AxGAMES: Towards Crowdsourcing Quality Target Determination in Approximate Computing

Jongse Park, Emmanuel Amaro, Divya Mahajan, Bradley Thwaites, Hadi Esmaeilzadeh

Alternative Computing Technologies (**ACT**) Lab Georgia Institute of Technology

ASPLOS 2016

Approximate computing

Embracing imprecision

Relax the abstraction of "near perfect" accuracy in

Data Processing

Storage

Communication

Accept imprecision to improve performance energy efficiency

Tradeoff b/w quality and benefits

Tradeoff b/w quality and benefits

Tradeoff b/w quality and benefits

Acceptable quality is

Acceptable quality Subjective

Acceptable quality

Input data dependent

Acceptable quality

Application specific

Low

Acceptable quality

Approximation technique specific

Transforming the tradeoff in approximate computing

AXGAMES: systematic and general framework

1. How much quality loss would the crowd accept?

1. How much quality loss would the crowd accept?

 How much quality loss would the crowd accept when quality-cost tradeoff is considered? WINABATT

POLLICE

VERSO

1. How much quality loss would the crowd accept?

How much quality loss would the crowd accept
when quality-cost tradeoff is considered? WINABATT

3. How much quality loss would the crowd accept when quality-cost tradeoff and context of application are considered?

POLLICE

VERSO

Let's play!

Statistical analysis

Statistical analysis

Binomial Proportion Confidence Interval (Clopper-Pearson Exact Method)

with a confidence level

Statistical analysis

Binomial Proportion Confidence Interval (Clopper-Pearson Exact Method)

with a confidence level

Statistical analysis

Binomial Proportion Confidence Interval (Clopper-Pearson Exact Method)

$$(n_{trials}, n_{success}) \implies r < SuccessRate$$

with a confidence level

E.g., (100, 80) **72.28%** < SuccessRate

with 95% confidence level

Statistical analysis

r < % Users Satisfied

Statistical analysis

r < % Users Satisfied

60.82% < % Users Satisfied

Benchmark

	Benchmarks	Description	Quality Metric
	emboss	Embossing filter	Normalized Root Mean Square Error (NRMSE)
	Image processing		
	jpeg Image processing	Lossy compression	
	mean	Blurring filter	
	Image processing		
	sobel	Edge detection	
	Image processing		
	audio-enc	Audio encoder	
	Audio processing		
	ocr	Ontical character recognition	Text Similarity Ratio
	Text recognition	optical character recognition	
	speech2txt	Embossing filter	
	Text recognition		

Crowd recruitment

amazon mechanical turk

700 Turkers for 7 benchmarks30 rounds per player(10 rounds per game)

Acceptable quality loss for applications/games

Acceptable quality loss for applications/games

Acceptable quality loss for applications/games

Different patterns for different domains

Projected fraction of satisfied users with 95% confidence level

Output Quality Loss

(statistics collected from the QNA game)

Tradeoff change in approximate computing Example: mean

Tradeoff change from

quality vs. benefits to user satisfaction vs. benefits

<u>http://act-lab.org/artifacts/axgames/</u> <u>https://bitbucket.org/act-lab/game.code</u>