
Georgia

Tech

Towards Statistical Guarantees
in Controlling Quality Tradeoffs
for Approximate Acceleration

Divya Mahajan

Amir Yazdanbakhsh

Jongse Park

Bradley Thwaites

Hadi Esmaeilzadeh

Alternative Computing Technologies (ACT) Lab
Georgia Institute of Technology

Approximate Computing

Relax the abstraction of “near perfect” accuracy in

Accept imprecision to improve
performance
energy efficiency

Data Processing Storage Communication

Approximate Acceleration

Approximate Acceleration

Approximate
Accelerator

Approximate
Accelerator

Application

Fixed Error
Lack of
Error

Control

Lack of
Guarantees

Fixed Error
Lack of
Error

Control

Lack of
Guarantees

Fixed Error
Lack of
Error

Control

Lack of
Guarantees

To tackle these
shortcomings we

devise MITHRA

Fixed Error
Lack of
Error

Control

Lack of
Guarantees

Overview

Challenges in devising MITHRA

Motivation

A hardware software solution

Detailing the components of MITHRA

Exploiting Accelerator Characteristics

Approximate
Accelerator

Application

Challenges

How to eliminate
anomalous invocations?

Approximate
Accelerator Local Error

Final
Quality

loss

Application

Factors Influencing Error

Accelerator Error = | Outputaccelerator - Outputoriginal|

Outputaccelerator = ƒ (accelerator inputs, accelerator configuration)

Accelerator
Configuration

Accelerator Inputs Outputaccelerator

Factors Influencing Error

Accelerator Error = | Outputaccelerator - Outputoriginal|

Outputaccelerator = ƒ (accelerator inputs, accelerator configuration)

Constant

Accelerator
Configuration

Accelerator Inputs Outputaccelerator

Factors Influencing Error

Accelerator
Configuration

Accelerator Inputs Outputaccelerator

Accelerator Error = | Outputaccelerator - Outputoriginal|

Outputaccelerator = ƒ (accelerator inputs, accelerator configuration)

Constant
Outputaccelerator = ƒ (accelerator inputs)

Challenges

How to eliminate
anomalous invocations?

Look at the
accelerator inputs

Challenges

Final Quality loss
→ Local Error ?

Approximate
Accelerator

Application

Local
Error

Final
Quality

loss

Challenges

How to eliminate
anomalous invocations?

Look at the
accelerator inputs

Final Quality loss →
Local Error ?

Threshold the
local error

Challenges

How to eliminate
anomalous invocations?

Look at the
accelerator inputs

Final Quality loss →
Local Error ?

Threshold the
local error

What guarantees?

Challenges

How to eliminate
anomalous invocations?

Look at the
accelerator inputs

Final Quality loss →
Local Error ?

Threshold the
local error

What guarantees? Statistical
Guarantees

Challenges

How to eliminate
anomalous invocations?

Look at the
accelerator inputs

Final Quality loss →
Local Error ?

Threshold the
local error

What guarantees? Statistical
Guarantees

What algorithm at
runtime?

Challenges

How to eliminate
anomalous invocations?

Look at the
accelerator inputs

Final Quality loss →
Local Error ?

Threshold the
local error

What guarantees? Statistical
Guarantees

What algorithm at
runtime?

Classification in
Hardware

MITHRA: A Hardware/Software Solution

Generate the threshold
for the local error such
that the final quality loss
meets the requirements

Approximate
Accelerator

Desired quality
requirements

Statistical
Optimizer

Application

Input Datasets

MITHRA: A Hardware/Software Solution

Generate training data
that segregates inputs
that give > and < (th)

Approximate
Accelerator

Desired quality
requirements

Statistical
Optimizer

Classifier
Trainer

(th)

Application

Input Datasets

MITHRA: A Hardware/Software Solution

Approximate
Accelerator

Application

Desired quality
requirements

Statistical
Optimizer

Classifier
Trainer

(th) Hardware
Classifier
Topology

Input Datasets

MITHRA: A Hardware/Software Solution

Approximate
Accelerator

Input Datasets

Desired quality
requirements

Statistical
Optimizer

Classifier
Trainer

(th) Hardware
Classifier
Topology

Application

Statistical Optimizer

Approximate
AcceleratorInput Datasets

Application

Statistical Optimizer

Precise Result

Input Datasets

Approximate
Accelerator

Application

Statistical Optimizer

Approximate Result

Input Datasets

Approximate
Accelerator

Application

Statistical Optimizer

Local error

Approximate
AcceleratorInput Datasets

Application

Statistical Optimizer

th

Threshold

><

Local error

Approximate
AcceleratorInput Datasets

Application

th>Local error

Application

th<
Approximate
AcceleratorLocal error

Application

Approximate
Accelerator ><

Desired
Quality Loss
by the
programmer

Input Datasets

Application

Final
Quality

loss

Binomial Proportion Confidence Interval

Less than the desired
programmer quality loss
➔ nsuccess

Greater than the desired
programmer quality loss

Input Datasets

Binomial Proportion Confidence Interval

Less than the desired
programmer quality loss
➔ nsuccess

Greater than the desired
programmer quality loss

Input Datasets

𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙

1

1 +
(𝑛𝑡𝑟𝑖𝑎𝑙𝑠−𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 1)

𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 × 𝐹 1 − 𝛼; 2𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠, 2 𝑛𝑡𝑟𝑖𝑎𝑙𝑠 − 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 1

< 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒

Example

E.g., (100, 80) 72% < SuccessRate
with 95% confidence level

(𝑛𝑡𝑟𝑖𝑎𝑙𝑠, 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 𝑟 < 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒
𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙

Example

E.g., (100, 80) 72% < SuccessRate
with 95% confidence level

(𝑛𝑡𝑟𝑖𝑎𝑙𝑠, 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 𝑟 < 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒
𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙

Final Quality Level, Success Rate and
Confidence Interval programmer specified

Statistical Optimization

if desired metrics are not met:
tht+1 = tht - ∆

else if desired metrics are met:
tht+1= tht + ∆

Reiterate; till the tht meets the metrics but tht+1 doesn't

Statistical Optimization

Tighter threshold better Final Quality Loss Level,
Success Rate and Confidence Interval but lower
benefits from approximation

if desired metrics are not met:
tht+1 = tht - ∆

else if desired metrics are met:
tht+1= tht + ∆

Reiterate; till the tht meets the metrics but tht+1 doesn't

Training the Classifiers

Approximate
AcceleratorInput Datasets

thfinal

Local error

><

The training data used to generate classifier topology

Hardware Classifiers

Simple algorithm that can be easily implemented in hardware.

We use two techniques for this work:
1. Table Based
2. Neural Network Based

Table-based Classifiers

Classifier

Table-based Classifiers

A small ensemble of table-based classifiers achieve
better accuracy and performance

Neural Network Based Classifiers

Benchmarks

8 tables each of size 0.5 KB

Accelerator
Topology

Baseline
Error

Table Classifier Topology

6 ➔ 8 ➔ 8➔1Blackscholes 6.02% 6 ➔ 4 ➔ 2

1➔ 4 ➔ 4➔2FFT 7.22% 1➔ 4 ➔ 2

2 ➔ 8 ➔ 2Inversek2j 7.50% 2 ➔ 4 ➔ 2

18 ➔ 32 ➔ 8➔2JMEINT 17.69% 18 ➔ 16 ➔2

64 ➔ 16 ➔ 64JPEG Encoding 7.00% 64 ➔ 2 ➔ 2

9 ➔ 8 ➔1Sobel 9.96% 9 ➔ 4 ➔2

Neural Classifier
Topology

Energy and Performance Benefits

Invocation Rate

Varying Success Rate

Conclusion

Aims to make statistical guarantees a norm

Hardware software co-design works well

M
IT

H
R

A

Thank you

Thank you

False Positive and False Negative Results

Binomial Proportion Confidence Interval

(𝑛𝑡𝑟𝑖𝑎𝑙𝑠, 𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠) 𝑟 < 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑅𝑎𝑡𝑒
𝑤𝑖𝑡ℎ 𝑎 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑒𝑣𝑒𝑙

Evaluation of MITHRA

Comparing geometric mean -
speedup, energy reduction and
invocation rate across varied set
of benchmarks.

False Positive and False Negatives

Multi-Input Hashing and Input
Signature Generation

Multiple Tables for Improved Performance

A small ensemble of table-based Classifiers achieve better
accuracy and performance

Neural Network Based Mechanism

Compiler Support for MITHRA

• Programmer provides:
– Application specific quality requirement

– Quality Metric

– Set of representative application inputs

• Algorithm maps final output requirement to a
threshold (th) on accelerator error.

Accelerator error < th : learn to invoke the accelerator
Accelerator error > th : learn to fall back to the original function

Quality vs Benefits Tradeoffs

Output Quality

A
p

p
ro

xi
m

at
io

n

B
en

ef
it

s

