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How to use analog circuits for 
accelerating programs written in 

conventional languages?

1) Neural transformation
[Esmaeilzadeh et. al., MICRO 2012]

2) Analog neurons

3) Compiler-circuit co-design



Challenges
- Analog circuits are mainly single function

- Instruction control cannot be analog

- Storing intermediate results in analog domain 
is not effective

- Analog circuits have limited operational range

4

1) Neural transformation

2) Analog neurons

3) Compiler-circuit co-design



Challenges
- Analog circuits are mainly single function

- Instruction control cannot be analog

- Storing intermediate results in analog
is not effective

- Analog circuits have limited operational range

5

1) Neural transformation

2) Analog neurons

3) Compiler-circuit co-design



Challenges
- Analog circuits are mainly single function

- Instruction control cannot be analog

- Storing intermediate results in analog domain 
is not effective

- Analog circuits have limited operational range

6

1) Neural transformation

2) Analog neurons

3) Compiler-circuit co-design



7

1st Design Principle

Neural Transformation



Neural Transformation
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Analog Neural
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Esmaeilzadeh, Sampson, Ceze, Burger, “Neural Acceleration for General-Purpose Approximate Programs,” MICRO 2012.
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2nd Design Principle

Analog Neurons



Analog Neurons for Accelerated Computation
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Mixed-signal A-NPU
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Limitations of Analog Neuron

Limited range of operation (e.g. 600mV)

Margins for noise resiliency  (2-3 mV)
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Limited Bit-width
Topology Restriction

Circuit Non-idealities (e.g., Sigmoid)
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3rd Design Principle

Compiler-Circuit 
Co-design



Digital Compilation Workflow
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Analog Compilation Workflow
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Back propagate the error 
through the fully-precise 

neural network

Calculate the output error 
from the limited-precision

neural network

Input the training data to the 
discretized neural network

Train a fully-precise 
neural network

(1) Training with Limited Bit-width

Limited-Precision Network
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Fully-Precise Network

Continuous-Discrete Learning Method (CDLM), E. Fiesler, 1990



(2) Training with topology restrictions and 
non-idealities

1) Robust to the topology 
restrictions
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2) Tolerate a more 
shallow sigmoid
activation steepness 
over all applications

Resilient Back Propagation (RPROP), M. Riedmiller, 1993



Measurements
Signal Processing, Robotics, 3D Gaming, Financial Analysis,
Compression, Machine Learning, Image Processing  

Analog A-NPU with 8 Analog Neurons

• Transistor-Level HSPICE Simulation

• Predictive Technology Models (PTM), 45nm

• Vdd: 1.2 V, f: 1.1 GHz

Digital Components

• Power Models: McPAT, CACTI, and Verilog

Processor Simulator
• Marssx86 Cycle-Accurate Simulation

• Intel Nehalem-like 4-wide/5-issue OoO processor

• Technology: 45 nm, Vdd: 0.9 V, f: 3.4 GHz
20
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Speedup

Ranges from 0.8× to 24.5× with Analog NPU

1.2× increase in application speedup with Analog over Digital NPU
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Energy saving with Analog NPU is very close to ideal case 
(6.5x)
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Application quality loss

Quality loss is below 10% in all cases but one

Based on application-specific quality metric

2.8% 
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3% 46%
SpeedupEnergy Reduction

What is left?

We can not reduce the energy of the computation much more. 
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Kirchhoff's Law Ohm’s Law
Saturation Property

of Transistors

3.7x   × 6.3x 
≈23x

Speedup Energy Reduction

Quality Degradation: Avg. 8.2%, Max. 19.7%

Energy-Delay Product



1) Broad applicability of the analog computation 

2) Prototyping and integrating A-NPU within noisy high 

performance processors

3) Reasoning about the acceptable level of error at the 

programming level

26

It is still the beginning...
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Backup Slides



Area Breakdown
Sub-circuit Area

A-NPU

8x8-bit DAC 3,096 T

8xResistor Ladder (8-bit weights) 4,096 T + 1 K     (     450 T)

8xDifferential Pair 48 T

I-to-V Resistors 20 K     (     30 T)

Differential Amplifier 244 T

8-bit ADC 2,550 T + 1K     (       450)

Total 10,964 T

6.6x fewer transistors in the analog neuron implementation
28

D-NPU

8x8-bit multiply-adds 56,000 T

8-bit Sigmoid lookup table 16,456 T

Total 72,456



Power Breakdown

Sub-circuit Percentage of total power

A-NPU

SRAM-accesses 13%

DAC-Resistor Ladder-Diff Pair-Sum 54%

Sigmoid-ADC 33%

Power numbers vary with applications
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Applications

Signal Processing
fft

34 x86 instructions
67.4% dynamic instructions

1➙4➙4➙2
Error: 4.1%

Robotics
inversek2j

100 x86 instructions
95.9% dynamic instructions

2➙8➙2
Error: 9.4%

3D Gaming
jmeint

1,079 x86 instructions
95.1% dynamic instructions

18➙32➙8
➙2

Error: 19.7%

Compression
jpeg

1,257 x86 instructions
56.3% dynamic instructions

64➙16➙8
➙64

Error: 8.4%

Machine Learning
kmeans

26 x86 instructions
29.7% dynamic instructions

6➙8➙4➙1
Error: 7.3%

Image Processing
sobel

88 x86 instructions
57.1% dynamic instructions

9➙8➙1
Error: 5.2%

Financial
blackscholes

309 x86 instructions
97.2% dynamic instructions

6➙8➙8➙1
Error: 10.2%
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15.2×
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3.3× geometric mean speedup

Ranges from 1.8× to 15.2×
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Energy savings with A-NPU over 8-bit D-NPU
82.2×28.2×

12.1× geometric mean speedup

Ranges from 3.7× to 82.2×
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Dynamic Instruction Reduction
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Speedup with A-NPU acceleration

3.7× geometric mean speedup

Ranges from 0.8× to 24.5×

24.5×
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Energy savings with A-NPU acceleration

6.3× geometric mean energy reduction

All benchmarks benefit

51.2× 30.0× 17.8×
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