
Georgia

Tech

Towards Statistical Guarantees
in Controlling Quality Tradeoffs
for Approximate Acceleration

Divya Mahajan

Amir Yazdanbakhsh

Jongse Park

Bradley Thwaites

Hadi Esmaeilzadeh

Alternative Computing Technologies (ACT) Lab
Georgia Institute of Technology



Approximate Computing

Relax the abstraction of “near perfect” accuracy in

Accept imprecision to improve 
performance
energy efficiency

Data Processing Storage Communication
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To tackle these 
shortcomings we 

devise MITHRA
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Overview

Challenges in devising MITHRA

Motivation

A hardware software solution

Detailing the components of MITHRA



Exploiting Accelerator Characteristics

Approximate
Accelerator

Application



Challenges

How to eliminate 
anomalous invocations?
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Factors Influencing Error

Accelerator Error = | Outputaccelerator - Outputoriginal|

Outputaccelerator = ƒ (accelerator inputs, accelerator configuration)
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Factors Influencing Error

Accelerator 
Configuration 

Accelerator Inputs Outputaccelerator

Accelerator Error = | Outputaccelerator - Outputoriginal|

Outputaccelerator = ƒ (accelerator inputs, accelerator configuration)

Constant
Outputaccelerator = ƒ (accelerator inputs)
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Challenges

Final Quality loss 
→ Local Error ?
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Challenges

How to eliminate 
anomalous invocations?

Look at the 
accelerator inputs

Final Quality loss →
Local Error ?

Threshold the 
local error

What guarantees? Statistical 
Guarantees

What algorithm at 
runtime?

Classification in 
Hardware



MITHRA: A Hardware/Software Solution 

Generate the threshold
for the local error such
that the final quality loss
meets the requirements

Approximate
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Desired quality 
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Statistical 
Optimizer

Application
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that give > and < (th)
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Statistical Optimizer
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Statistical Optimizer

Precise Result

Input Datasets
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Statistical Optimizer

Approximate Result

Input Datasets
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Statistical Optimizer

Local error
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Statistical Optimizer

th

Threshold

><

Local error
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th<
Approximate
AcceleratorLocal error

Application



Approximate
Accelerator ><

Desired 
Quality Loss 
by the 
programmer

Input Datasets

Application

Final 
Quality 

loss



Binomial Proportion Confidence Interval

Less than the desired
programmer quality loss
➔ nsuccess

Greater than the desired
programmer quality loss

Input Datasets



Binomial Proportion Confidence Interval

Less than the desired
programmer quality loss
➔ nsuccess

Greater than the desired
programmer quality loss

Input Datasets

𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙

1

1 +
(𝑛𝑡𝑟𝑖𝑎𝑙𝑠−𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 1)

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 × 𝐹 1 − 𝛼; 2𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 2 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 − 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 1

< 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒



Example

E.g.,   (100, 80) 72% < SuccessRate
with 95% confidence level

(𝑛𝑡𝑟𝑖𝑎𝑙𝑠, 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 𝑟 < 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒
𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙



Example

E.g.,   (100, 80) 72% < SuccessRate
with 95% confidence level

(𝑛𝑡𝑟𝑖𝑎𝑙𝑠, 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 𝑟 < 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒
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Final Quality Level, Success Rate and
Confidence Interval programmer specified



Statistical Optimization

if desired metrics are not met: 
tht+1 = tht - ∆

else if desired metrics are met:
tht+1= tht + ∆

Reiterate; till the tht meets the metrics but tht+1 doesn't



Statistical Optimization

Tighter threshold better Final Quality Loss Level,
Success Rate and Confidence Interval but lower
benefits from approximation

if desired metrics are not met: 
tht+1 = tht - ∆

else if desired metrics are met:
tht+1= tht + ∆

Reiterate; till the tht meets the metrics but tht+1 doesn't



Training the Classifiers

Approximate
AcceleratorInput Datasets

thfinal

Local error

><

The training data used to generate classifier topology



Hardware Classifiers

Simple algorithm that can be easily implemented in hardware. 

We use two techniques for this work:
1. Table Based
2. Neural Network Based



Table-based Classifiers

Classifier



Table-based Classifiers

A small ensemble of table-based classifiers achieve
better accuracy and performance



Neural Network Based Classifiers



Benchmarks

8 tables each of size 0.5 KB

Accelerator 
Topology

Baseline 
Error

Table Classifier Topology

6 ➔ 8 ➔ 8➔1Blackscholes 6.02% 6 ➔ 4 ➔ 2

1➔ 4 ➔ 4➔2FFT 7.22% 1➔ 4 ➔ 2

2 ➔ 8 ➔ 2Inversek2j 7.50% 2 ➔ 4 ➔ 2

18 ➔ 32 ➔ 8➔2JMEINT 17.69% 18 ➔ 16 ➔2

64 ➔ 16 ➔ 64JPEG Encoding 7.00% 64 ➔ 2 ➔ 2

9 ➔ 8 ➔1Sobel 9.96% 9 ➔ 4 ➔2

Neural Classifier 
Topology



Energy and Performance Benefits



Invocation Rate



Varying Success Rate



Conclusion

Aims to make statistical guarantees a norm

Hardware software co-design works well
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False Positive and False Negative Results



Binomial Proportion Confidence Interval

(𝑛𝑡𝑟𝑖𝑎𝑙𝑠, 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 𝑟 < 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒
𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙



Evaluation of MITHRA

Comparing geometric mean -
speedup, energy reduction and
invocation rate across varied set
of benchmarks.



False Positive and False Negatives



Multi-Input Hashing and Input 
Signature Generation



Multiple Tables for Improved Performance

A small ensemble of table-based Classifiers achieve better 
accuracy and performance  



Neural Network Based Mechanism



Compiler Support for MITHRA

• Programmer provides:
– Application specific quality requirement

– Quality Metric

– Set of representative application inputs 

• Algorithm maps final output requirement to a 
threshold (th) on accelerator error. 

Accelerator error  < th : learn to invoke the accelerator
Accelerator error  > th : learn to fall back to the original function



Quality vs Benefits Tradeoffs

Output Quality
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