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Overview

Motivation

Challenges in devising MITHRA

A hardware software solution

Detailing the components of MITHRA
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Exploiting Accelerator Characteristics
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Factors Influencing Error
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Factors Influencing Error
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Binomial Proportion Confidence Interval
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Binomial Proportion Confidence Interval

Less than the desired
" Q ‘. ‘ ® programmer quality loss

=> Nsuccess

Greater than the desired
programmer quality loss

Input Datasets

< SuccessRate

(ntrials_nsuccess + 1)

1+
Nsuccess X F[1 — 2nsuccess» Z(ntrials — Ngyccess + 1)]

with a confidence level
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Example

(Miriqis) Nsuccess) ™ 17 < SuccessRate
with a confidence level

E.g., (100,80) ™  72% < SuccessRate

with 95% confidence level

e ™
Final Quality Level, Success Rate and

Gonfidence Interval programmer specified
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Statistical Optimization

if desired metrics are not met:
tht+1 =tht- A

else if desired metrics are met:
thtzi=tht+ A

Reiterate; till the tht meets the metrics but tht+1 doesn't

fTighter threshold better Final Quality Loss Level,\
Success Rate and Confidence Interval but lower
_benefits from approximation Y




Training the Classifiers

[ )
o°
‘ . ‘. Local error
2o 0- ., o »)
T Approximate
Input Datasets \ Accelerator

' The training data used to generate classifier topology |




Hardware Classifiers

Simple algorithm that can be easily implemented in hardware.

We use two techniques for this work:
1. Table Based
2. Neural Network Based



Table-based Classifiers

Classifier
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Table-based Classifiers
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Neural Network Based Classifiers

Input Layer : Hidden Layer

Output Layer




Benchmarks

Accelerator Baseline Neural Classifier
Topology Error Topology
Blackscholes 6=>8=>8=21 6.02% 6=>4-2
FFT 124242 7.22% 1242
inericic) IEFEYETIRZ N EIFEYEY
JMEINT 18 =>32=->8=-2>2 |17.69% 18 = 16 =2
JPEG Encoding 64 = 16 = 64 7.00% 64=>2-2
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Table Classifier Topology | 8 tables each of size 0.5 KB




Energy and Performance Benefits
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Invocation Rate
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Varying Success Rate
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Conclusion

MITHRA

Aims to make statistical guarantees a norm

Hardware software co-design works well >
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False Positive and False Negative Results
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Binomial Proportion Confidence Interval

(Meriqis Msuccess) ™ 7 < SuccessRate
with a confidence level




Evaluation of MITHRA
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False Positive and False Negatives
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Multi-Input Hashing and Input
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Multiple Tables for Improved Performance
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Neural Network Based Mechanism
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Compiler Support for MITHRA

 Programmer provides:
— Application specific quality requirement
— Quality Metric
— Set of representative application inputs

* Algorithm maps final output requirement to a
threshold (th) on accelerator error.

e ™
Accelerator error <th :learn to invoke the accelerator

Accelerator error > th : learn to fall back to the original function
N Y




Quality vs Benefits Tradeoffs

Benefits

Approximation

Output Quality



