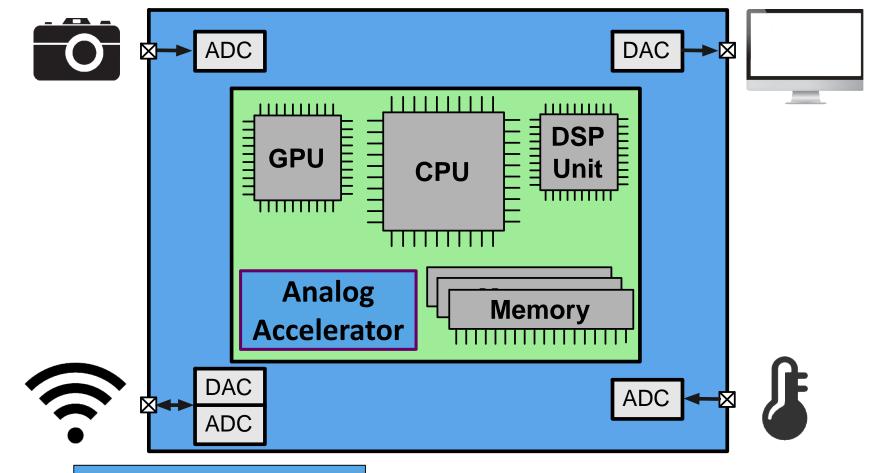
General-Purpose Code Acceleration with Limited-Precision Analog Computation

Renée St. AmantAmir YazdanbakhshJongse ParkBradley ThwaitesHadi EsmaeilzadehArjang HassibiLuis CezeDoug Burger

Georgia Institute of Technology Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology University of Washington The University of Texas at Austin Microsoft Research

ISCA 2014



Input and Output Display Communication Sensing

Analog Domain

Processing Storage

Digital Domain

How to use analog circuits for accelerating programs written in conventional languages?

- 1) Neural transformation [Esmaeilzadeh et. al., MICRO 2012]
- 2) Analog neurons

Challenges

- Analog circuits are mainly single function
- Instruction control cannot be analog
- Storing intermediate results in analog domain is not effective
- Analog circuits have limited operational range
- **1)** Neural transformation
- 2) Analog neurons

Challenges

- Analog circuits are mainly single function
- Instruction control cannot be analog
- Storing intermediate results in analog is not effective
- Analog circuits have limited operational range
- 1) Neural transformation
- 2) Analog neurons

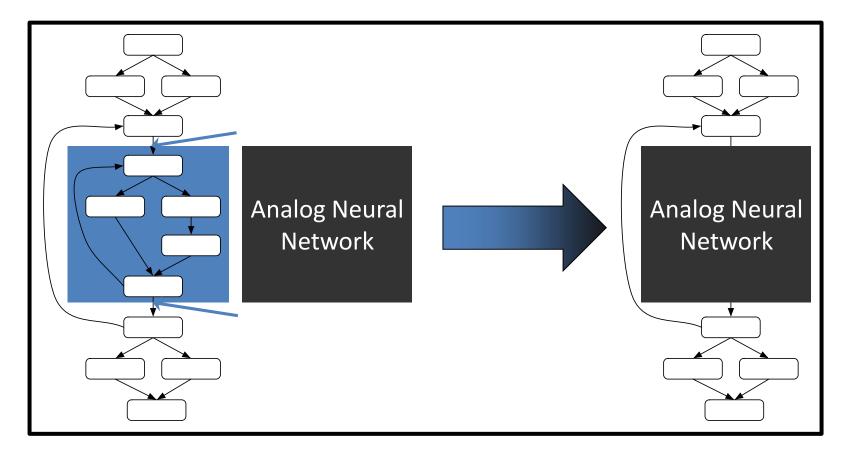
Challenges

- Analog circuits are mainly single function
- Instruction control cannot be analog
- Storing intermediate results in analog domain is not effective
- Analog circuits have limited operational range
- 1) Neural transformation
- 2) Analog neurons

1st Design Principle

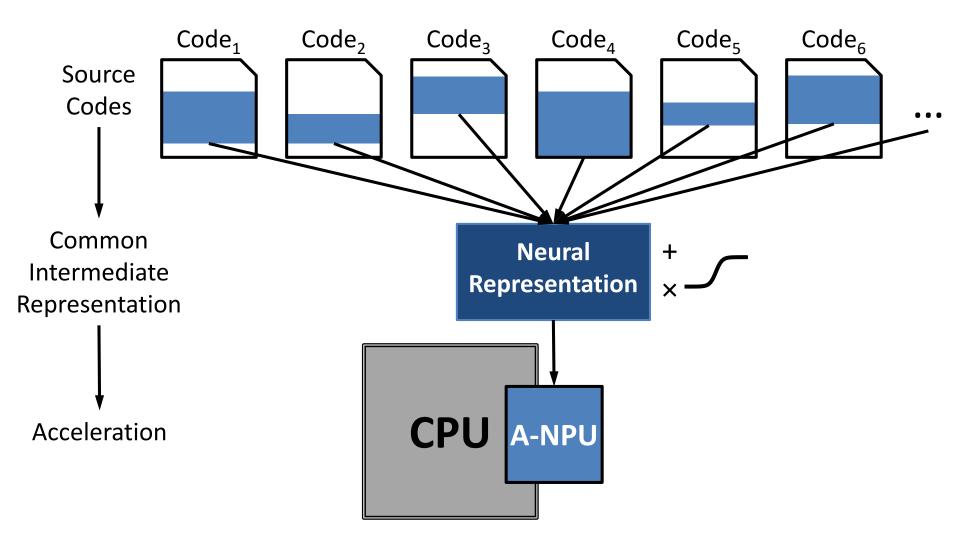
Neural Transformation

Neural Transformation



Esmaeilzadeh, Sampson, Ceze, Burger, "Neural Acceleration for General-Purpose Approximate Programs," MICRO 2012.

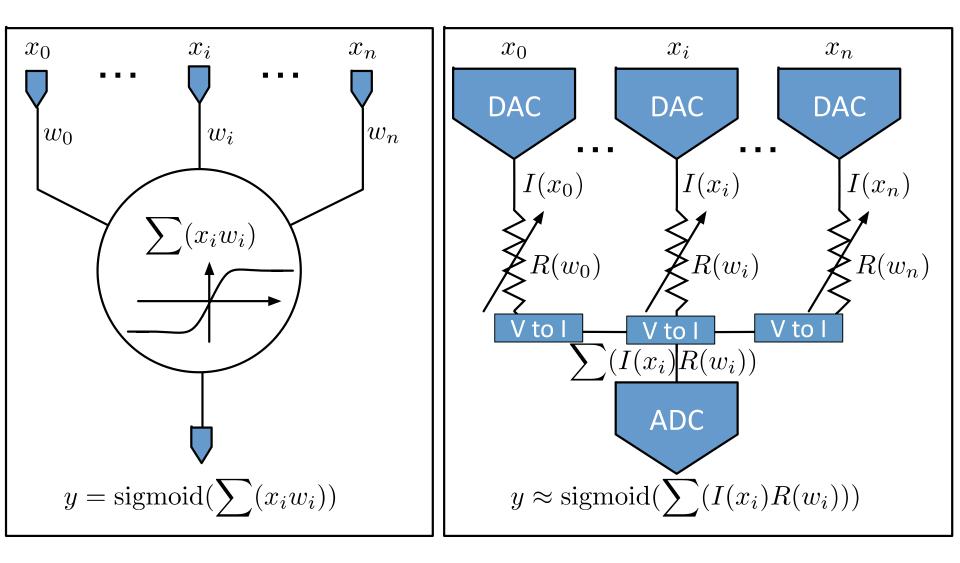
A-NPU acceleration



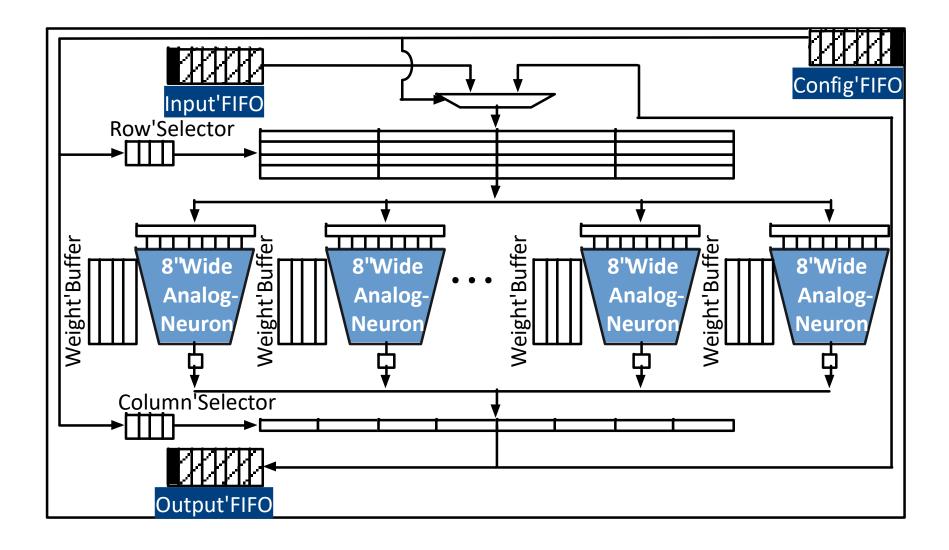
2nd Design Principle

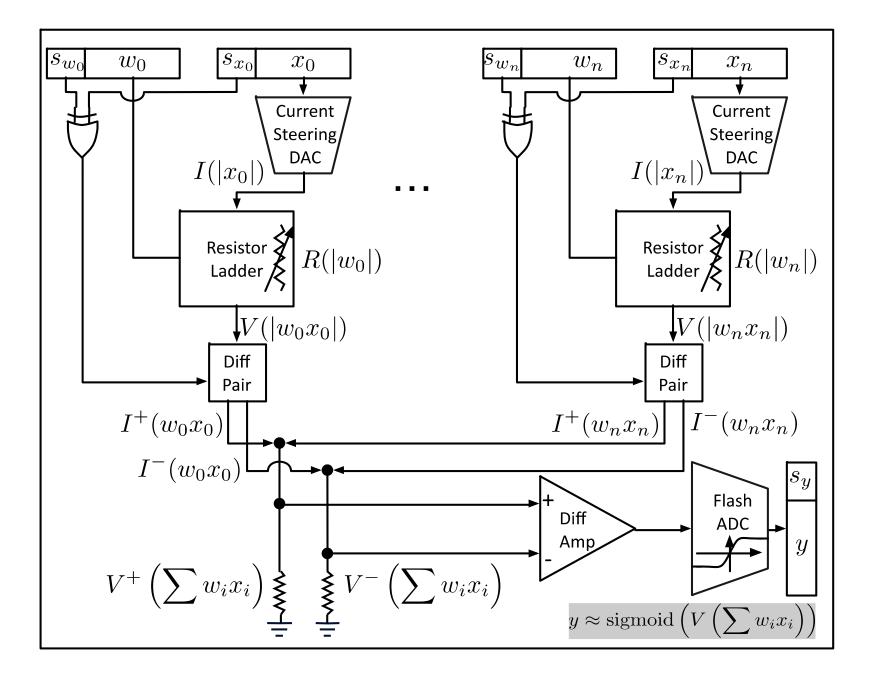
Analog Neurons

Analog Neurons for Accelerated Computation



Mixed-signal A-NPU





Limitations of Analog Neuron

Limited range of operation (e.g. 600mV)

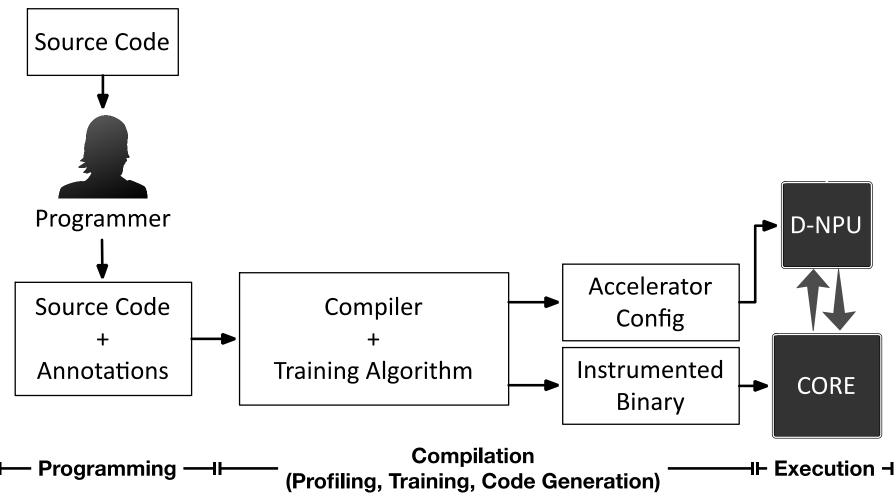
Margins for noise resiliency (2-3 mV)

Limited Bit-width Topology Restriction Circuit Non-idealities (e.g., Sigmoid)

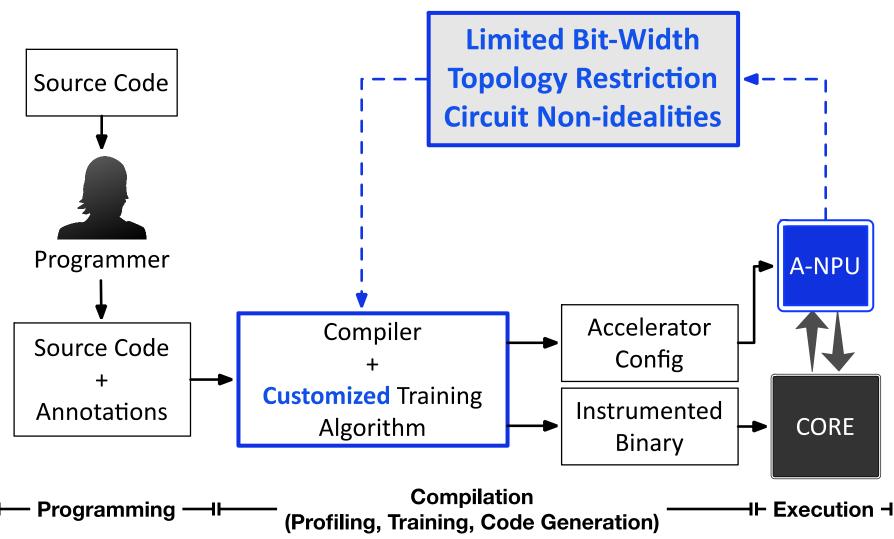
3rd Design Principle

Compiler-Circuit Co-design

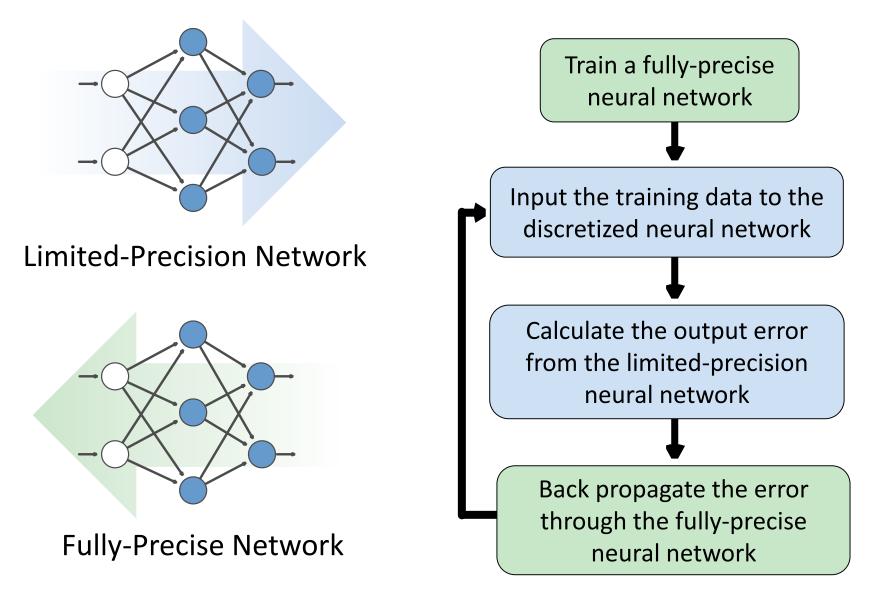
Digital Compilation Workflow



Analog Compilation Workflow

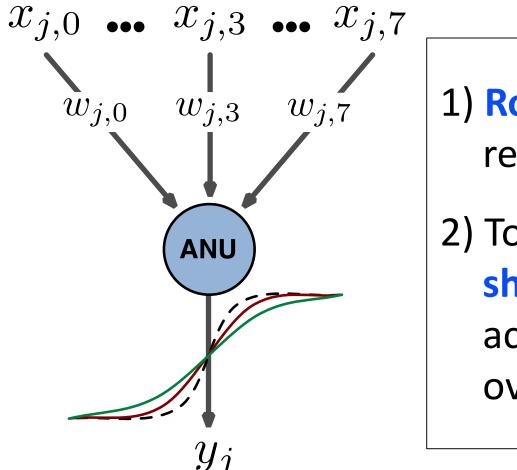


(1) Training with Limited Bit-width



Continuous-Discrete Learning Method (CDLM), E. Fiesler, 1990

(2) Training with topology restrictions and non-idealities



 Robust to the topology restrictions
Tolerate a more shallow sigmoid activation steepness over all applications

Resilient Back Propagation (RPROP), M. Riedmiller, 1993

Measurements

Signal Processing, Robotics, 3D Gaming, Financial Analysis, Compression, Machine Learning, Image Processing

Analog A-NPU with 8 Analog Neurons

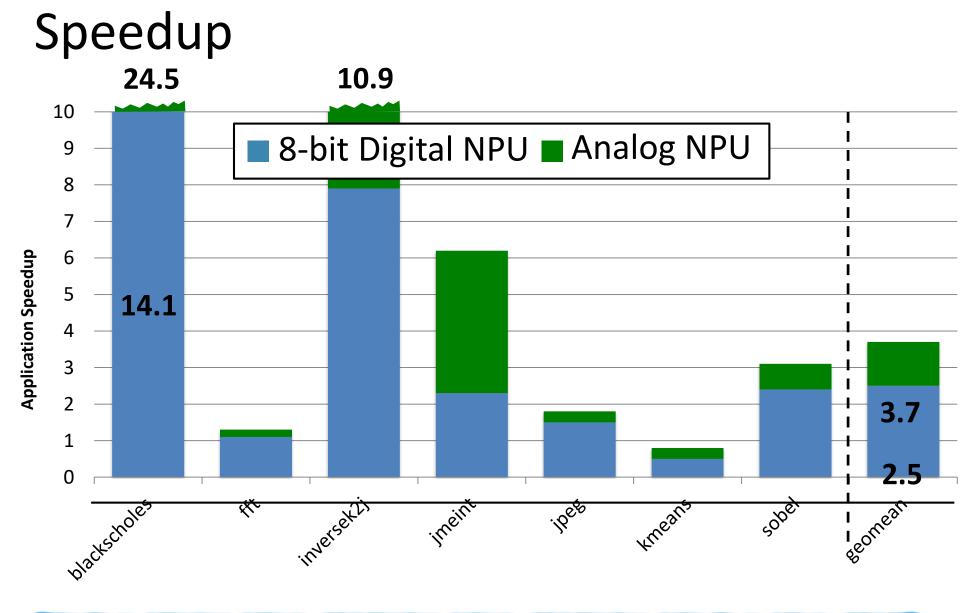
- Transistor-Level HSPICE Simulation
- Predictive Technology Models (PTM), 45nm
- Vdd: 1.2 V, f: 1.1 GHz

Digital Components

• Power Models: McPAT, CACTI, and Verilog

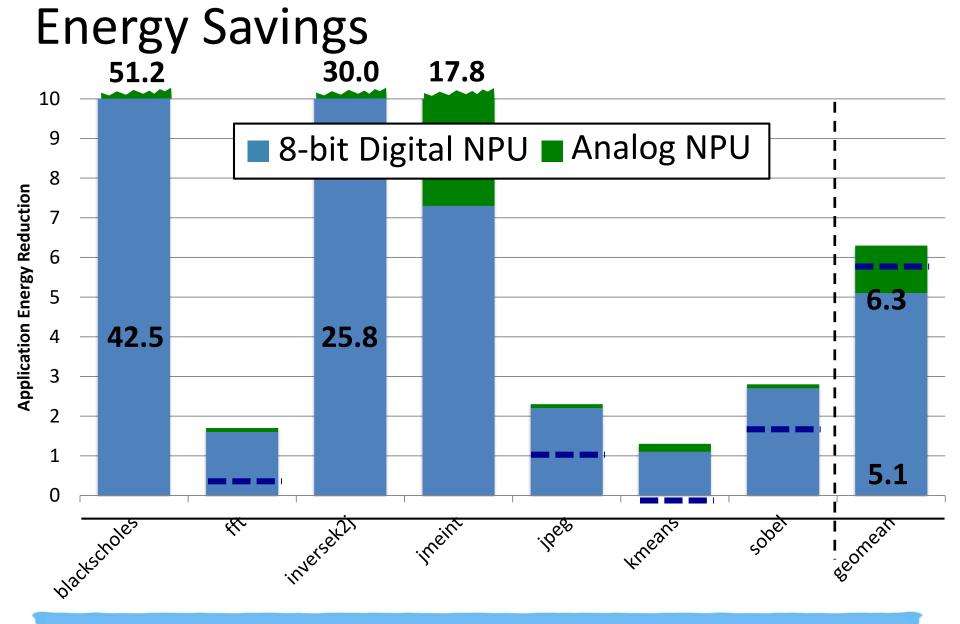
Processor Simulator

- Marssx86 Cycle-Accurate Simulation
- Intel Nehalem-like 4-wide/5-issue OoO processor
- Technology: 45 nm, Vdd: 0.9 V, f: 3.4 GHz



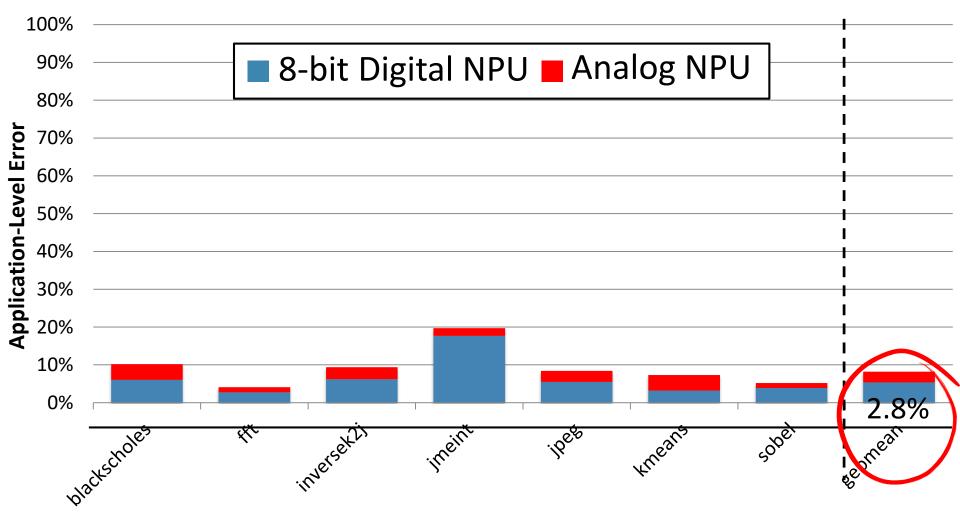
Ranges from 0.8× to 24.5× with Analog NPU

1.2× increase in application speedup with Analog over Digital NPU



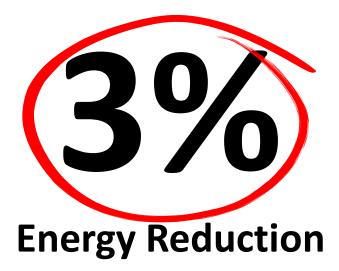
Energy saving with Analog NPU is very close to ideal case (6.5x)

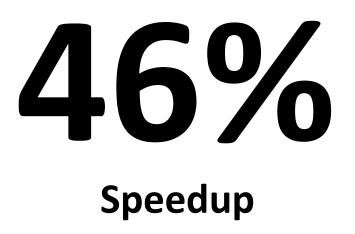
Application quality loss



Quality loss is below 10% in all cases but one Based on application-specific quality metric

What is left?





We can not reduce the energy of the computation much more.

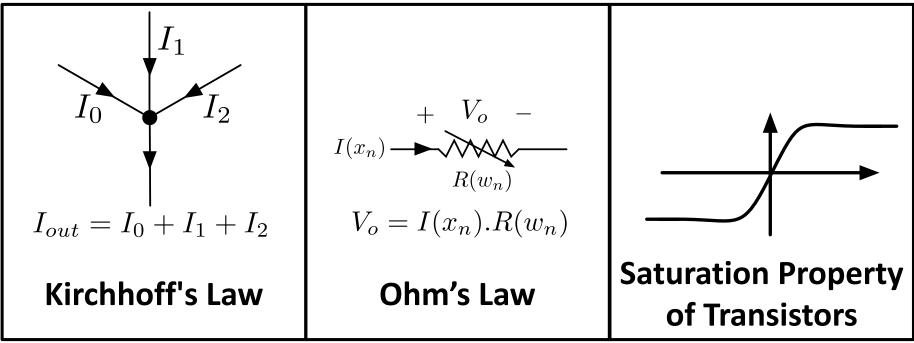
3.7x × **6.3x**

Speedup

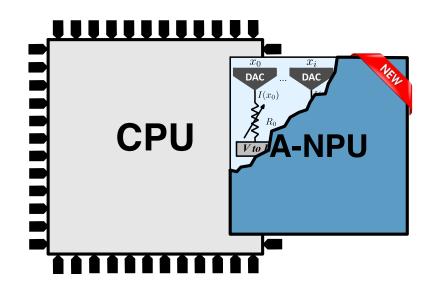
Energy Reduction $\approx 23x$

Energy-Delay Product

Quality Degradation: Avg. 8.2%, Max. 19.7%



- It is still the beginning...
 - 1) **Broad applicability** of the analog computation
 - 2) Prototyping and integrating A-NPU within **noisy** high performance processors
 - 3) Reasoning about the acceptable level of error at the programming level



Backup Slides

Area Breakdown

Sub-circuit	Area			
A-NPU				
8x8-bit DAC	3,096 T			
8xResistor Ladder (8-bit weights)	4,096 T + 1 K Ω ($pprox$ 450 T)			
8xDifferential Pair	48 T			
I-to-V Resistors	20 К Ω ($pprox$ 30 Т)			
Differential Amplifier	244 T			
8-bit ADC	2,550 T + 1K $_{\Omega}$ ($pprox$ 450)			
Total	pprox10,964 T			
D-NPU				
8x8-bit multiply-adds	pprox 56,000 T			
8-bit Sigmoid lookup table	16,456 T			
Total	pprox72,456			

6.6x fewer transistors in the analog neuron implementation

Power Breakdown

Sub-circuit	Percentage of total power			
A-NPU				
SRAM-accesses	13%			
DAC-Resistor Ladder-Diff Pair-Sum	54%			
Sigmoid-ADC	33%			

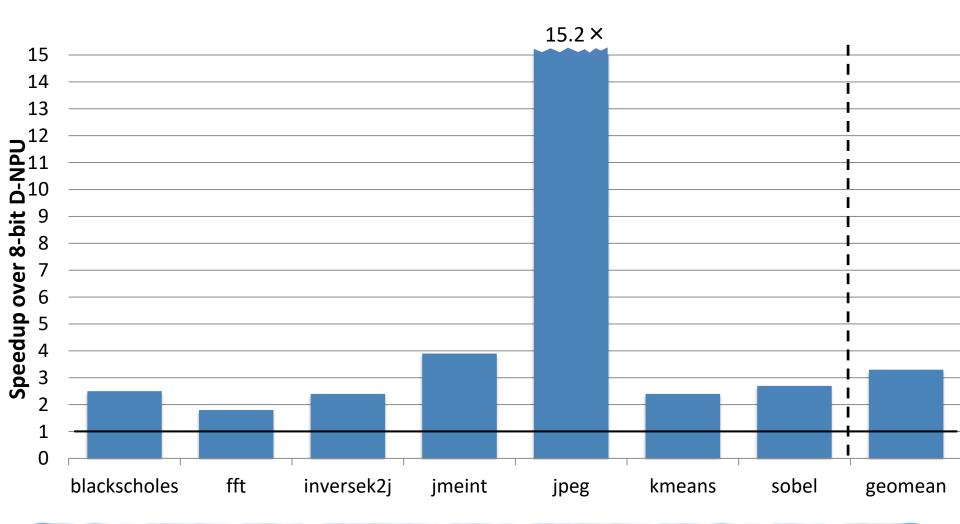
Power numbers vary with applications

Applicatio	ns	Financial blackscholes 309 x86 instructions 97.2% dynamic instructions	6→8→8→1 Error: 10.2%
Signal Processing fft 34 x86 instructions 67.4% dynamic instructions	1→4→4→2 Error: 4.1%	Compression jpeg 1,257 x86 instructions 56.3% dynamic instructions	64 → 16 → 8 → 64 Error: 8.4%

Robotics inversek2j	2→8→2	Machine Learning kmeans	6→8→4→1
100 x86 instructions 95.9% dynamic instructions	Error: 9.4%	26 x86 instructions 29.7% dynamic instructions	Error: 7.3%

3D Gaming	18→32→8	Image Processing	
jmeint	→ 2	sobel	9→8→1
1,079 x86 instructions	Error: 19.7%	88 x86 instructions	Error: 5.2%
95.1% dynamic instructions	<u>EITOL.</u> 19.7%	57.1% dynamic instructions	

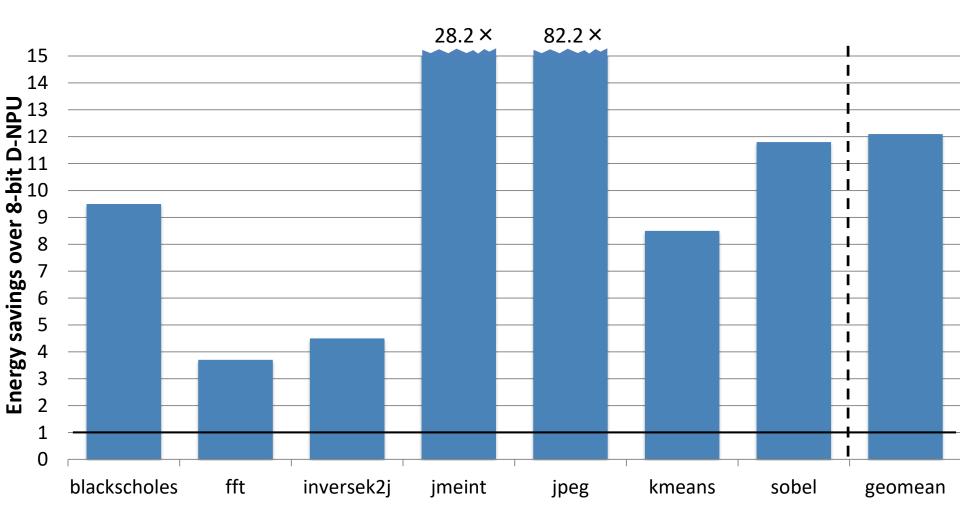
Speedup with A-NPU over 8-bit D-NPU



3.3× geometric mean speedup

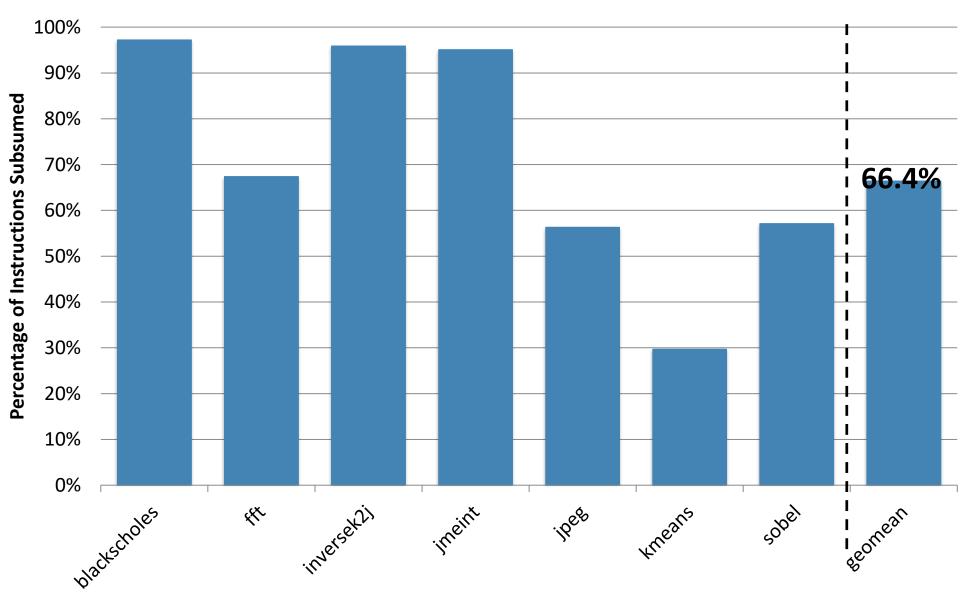
Ranges from 1.8× to 15.2×

Energy savings with A-NPU over 8-bit D-NPU

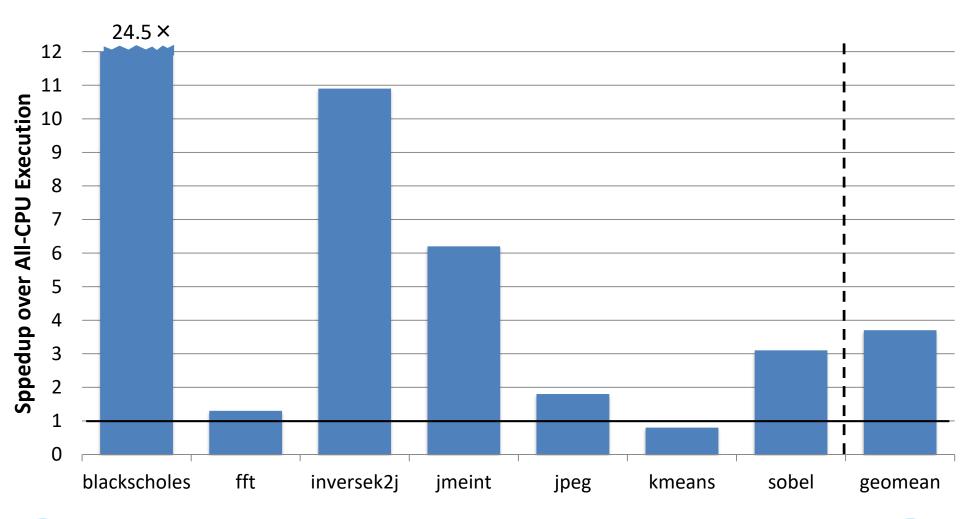


12.1× geometric mean speedup Ranges from 3.7× to 82.2×

Dynamic Instruction Reduction



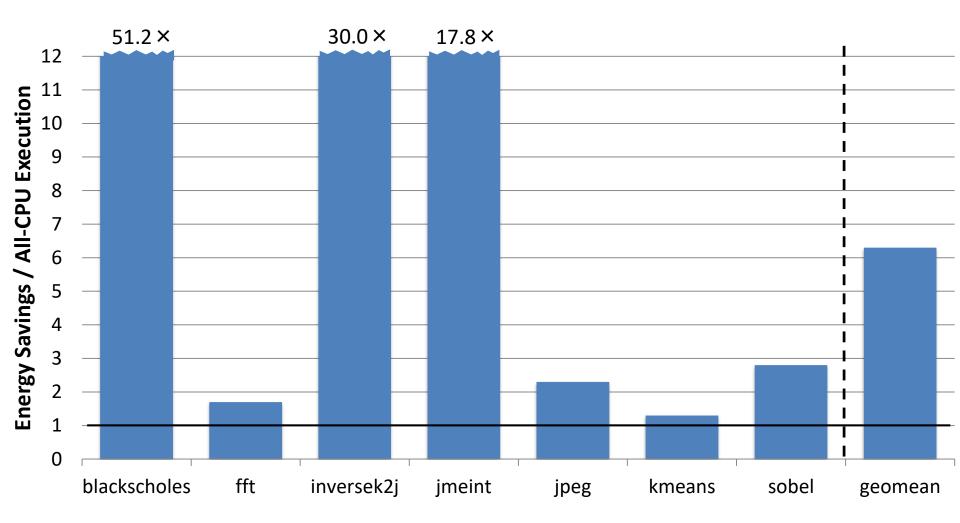
Speedup with A-NPU acceleration



3.7× geometric mean speedup

Ranges from 0.8× to 24.5×

Energy savings with A-NPU acceleration



6.3× geometric mean energy reduction All benchmarks benefit