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Data grows at an unprecedented rate
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Machines learn to extract insights from data
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Machines learn to extract insights from data
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Two disjoint solutions for ML training

Distributed Computing
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Two disjoint solutions for ML training
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Challenges

0 How to distribute e How to design e How to reduce the overhead
ML training? customizable accelerators? of distributed coordination?
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CoSMIC

Computing Stack for ML Acceleration In the Cloud

Programming layer  High-level mathematical language

Compilation layer Accelerator operation scheduling and data mapping

System layer System software orchestrating distributed accelerators

Architecture layer Multi-threaded template architecture
Circuit layer Constructing RTL Verilog



Multi-threaded
CoSMIC workflow
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@ How to distribute?

Understanding machine learning

Training Data
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Algorithmic commonalities

Learning is solving an iterative optimization problem!
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Stochastic gradient descent solver

Initial point

Loss function (w;) = f(Wl(t);Wz(t)»----'stf))
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Leverage linearity of differentiation
for distributed learning
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Abstraction between algorithm and scale-out
acceleration system

Machine Learning Algorithms

Support Regression Back Collaborative Kalman
Vector Analysis Propagation | — Filterin Filters
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CoSMIC programming

Math formulations

dloss
= ( E WiX; — Y)X;
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CoSMIC programming

aggregator(n) {

w(i] = (sum[j)(wIi])) / n;

}
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CoSMIC compilation

CoSMIC programming CoSMIC compilation
h =suml[i](wl[i] * x[i]);
d=h-vy Dataflow graph
gli] =d * x[i]

aggregator(n
587C6 (n) 1 Software aggregator ==

wli] = (sum[jl(w[i])) / n; =C

}
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€) How to design customizable accelerator?

Template architecture
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Multi-threading acceleration
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Connectivity and bussing

Refer the paper
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PE architecture
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€) How to reduce overhead of distributed coordination?
Specialized system software in CoSMIC
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Benchmarks for distributed learning

cancerl

netflix

Model Tramlng Data | Lines
eorm | iy | " o

Handwritten digit recognition 2,432 KB 2.9GB
Backpropagation

Speech recognition modeling 1,527 KB 5.6 GB 55
Stock price prediction Linear 31 KB 14.7 GB 23
Image texture recognition Regression 64 KB 17.9 GB 23
Tumor classification Logistic 8 KB 10.4 GB 22
Prostate cancer diagnosis Regression 24 KB 13.5 GB 22
Movielens recommender system Collaborative 1,176 KB 0.6 GB 42
Netflix recommender system Filtering 2,854 KB 2.0 GB 42
Human face detection Support Vector 7 KB 15.9 GB 27
Cancer diagnosis Machine 28 KB 20.0GB|| 27
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Speedup in comparison with Spark
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16-node CoSMIC with UltraScale+ FPGAs offer 18.8x speedup over

16-node Spark with Xeon E3 Skylake CPUs

Scaling from 4 to 16 nodes with CoSMIC yields
2.7x improvement while Spark offers 1.8x. .




Speedup breakdown between computation
and system coordination
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CoSMIC system software makes system coordination (34%) 28.4x faster

CoSMIC FPGA hardware makes computation (66%) 20.7x faster
The overall speedup is 22.8x speedup




Hardware is not enough, we need a novel

system stack
P-ASIC-CoSMIC B GPU-CoSMIC
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Speedup over

P-ASIC, and GPU provide 2.3x and 1.5x extra speedup over FPGA

CoSMIC, which is 22.8x faster than Spark
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Performance-per-Watt comparison

FPGA-CoSMIC m P-ASIC-CoSMIC
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With CoSMIC FPGAs and P-ASICs provide 4.2x and 8.2x
higher Performance-per-Watt than GPUs
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CoSMIC .
FuII stack solutlon;*if

What is next e ‘
' ;commumcatlon

Specialize the networklng stack
Design more template a,r,ch|te.ctu-re
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