Scale-Out Acceleration
for Machine Learning

Jongse Park T

Hardik SharmafT Alternative Computing Technologies (ACT) Lab | g’ =
Divya I\/Iahajaan Georgia Institute of Technology E “ E
Joon Kyung KimT - 2 a |
Preston OldsT University of California, San Diegoi T

Hadi EsmaeilzadehTi

MICRO50

Data grows at an unprecedented rate

1 minute over the internet

900,000 O 46,200

faCEbOOk’ Logins @ Posts Uploaded
y 452,000 'E $751,522
Tweets Sent Spent Online

e 40,000 70,107 Hours

@ Sp0tlfy Hours Listened N E T F I' Ix Watched

& 156 Million Google 3.5 Million

Emails Sent Search Queries
1.8 Millions 342,000
Snaps Created Apps Downloaded

Machines learn to extract insights from data

. .‘.

0..0
000

Training Data

Training Phase

ML Algorithm

e «— |nference Phase —*
Trained Model

*.‘._>'Af

Predictions

0-'.'0
000‘

‘.‘

Unseen Data

Machines learn to extract insights from data

® — |nference Phase —=
Trathed Model

— A

Predictions

Training Phase

.0.;.0 .\ J e

¥ amlng Data

ML Algorithm

e
. 0‘
A

Unseen Data

Two disjoint solutions for ML training

Distributed Computing

@E-- H2°

Single-Node
FPGA/ASIC Accelerators
HI0EEEEEAR

SBCCI'03 FCCM’09 FCCM'10 AHS'11

CVPRW’'11 DAC’12 ASPLOS'14 ASPLOS’'15
HPCA'15 HPCA'16 MICRO'16

Two disjoint solutions for ML training

T,

o | ingle-Node
Distributed Computing v ' FPGA/ASIC Accelerators

ERNNEENED

N -

S COSMlC = =

aum) -

[L

— O

"'ﬂ' =

SBCCI'03 FCCM’09 FCCM'10 AHS'11

|

CVPRW’'11 DAC’12 ASPLOS'14 ASPLOS’'15
HPCA'15 HPCA'1l6 MICRO'16 s

i

“" H O
PaddlePaddl|
4 rooercoe g -

Challenges

0 How to distribute e How to design e How to reduce the overhead
ML training? customizable accelerators? of distributed coordination?

Challenges

0 How to distribute e How to design e How to reduce the overhead
ML training? customizable accelerators? of distributed coordination?

: £ s s - EE|E
We need a full stack

7

CoSMIC

Computing Stack for ML Acceleration In the Cloud

Programming layer High-level mathematical language

Compilation layer Accelerator operation scheduling and data mapping

System layer System software orchestrating distributed accelerators

Architecture layer Multi-threaded template architecture
Circuit layer Constructing RTL Verilog

Multi-threaded
CoSMIC workflow

Model Dataflow Graph ——N
Specification ““ﬁwﬁ' LT g
I e Accelerator

Architecture
lIIIIIIII-
>

RTL Verilog
for Accelerator

=|l—

Operation
Schedule/Map

Circuit Constraints

System =——p BVl Rl =Te (o]

Specification

Software

Challenges

o How to distribute e How to design e How to reduce the overhead
ML training? customizable accelerators? of distributed coordination?

: £ s s - EE|E
We need a full stack

10

@ How to distribute?

Understanding machine learning

Training Data

Output (Y*)
Input (X) |Output (Y*)
25,1,76,0 |1
6,43,9,93 |6
. . N\ Predicted Output (Y) \ /
23,56,2,0 | 12 > LOSS (Wl)
12,090 |0

Intermediate
Model

Loss(w) =) IV = V"]
L

Algorithmic commonalities

Learning is solving an iterative optimization problem!

Training Data

Input (X)

Output (Y*)

25,1,76,0

1

6,43,9,93

6

23,56,2,0

12

12,0,9,0

0

Output (Y*)

N

Predicted Output (Y) \ 4

Intermediate
Model

> Loss (w;)

Trained Model

o

find(w,) 3 {Loss(w;) = Y;|IY — Y*||} is minimized

Stochastic gradient descent solver

Initial point

Loss function (w;) = f(Wl(t);Wz(t)»----'stf))

e N
TN Y \“
® . (&) O =)
0 f %% w e, W N | ESSSSSSS
(t+1) (t) 1 2772 >'m N
W - W —Uu X] Ny -

] L

(t)
6Wl.

Optimal point

Leverage linearity of differentiation
for distributed learning

Delta Node.l Delta Nodei
f N 4 N
= \ c \
g2~ g2 0l
s~ °F~
At _ _Of ~— ~— A+ _ _Of
1 SW®) : SW®)
Accelerator A lerator
s y o y
/. N
--.-.§m|
Delta Node; , 4 — Sigma Node
f N 4 N
;:q_s \J—/ E \J_/ AW(t-f—l) _ 5f
(t41) of \../ ql/ M SW (@)
AI/V,L.Jrl = iG] —_— o AW ED
(Accelerat j Accelerat ; AW(Hl):Zi :
ccelerator ccelerator M
\

7

Abstraction between algorithm and scale-out
acceleration system

Machine Learning Algorithms

Support Regression Back Collaborative Kalman
Vector Analysis Propagation | — Filterin Filters
Machines Y bag ¢

Gradient Gradient
Loss Loss

Gradient Gradient
Loss Loss
Function Function

Gradient

Loss
Function

Function Function

| yd

Parallelized Stochastic Gradient Descent Solver

(Abstraction between Hardware and Software)

| I X | I II II II
i |l
Xeon Phiﬂ GPU JJ FPGA JJ CGRA JJ ASIC u

CoSMIC programming

Math formulations

dloss
= (E WiX; — Y)X;
l

aWi

(t+1)
2,j Aw;

n

A W(t+1) —

CoSMIC programming

aggregator(n) {

w(i] = (sum[j)(wIi])) / n;

}

16

CoSMIC compilation

CoSMIC programming CoSMIC compilation
h =suml[i](wl[i] * x[i]);
d=h-vy Dataflow graph
gli] =d * x[i]

aggregator(n
587C6 (n) 1 Software aggregator ==

wli] = (sum[jl(w[i])) / n; =C

}

Challenges

0 How to distribute 9 How to design e How to reduce the overhead
ML training? customizable accelerators? of distributed coordination?

: £ s s - EE|E
We need a full stack

18

€) How to design customizable accelerator?

Template architecture

Chip _

—

M rows =

N columns
|

Memory Interface

I

E1,2

-

m
3
[uN
~

PE

PE, \

.
Mm

m-1,N

PE

m,N

P
P

19

Multi-threading acceleration

- Memory Interface —
| Worker
{ Thread

N
__

h Y

{ A
i Worker °e i

! Thread

SR | =2y L5 e, o |

rd

4

———

Connectivity and bussing

Refer the paper

Shared
Memory Interface Row
Pipelined S Bus
Memory —— A A A
Bus)
i PE,, [—1 PE,, Tree Bus
i Worker
{ Thread
e PE, , |—] PE,,
Bi-directional S 1 1 1
Link i Worker
i Thread
L HT

——

21

PE architecture

Stage 1 i Stage Zi Stage 31 Stage 4 iStage 5
Non- | E
Linear E :

Shared Bus —E

Left PE —»

ALU

Data Buffer

RMARRdMERERERE

Model Buffer

Interim Buffer . EI @ ;\’:I

|

I I

I I

I I

I I

I I

I I

I I
| |
Right PE —{! |
I I

I I

|

I I

I I

|

I I

I I

I I

I I

|

Challenges

0 How to distribute e How to design 9 How to reduce the overhead
ML training? customizable accelerators? of distributed coordination?

1 s s - - = EE|E
We need a full stack

23

€) How to reduce overhead of distributed coordination?
Specialized system software in CoSMIC

—

Delta Node
Software

-~

1

>
Delta Node
Software

Internally Managed Thread Pools
for Networking and Aggregation

Network handler

$5955565

{Networking
Thread Pool

N

Grcular Buffers

/

- ~
~ -
\ == ¥

Sigma Node Software

~

\

o

Aggregator

[A%%gréé agt? c? n}

Thread Pool

~

-/

Block by block Produced-Consumer Semantics

24

Benchmarks for distributed learning

cancerl

netflix

Model Tramlng Data | Lines
eorm | iy | " o

Handwritten digit recognition 2,432 KB 2.9GB
Backpropagation

Speech recognition modeling 1,527 KB 5.6 GB 55
Stock price prediction Linear 31 KB 14.7 GB 23
Image texture recognition Regression 64 KB 17.9 GB 23
Tumor classification Logistic 8 KB 10.4 GB 22
Prostate cancer diagnosis Regression 24 KB 13.5 GB 22
Movielens recommender system Collaborative 1,176 KB 0.6 GB 42
Netflix recommender system Filtering 2,854 KB 2.0 GB 42
Human face detection Support Vector 7 KB 15.9 GB 27
Cancer diagnosis Machine 28 KB 20.0GB|| 27

25

List of results

1. Performance comparison with Spark

2. Breakdown of performance between computation and system coordination

3. Performance comparison of FPGA-CoSMIC with Programmable ASIC and GPUs

4. Power Efficiency comparison between FPGA, Programmable ASICs and GPUs

5. Sensitivity to mini-batch size, compute units, memory bandwidth

6. Design space exploration for multithreading

7. Comparison of template architecture with prior accelerator designs

26

List of results

1. Performance comparison with Spark

2. Breakdown of performance between computation and system coordination

3. Performance comparison of FPGA-CoSMIC with Programmable ASIC and GPUs

4. Power Efficiency comparison between FPGA, Programmable ASICs and GPUs

5. Sensitivity to mini-batch size, compute units, memory bandwidth

6. Design space exploration for multithreading

7. Comparison of template architecture with prior accelerator designs

27

Speedup in comparison with Spark

100x%z

10x? .,”'/,///ff///

1x L = ——h—p—

(log-scale)

D <
> ©
O o
g &
ro D)
80_
3 Q
N

16-node CoSMIC with UltraScale+ FPGAs offer 18.8x speedup over

16-node Spark with Xeon E3 Skylake CPUs

Scaling from 4 to 16 nodes with CoSMIC yields
2.7x improvement while Spark offers 1.8x. .

Speedup breakdown between computation
and system coordination

1OOO><§

FPGA H System Software

II|I| Ll
|l I
\'O

—
o
o
X

Speedup / Spark
(Log Scale)
§‘

(Q<\\ O O \0 \'\)'((\ \@ s\(b.o @ @
o Ofo <9 A <\ X geo

CoSMIC system software makes system coordination (34%) 28.4x faster

CoSMIC FPGA hardware makes computation (66%) 20.7x faster
The overall speedup is 22.8x speedup

Hardware is not enough, we need a novel

system stack
P-ASIC-CoSMIC B GPU-CoSMIC

OX|||||I|||Il

N W
X X

FPGA-CoSMIC
X

Speedup over

P-ASIC, and GPU provide 2.3x and 1.5x extra speedup over FPGA

CoSMIC, which is 22.8x faster than Spark

30

Performance-per-Watt comparison

FPGA-CoSMIC m P-ASIC-CoSMIC

m(\\ 05’&\0 c5,&0()\‘ A e " \)mo a(\oe(\I\e\e(\s KW ;‘a(;e 03(" mea(\
O

With CoSMIC FPGAs and P-ASICs provide 4.2x and 8.2x
higher Performance-per-Watt than GPUs

—
@)
X

—
o
X

Ol
X

Improvement in
Performance-per-Watt

CoSMIC .
FuII stack solutlon;*if

What is next e ‘
' ;commumcatlon

Specialize the networklng stack
Design more template a,r,ch|te.ctu-re

32

