TABLA: A Unified Template-based Framework for Accelerating Statistical Machine Learning

Divya Mahajan

Jongse Park Emmanuel Amaro Hardik Sharma Amir Yazdanbakhsh Joon Kyung Kim Hadi Esmaeilzadeh

Alternative Computing Technologies (ACT) Lab Georgia Institute of Technology

Data Explosion

Machines learn to extract insights from data

Machines learn to extract insights from data

Growing gap between data and compute

Data growth trends: IDC's Digital Universe Study, December 2012 Performance growth trends: Esmaeilzadeh et al, "Dark Silicon and the End of Multicore Scaling," ISCA 2011

Programmability versus efficiency

An algorithmic approach towards acceleration

Understanding machine learning

 $Loss(w_i) = \sum_{i} ||Y - Y^*||$ © 2016 D Mahajan ALL RIGHTS RESERVED

Algorithmic commonalities

Learning is solving an iterative optimization problem!

$find(w_i) \ni \{Loss(w_i) = \sum_i ||Y - Y^*||\} \text{ is minimized}$

Stochastic gradient descent solver

Abstraction between hardware and software

Cross-stack template-based approach

TABLA workflow

Programming interface

Enables programmer to specify the gradient of loss function

Programming interface

 $Loss Function Gradient(W^{T}) = \left\{ \left(\left(sigmoid\left(\sum_{i} W^{T} X_{i}\right) \right) - Y \right) \cdot Xi \right\} + lambda \cdot W^{T}$

```
m = 53
lambda = 0.1
model_input X[m];
model_output Y';
model
         W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
  = sigmoid(S);
Y
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
```


 $Loss Function Gradient(W^{T}) = \left\{ \left(\left(sigmoid\left(\sum_{i} W^{T} X_{i}\right) \right) - Y \right) \cdot Xi \right\} + lambda \cdot W^{T}$

```
m = 53
lambda = 0.1
model_input X[m];
model_output Y';
model
           W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
```


 $Loss Function Gradient(W^{T}) = \left\{ \left(\left(sigmoid\left(\sum_{i} W^{T} X_{i}\right) \right) - Y \right) \cdot Xi \right\} + lambda \cdot W^{T}$

```
lambda = 0.1
model_input X[m];
model_output Y';
model
            W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
  = sigmoid(S);
Y
\mathbf{E} = \mathbf{Y} - \mathbf{Y'};
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
```

m = 53

Loss Function Gradient(W^T) = $\left\{ \left(\left(sigmoid\left(\sum_i W^T X_i\right) \right) - Y \right) \cdot Xi \right\} + lambda \cdot W^T$

```
lambda = 0.1
model_input X[m];
model_output Y';
model
        W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
```

m = 53


```
Loss Function Gradient(W^T) = \left\{ \left( \left( sigmoid\left(\sum_i W^T X_i\right) \right) - Y \right) \cdot Xi \right\} + lambda \cdot W^T
```

```
lambda = 0.1
model_input X[m];
model_output Y';
model
        W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
 = sigmoid(S);
Y
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
```

m = 53

Loss Function Gradient(W^T) = $\left\{ \left(\left(sigmoid\left(\sum_i W^T X_i\right) \right) - Y \right) \cdot Xi \right\} + lambda \cdot W^T$ **m** = 53

```
lambda = 0.1
model_input X[m];
model_output Y';
model
        W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
```


Model Compiler

- 1. Appending the stochastic gradient descent solver
- 2. Creating the dataflow graph of the entire algorithm
- 3. Create a schedule for this dataflow graph

1. Appending Stochastic Gradient Descent

```
m = 53
lambda = 0.1
u = 0.1
model_input X[m];
model_output Y';
model
             W[m];
gradient
             G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
G[i] = u * G[i];
W[i] = W[i] - G[i];
```


m = 53lambda = 0.1u = 0.1model_input X[m]; model_output Y'; model W[m]; gradient G[m]; iterator i[0:m - 1]; S = sum [i](X[i] * W[i]);Y = sigmoid(S);E = Y - Y';G[i] = X[i] * E;V[i] = lambda * W[i]; G[i] = G[i] + V[i];G[i] = u * G[i];W[i] = W[i] - G[i];


```
m = 53
lambda = 0.1
u = 0.1
model_input X[m];
model_output Y';
model
             W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
G[i] = u * G[i];
W[i] = W[i] - G[i];
```



```
m = 53
lambda = 0.1
u = 0.1
model_input X[m];
model_output Y';
model
             W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
G[i] = u * G[i];
W[i] = W[i] - G[i];
```



```
m = 53
lambda = 0.1
u = 0.1
model_input X[m];
model_output Y';
model
             W[m];
gradient
             G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
G[i] = u * G[i];
W[i] = W[i] - G[i];
```



```
m = 53
lambda = 0.1
u = 0.1
model_input X[m];
model_output Y';
model
             W[m];
gradient
             G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
G[i] = u * G[i];
W[i] = W[i] - G[i];
```



```
m = 53
lambda = 0.1
u = 0.1
model_input X[m];
model_output Y';
model
             W[m];
gradient
             G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
G[i] = u * G[i];
W[i] = W[i] - G[i];
```



```
m = 53
lambda = 0.1
u = 0.1
model_input X[m];
model_output Y';
model
             W[m];
gradient G[m];
iterator i[0:m - 1];
S = sum [i](X[i] * W[i]);
Y = sigmoid(S);
E = Y - Y';
G[i] = X[i] * E;
V[i] = lambda * W[i];
G[i] = G[i] + V[i];
G[i] = u * G[i];
W[i] = W[i] - G[i];
```


3. Operation scheduling

Design Builder

Together with the model compiler generates the final accelerator design

Hierarchical template design of accelerator

Template design of Processing Unit

Template design of Processing Engine

Learning tasks and their topologies

	Model Topology	# Lines
LogisticR Logistic Regression	M1: 54	
	M2: 200	20
SVM Support Vector Machines	M1: 54	
	NA2, 200	23
	IVIZ: 200	
Reco Recommender Systems	M1: 1700 x 1000	24
	M2: 6000 x 4000	31
BackProp Back Propagation	M1: 10 -> 9 -> 1	/18
	M2: 256 -> 128 -> 256	<u></u>
LinearR Linear Regression	N1. EE	
	1011. 33	20
	M2: 784	
	Logistic Regression SVM Support Vector Machines Reco Recommender Systems Back Propagation Linear Regression	LogisticR M1: 54 Logistic Regression M2: 200 SVM M1: 54 SVM M1: 54 SvM M1: 54 Support Vector Machines M2: 200 Reco M1: 1700 x 1000 Recommender Systems M1: 1700 x 4000 BackProp M1: 10 -> 9 -> 1 Back Propagation M1: 55 Linear Regression M1: 55 M2: 784 M2: 784

Evaluation platforms

	Xilinx Zynq
FPGA	7000 ZC702
	TDP: 2W
	\$129

	ARM Cortex 15	Intel Xeon E3-1276 V3
CPU	TDP: 5W	TDP: 84W
	\$191	\$339

GPU	Tegra K1 GPU	GeForce GTX 650 Ti	Tesla K40
	TDP: 10 W	TDP: 110	TDP: 210 W
	\$191	\$150	\$5499
	\$191	\$120	२२२७

Speedup in comparison to CPUs

- TABLA generated accelerators provide 19× speedup over ARM and 2.9× speedup over Xeon
- Static scheduling alleviates the traditional Von-Neumann overheads

Speedup in comparison to GPUs

TABLA generated accelerators provide 5.9× speedup over Tegra K1, 1.16x over GTX 650 Ti and 1.18x slowdown over Tesla K40

Performance-per-Watt in comparison to GPUs

- TABLA generated accelerators provide 17× performance-per-Watt over Tegra K1, 20× over GTX 650 Ti and 33× over Tesla K40
- Specialized template designs extract fine-grained parallelism while consuming less power

Conclusions

- Exploit algorithmic commonalities to accelerate machine learning
- Create a template-based framework
- Abstract details of hardware from programmer
- Enable FPGAs to be accelerator of choice for machine learning
- <u>http://act-lab.org/artifacts/tabla</u>

Thank you

