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Virtual Clusters on Cloud 
}  Private cluster on public cloud 

}  Distributed computing platforms 
}  MapReduce [OSDI ’04], Hadoop, Dryad [Eurosys ’07] 

}  New York Times used 100 nodes on Amazon EC2 [OSDI ’08] 

}  Each VM in a virtual cluster has static configuration  

Instance types Configuration 

Small  1 virtual core, 1.7GB memory 

Large 2 virtual cores, 7.5GB memory 

Extra Large 4 virtual cores, 15GB memory 
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e.g.  Amazon EC2 VM instance types 
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Resource Utilization Management 
}  Physical cluster 

}  Load balancing is the only mechanism for higher utilizati
on 

}  Virtual cluster 
}  Dynamic resource management is also possible 

}  With using resource hot-plug technique 
}  Possible resource types: core and memory 

We focus on core hot-plugging in this work 



Dynamic Resource Management 
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Management by Whom? 
}  Requirements 

1.  Current resource utilization monitoring 
2.  Platform-level information 
3.  Privileged permission to hot-plug resource 
4.  Support management for multiple users 

}  Resource management as Platform-as-a-Service (P
aaS) service  
}  Provider offers platform with dynamic resource mana

gement for various users 
}  e.g. Amazon Elastic MapReduce  



MapReduce 
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Data Locality on MapReduce 

}  Disadvantages from low data locality 
1.  Network performance degradation because of netwo

rk bottleneck  
2.  Under-utilization of computing resource 
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Hadoop Fair Scheduler   
}  Hadoop 

}  Open source implementation of MapReduce 

}  Hadoop Fair Scheduler  
}  Generally used scheduler 
}  Guarantee fairness between submitted jobs on Hadoop 
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Main Idea 

}  Approach 
}  Move available resource to a node satisfying data localit

y and assign a task to the node 

Dynamic Resource Reconfiguration 
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Dynamic Resource Reconfiguration 
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1.  A node(source node) does not satisfy data locality 
2.  Master schedule to another node(target node) satisfying 

data locality 
3.  Reconfigure both source and target nodes 
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}  Resource hot-plugging 
}  De-allocation 

}  Giving up and giving back resource to provider 
}  Always possible 

}  Allocation 
}  Taking new resource from provider 
}  Not always possible 

}  Two solutions 
}  Synchronous DRR 
}  Queue-based DRR 

 

Dynamic Resource Reconfiguration 



Synchronous DRR 
}  Headroom 

}  Remained by provider 
}  Idle and available resource 

on each physical machine 
}  Shared by all VMs  

on a physical machine 
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Queue-based DRR 
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1.  Reconfiguration from vm A to vm C 
2.  Reconfiguration from vm D to vm B 
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vm D 
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Queue-based DRR 
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1.  Reconfiguration from vm A to vm C 
2.  Reconfiguration from vm D to vm B 
3.  Reconfigure (vm A, vm B) and (vm C, vm D) 
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Synchronous vs. Queue-based 
}  Synchronous DRR 

}  No waiting time until reconfiguration  
}  Synchronously executed allocation and deallocation  
}  Overall resource under-utilization because of headroom  

}  Queue-based DRR 
}  Realistic and industry-applicable mechanism 
}  Performance degradation if queuing delay is large 



Evaluation 
}  Environment 

}  EC2 cluster: 100 VM instances 
}  8 virtual cores, 7 GB memory (High-CPU Extra Large Instance) 
}  Synchronous DRR only 

}  Private cluster: 30 VMs on 6 physical machines  
}  6 cores, 16GB memory 
}  Synchronous DRR + Queue-based DRR 

}  Workloads 
}  Hive performance benchmark 

}  grep, select,  join,  aggregation,  inverted index 

}  Job schedule 
}  Randomly generated schedule based on the trace of the ind

ustry [Eurosys’10] 

 



Large-scale Evaluation 

}  Overall speedup : 15% 
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Evaluation on the Private Cluster 

}  Overall speedup 
}  Synchronous DRR : 41% 
}  Queue-based DRR : 35% 
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Conclusion 
}  Propose a dynamic VM reconfiguration mechanism

 for distributed data-intensive platforms on virtual
ized cloud environment 

}  Improve the input data locality of a virtual MapRe
duce cluster, by temporarily increasing cores to V
Ms to run local tasks, and it is called Dynamic Res
ource Reconfiguration (DRR) 
 


