Locality-Aware Dynamic VM Reconfiguration on MapReduce Clouds

Jongse Park, Daewoo Lee, Bokyeong Kim, Jaehyuk Huh, Seungryoul Maeng

Virtual Clusters on Cloud

- Private cluster on public cloud
 - Distributed computing platforms
 - MapReduce [OSDI '04], Hadoop, Dryad [Eurosys '07]
 - New York Times used 100 nodes on Amazon EC2 [OSDI '08]
 - Each VM in a virtual cluster has static configuration

e.g. Amazon EC2 VM instance types

Instance types	Configuration
Small	I virtual core, I.7GB memory
Large	2 virtual cores, 7.5GB memory
Extra Large	4 virtual cores, 15GB memory

Resource Utilization Management

Physical cluster

- Load balancing is the only mechanism for higher utilizati on
- Virtual cluster
 - Dynamic resource management is also possible
 - With using resource hot-plug technique
 - Possible resource types: core and memory

We focus on **core** hot-plugging in this work

Dynamic Resource Management

Management by Whom?

Requirements

- I. Current resource utilization monitoring
- 2. Platform-level information
- 3. Privileged permission to hot-plug resource
- 4. Support management for multiple users
- Resource management as Platform-as-a-Service (P aaS) service
 - Provider offers platform with dynamic resource mana gement for various users
 - e.g. Amazon Elastic MapReduce

MapReduce

Data Locality on MapReduce

Disadvantages from low data locality

- I. Network performance degradation because of netwo rk bottleneck
- 2. Under-utilization of computing resource

Hadoop Fair Scheduler

Hadoop

Open source implementation of MapReduce

Hadoop Fair Scheduler

- Generally used scheduler
- Guarantee fairness between submitted jobs on Hadoop

Main Idea

Approach

Move available resource to a node satisfying data localit y and assign a task to the node

Dynamic Resource Reconfiguration

Dynamic Resource Reconfiguration

- I. A node(source node) does not satisfy data locality
- 2. Master schedule to another node(*target node*) satisfying data locality
- 3. Reconfigure both source and target nodes

Dynamic Resource Reconfiguration

- Resource hot-plugging
 - De-allocation
 - Giving up and giving back resource to provider
 - Always possible
 - Allocation
 - Taking new resource from provider
 - Not always possible
- Two solutions
 - Synchronous DRR
 - Queue-based DRR

Synchronous DRR

- Headroom
 - Remained by provider
 - Idle and available resource on each physical machine
 - Shared by all VMs on a physical machine

Queue-based DRR

- I. Reconfiguration from vm A to vm C
- 2. Reconfiguration from vm D to vm B

Queue-based DRR

- I. Reconfiguration from vm A to vm C
- 2. Reconfiguration from vm D to vm B
- 3. Reconfigure (vm A, vm B) and (vm C, vm D)

Synchronous vs. Queue-based

- Synchronous DRR
 - No waiting time until reconfiguration
 - Synchronously executed allocation and deallocation
 - Overall resource under-utilization because of headroom
- Queue-based DRR
 - Realistic and industry-applicable mechanism
 - Performance degradation if queuing delay is large

Evaluation

Environment

EC2 cluster: I00 VM instances

- 8 virtual cores, 7 GB memory (High-CPU Extra Large Instance)
- Synchronous DRR only
- Private cluster: 30 VMs on 6 physical machines
 - 6 cores, I6GB memory
 - Synchronous DRR + Queue-based DRR

Workloads

- Hive performance benchmark
 - ▶ grep, select, join, aggregation, inverted index

Job schedule

Randomly generated schedule based on the trace of the ind ustry [Eurosys'10]

Large-scale Evaluation

(Workloads, # of map tasks)

Speed-up

(Workloads, # of map tasks)

Overall speedup : 15%

Evaluation on the Private Cluster

(Workloads, # of map tasks)

- Overall speedup
 - Synchronous DRR : 41%
 - Queue-based DRR : 35%

Conclusion

Propose a dynamic VM reconfiguration mechanism for distributed data-intensive platforms on virtual ized cloud environment

 Improve the input data locality of a virtual MapRe duce cluster, by temporarily increasing cores to V Ms to run local tasks, and it is called Dynamic Res ource Reconfiguration (DRR)