	classification

Image	texture	recognition	

Stock	price	prediction	

Speech	recognition	modeling

Handwritten	digit	recognition	

Description

Cancer	diagnosis	

Human	face	detection	
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List	of	results
1.	Performance	comparison	with	Spark

3.	Performance	comparison	of	FPGA-CoSMIC with	Programmable	ASIC and	GPUs
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Speedup	in	comparison	with	Spark

16-node CoSMIC with	UltraScale+	FPGAs	offer	18.8× speedup	over	
16-node	Spark	with	Xeon	E3	Skylake CPUs	

Scaling	from	4	to	16	nodes	with	CoSMIC yields	
2.7× improvement while	Spark	offers	1.8×.
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Speedup	breakdown	between	computation	
and	system	coordination
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CoSMIC system	software	makes	system	coordination	(34%)	28.4× faster
CoSMIC FPGA	hardware	makes	computation	(66%)	20.7× faster

The	overall	speedup	is	22.8× speedup
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Hardware	is	not	enough,	we	need	a	novel	
system	stack

P-ASIC,	and	GPU	provide	2.3× and	1.5× extra	speedup	over	FPGA	
CoSMIC,	which	is	22.8× faster	than	Spark
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Performance-per-Watt	comparison

With	CoSMIC FPGAs	and	P-ASICs		provide	4.2× and	8.2×
higher	Performance-per-Watt than GPUs

Im
pr

ov
em

en
t i

n 
Pe

rfo
rm

an
ce

-p
er

-W
at

t

0×

5×

10×

15×

acousticstock
texture tumor

cancer1
movielens

netflix face
cancer2

geomeanmnist

FPGA-CoSMIC P-ASIC-CoSMIC

31



Conclusion

CoSMIC
Full-stack	solution	with	an	algorithmic	angle

What	is	next
Reduce	communication
Specialize	the	networking	stack
Design	more	template	architecture
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