General-Purpose Code Acceleration with Limited-Precision Analog Computation

Renée St. Amant Amir Yazdanbakhsh Jongse Park Bradley Thwaites
Hadi Esmaeilzadeh Arjang Hassibi Luis Ceze Doug Burger

Georgia Institute of Technology
Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology The University of Texas at Austin
University of Washington Microsoft Research

ISCA 2014
How to use analog circuits for accelerating programs written in conventional languages?

1) Neural transformation
 [Esmaeilzadeh et. al., MICRO 2012]

2) Analog neurons

3) Compiler-circuit co-design
Challenges

- Analog circuits are mainly single function
- Instruction control cannot be analog
- Storing intermediate results in analog domain is not effective
- Analog circuits have limited operational range

1) **Neural transformation**

2) Analog neurons

3) Compiler-circuit co-design
Challenges

- Analog circuits are mainly single function
- Instruction control cannot be analog
- Storing intermediate results in analog is not effective
- Analog circuits have limited operational range

1) Neural transformation

2) Analog neurons

3) Compiler-circuit co-design
Challenges

- Analog circuits are mainly single function
- Instruction control cannot be analog
- Storing intermediate results in analog domain is not effective
- Analog circuits have limited operational range

1) Neural transformation
2) Analog neurons
3) Compiler-circuit co-design
1st Design Principle

Neural Transformation
Neural Transformation

A-NPU acceleration

Source Codes

Common Intermediate Representation

Acceleration

CPU

A-NPU

Code 1

Code 2

Code 3

Code 4

Code 5

Code 6

…

Neural Representation

+

x
2nd Design Principle

Analog Neurons
Analog Neurons for Accelerated Computation

\[
y = \text{sigmoid}(\sum (x_i w_i))
\]

\[
y \approx \text{sigmoid}(\sum (I(x_i) R(w_i)))
\]
Mixed-signal A-NPU
Limitations of Analog Neuron

Limited range of operation (e.g. 600mV)

Margins for noise resiliency (2-3 mV)

Limited Bit-width

Topology Restriction

Circuit Non-idealities (e.g., Sigmoid)
3rd Design Principle

Compiler-Circuit Co-design
Digital Compilation Workflow

- Source Code
 - Programmer
 - Source Code + Annotations
 - Compiler + Training Algorithm
 - Accelerator Config
 - Instrumented Binary
 - D-NPU
 - CORE

Programming (Profiling, Training, Code Generation) → Compilation → Execution
Analog Compilation Workflow

Source Code

Programmer

Source Code + Customized Training Algorithm

Compiler

Accelerator Config

Instrumented Binary

Limited Bit-Width Topology Restriction Circuit Non-idealities

A-NPU

CORE

17
(1) Training with Limited Bit-width

Limited-Precision Network

Train a fully-precise neural network

Input the training data to the discretized neural network

Calculate the output error from the limited-precision neural network

Back propagate the error through the fully-precise neural network

Fully-Precise Network

Continuous-Discrete Learning Method (CDLM), E. Fiesler, 1990
(2) Training with topology restrictions and non-idealities

1) **Robust** to the topology restrictions

2) Tolerate a more shallow sigmoid activation steepness over all applications

Resilient Back Propagation (RPROP), M. Riedmiller, 1993
Measurements

Signal Processing, Robotics, 3D Gaming, Financial Analysis, Compression, Machine Learning, Image Processing

Analog A-NPU with 8 Analog Neurons
- Transistor-Level HSPICE Simulation
- Predictive Technology Models (PTM), 45nm
- Vdd: 1.2 V, f: 1.1 GHz

Digital Components
- Power Models: McPAT, CACTI, and Verilog

Processor Simulator
- Marssx86 Cycle-Accurate Simulation
- Intel Nehalem-like 4-wide/5-issue OoO processor
- Technology: 45 nm, Vdd: 0.9 V, f: 3.4 GHz
Ranges from 0.8× to 24.5× with Analog NPU
1.2× increase in application speedup with Analog over Digital NPU
Energy Savings

Energy saving with Analog NPU is very close to ideal case (6.5x)
Quality loss is below 10% in all cases but one
Based on application-specific quality metric
What is left?

3% Energy Reduction

46% Speedup

We can not reduce the energy of the computation much more.
Kirchhoff's Law

\[I_{out} = I_0 + I_1 + I_2 \]

Ohm's Law

\[V_o = I(x_n) \cdot R(w_n) \]

Saturation Property of Transistors

Quality Degradation: Avg. 8.2%, Max. 19.7%
It is still the beginning...

1) **Broad applicability** of the analog computation

2) Prototyping and integrating A-NPU within **noisy** high performance processors

3) Reasoning about the **acceptable level of error** at the programming level
Backup Slides
Area Breakdown

<table>
<thead>
<tr>
<th>Sub-circuit</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-NPU</td>
<td></td>
</tr>
<tr>
<td>8x8-bit DAC</td>
<td>3,096 T</td>
</tr>
<tr>
<td>8xResistor Ladder (8-bit weights)</td>
<td>4,096 T + 1 KΩ (≈ 450 T)</td>
</tr>
<tr>
<td>8xDifferential Pair</td>
<td>48 T</td>
</tr>
<tr>
<td>I-to-V Resistors</td>
<td>20 KΩ (≈ 30 T)</td>
</tr>
<tr>
<td>Differential Amplifier</td>
<td>244 T</td>
</tr>
<tr>
<td>8-bit ADC</td>
<td>2,550 T + 1KΩ (≈ 450)</td>
</tr>
<tr>
<td>Total</td>
<td>≈ 10,964 T</td>
</tr>
<tr>
<td>D-NPU</td>
<td></td>
</tr>
<tr>
<td>8x8-bit multiply-adds</td>
<td>≈ 56,000 T</td>
</tr>
<tr>
<td>8-bit Sigmoid lookup table</td>
<td>16,456 T</td>
</tr>
<tr>
<td>Total</td>
<td>≈ 72,456</td>
</tr>
</tbody>
</table>

6.6x fewer transistors in the analog neuron implementation
Power Breakdown

<table>
<thead>
<tr>
<th>Sub-circuit</th>
<th>Percentage of total power</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-NPU</td>
<td></td>
</tr>
<tr>
<td>SRAM-accesses</td>
<td>13%</td>
</tr>
<tr>
<td>DAC-Resistor Ladder-Diff Pair-Sum</td>
<td>54%</td>
</tr>
<tr>
<td>Sigmoid-ADC</td>
<td>33%</td>
</tr>
</tbody>
</table>

Power numbers vary with applications
Applications

Signal Processing
- **fft**
 - 34 x86 instructions
 - 67.4% dynamic instructions
 - 1 → 4 → 4 → 2
 - Error: 4.1%

Compression
- **jpeg**
 - 1,257 x86 instructions
 - 56.3% dynamic instructions
 - 64 → 16 → 8 → 64
 - Error: 8.4%

Robotics
- **inversek2j**
 - 100 x86 instructions
 - 95.9% dynamic instructions
 - 2 → 8 → 2
 - Error: 9.4%

Machine Learning
- **kmeans**
 - 26 x86 instructions
 - 29.7% dynamic instructions
 - 6 → 8 → 4 → 1
 - Error: 7.3%

3D Gaming
- **jmeint**
 - 1,079 x86 instructions
 - 95.1% dynamic instructions
 - 18 → 32 → 8 → 2
 - Error: 19.7%

Image Processing
- **sobel**
 - 88 x86 instructions
 - 57.1% dynamic instructions
 - 9 → 8 → 1
 - Error: 5.2%

Financial
- **blackscholes**
 - 309 x86 instructions
 - 97.2% dynamic instructions
 - 6 → 8 → 8 → 1
 - Error: 10.2%
Speedup with A-NPU over 8-bit D-NPU

3.3× geometric mean speedup
Ranges from 1.8× to 15.2×
Energy savings with A-NPU over 8-bit D-NPU

12.1× geometric mean speedup
Ranges from 3.7× to 82.2×
Dynamic Instruction Reduction

Percentage of Instructions Subsumed

- blackscholes: 100%
- fft: 70%
- inversek2j: 90%
- jmeint: 80%
- jpeg: 60%
- kmeans: 30%
- sobel: 50%
- geometric mean: 66.4%
Speedup with A-NPU acceleration

3.7× geometric mean speedup
Ranges from 0.8× to 24.5×
Energy savings with A-NPU acceleration

Energy savings with A-NPU acceleration:

- blackscholes: $51.2 \times$
- fft: $30.0 \times$
- inversek2j: $17.8 \times$

All benchmarks benefit from A-NPU acceleration:

- jpeg
- kmeans
- sobel
- geomean

6.3× geometric mean energy reduction
All benchmarks benefit