Scale-Out Acceleration for Machine Learning

Jongse Park[†] Hardik Sharma[†] Divya Mahajan[†] Joon Kyung Kim[†] Preston Olds[†] Hadi Esmaeilzadeh^{†‡}

Alternative Computing Technologies (ACT) Lab Georgia Institute of Technology[†] University of California, San Diego[‡]

Data grows at an unprecedented rate

1 minute over the internet

Machines learn to extract insights from data

Two disjoint solutions for ML training

Two disjoint solutions for ML training Single-Node **Distributed** Computing **FPGA/ASIC** Accelerators CoSMIC Spark MLIIb TensorFlow Caffe2 SBCCI'03 FCCM'10 FCCM'09 AHS'11 CVPRW'11 DAC'12 ASPLOS'14 ASPLOS'15 Η,Ο PaddlePaddle HPCA'15 HPCA'16 MICRO'16 5

1 How to distribute ML training?

3 How to reduce the overhead of distributed coordination?

1 How to distribute ML training?

3 How to reduce the overhead of distributed coordination?

We need a full stack

CoSMIC Computing Stack for ML Acceleration In the Cloud

	Programming layer	High-level mathematical language		
	Compilation layer	Accelerator operation scheduling and data mapping		
	System layer	System software orchestrating distributed accelerators		
	Architecture layer	Multi-threaded template architecture		
	Circuit layer	Constructing RTL Verilog		

CoSMIC workflow

Multi-threaded Template Architecture

1 How to distribute ML training?

3 How to reduce the overhead of distributed coordination?

We need a full stack

1 How to distribute?

Understanding machine learning

Algorithmic commonalities

Learning is solving an iterative optimization problem!

 $find(w_i) \ni \{Loss(w_i) = \sum_i ||Y - Y^*||\}$ is minimized

Stochastic gradient descent solver

$$Loss function (w_i) = f \left(w_1^{(t)}, w_2^{(t)}, \dots, w_m^{(t)} \right)$$
$$w_i^{(t+1)} = w_i^{(t)} - u \times \frac{\partial f \left(w_1^{(t)}, w_2^{(t)}, \dots, w_m^{(t)} \right)}{\partial w_i^{(t)}}$$
$$\frac{\partial g (w_i^{(t)})}{\partial w_i^{(t)}}$$

Leverage linearity of differentiation for distributed learning

Abstraction between algorithm and scale-out acceleration system

CoSMIC programming

Math formulations

$$\frac{\partial loss}{\partial w_i} = \left(\sum_i w_i x_i - y\right) x_i$$

$$\Delta w^{(t+1)} = \frac{\sum_j \Delta w_j^{(t+1)}}{n}$$

CoSMIC programming

h = sum[i](w[i] * x[i]); d = h - y g[i] = d * x[i]

aggregator(n) { w[i] = (sum[j](w[i])) / n;

CoSMIC compilation

CoSMIC programming

CoSMIC compilation

Dataflow graph

Software aggregator

1 How to distribute ML training?

3 How to reduce the overhead of distributed coordination?

We need a full stack

2 How to design customizable accelerator?

Template architecture

Multi-threading acceleration

PE architecture

1 How to distribute ML training?

3 How to reduce the overhead of distributed coordination?

We need a full stack

3 How to reduce overhead of distributed coordination? Specialized system software in CoSMIC

Benchmarks for distributed learning

Name	Description	Algorithm	Model Size (KB)	Training Data Size (GB)	Lines of Code
mnist	Handwritten digit recognition	Backpropagation	2,432 KB	2.9 GB	55
acoustic	Speech recognition modeling		1,527 KB	5.6 GB	55
stock	Stock price prediction	Linear	31 KB	14.7 GB	23
texture	Image texture recognition Regressio		64 KB	17.9 GB	23
tumor	Tumor classification	Logistic Regression	8 KB	10.4 GB	22
cancer1	Prostate cancer diagnosis		24 KB	13.5 GB	22
movielens	Movielens recommender system	Collaborative Filtering	1,176 KB	0.6 GB	42
netflix	Netflix recommender system		2,854 KB	2.0 GB	42
face	Human face detection	Support Vector Machine	7 KB	15.9 GB	27
cancer2	Cancer diagnosis		28 KB	20.0 GB	27

List of results

1. Performance comparison with Spark

2. Breakdown of performance between computation and system coordination

3. Performance comparison of FPGA-CoSMIC with Programmable ASIC and GPUs

4. Power Efficiency comparison between FPGA, Programmable ASICs and GPUs

5. Sensitivity to mini-batch size, compute units, memory bandwidth

6. Design space exploration for multithreading

7. Comparison of template architecture with prior accelerator designs

List of results

1. Performance comparison with Spark

2. Breakdown of performance between computation and system coordination

3. Performance comparison of FPGA-CoSMIC with Programmable ASIC and GPUs

4. Power Efficiency comparison between FPGA, Programmable ASICs and GPUs

5. Sensitivity to mini-batch size, compute units, memory bandwidth

6. Design space exploration for multithreading

7. Comparison of template architecture with prior accelerator designs

Speedup in comparison with Spark

16-node CoSMIC with UltraScale+ FPGAs offer 18.8× speedup over 16-node Spark with Xeon E3 Skylake CPUs Scaling from 4 to 16 nodes with CoSMIC yields 2.7× improvement while Spark offers 1.8×.

Speedup breakdown between computation and system coordination

CoSMIC system software makes system coordination (34%) 28.4× faster CoSMIC FPGA hardware makes computation (66%) 20.7× faster The overall speedup is 22.8× speedup

Hardware is not enough, we need a novel system stack

Solution of the stock texture tumor cancer1 neutric face and a cancer2 arean arean and a cancer2 arean arean

P-ASIC-CoSMIC

P-ASIC, and GPU provide 2.3× and 1.5× extra speedup over FPGA CoSMIC, which is 22.8× faster than Spark

GPU-CoSMIC

Performance-per-Watt comparison

With CoSMIC FPGAs and P-ASICs provide 4.2× and 8.2× higher Performance-per-Watt than GPUs

Conclusion

CoSMIC Full-stack solution with an algorithmic angle

What is next

Reduce communication Specialize the networking stack Design more template architecture