
Locality-Aware
Dynamic VM Reconfiguration

on MapReduce Clouds

Jongse Park, Daewoo Lee, Bokyeong Kim,
Jaehyuk Huh, Seungryoul Maeng

Virtual Clusters on Cloud
}  Private cluster on public cloud

}  Distributed computing platforms
}  MapReduce [OSDI ’04], Hadoop, Dryad [Eurosys ’07]

}  New York Times used 100 nodes on Amazon EC2 [OSDI ’08]

}  Each VM in a virtual cluster has static configuration

Instance types Configuration

Small 1 virtual core, 1.7GB memory

Large 2 virtual cores, 7.5GB memory

Extra Large 4 virtual cores, 15GB memory

master

virtual cluster

e.g. Amazon EC2 VM instance types

vm vm vm

Resource Utilization Management
}  Physical cluster

}  Load balancing is the only mechanism for higher utilizati
on

}  Virtual cluster
}  Dynamic resource management is also possible

}  With using resource hot-plug technique
}  Possible resource types: core and memory

We focus on core hot-plugging in this work

Dynamic Resource Management
physical cluster virtual cluster

virtual machine

Physical Machine Virtual Machine

Management by Whom?
}  Requirements

1.  Current resource utilization monitoring
2.  Platform-level information
3.  Privileged permission to hot-plug resource
4.  Support management for multiple users

}  Resource management as Platform-as-a-Service (P
aaS) service
}  Provider offers platform with dynamic resource mana

gement for various users
}  e.g. Amazon Elastic MapReduce

MapReduce
master job

task task task task task

Distributed File System disk disk disk disk disk

slave

slave

slave

slave

slave

Data Locality on MapReduce

}  Disadvantages from low data locality
1.  Network performance degradation because of netwo

rk bottleneck
2.  Under-utilization of computing resource

disk

task

disk

task

disk

task

disk

task

Satisfy data locality Does not satisfy data locality

slave

slave

slave

slave

slave 2

slave 1

Hadoop Fair Scheduler
}  Hadoop

}  Open source implementation of MapReduce

}  Hadoop Fair Scheduler
}  Generally used scheduler
}  Guarantee fairness between submitted jobs on Hadoop

master job A

task 1 task 2

job B

Job # Running tasks

job A

job B

2

0

1

task 1

1

Main Idea

}  Approach
}  Move available resource to a node satisfying data localit

y and assign a task to the node

Dynamic Resource Reconfiguration

slave 1

slave 2

Dynamic Resource Reconfiguration
master

task 2

job B

1.  A node(source node) does not satisfy data locality
2.  Master schedule to another node(target node) satisfying

data locality
3.  Reconfigure both source and target nodes

target node

task 1

source node

job A

task 1

}  Resource hot-plugging
}  De-allocation

}  Giving up and giving back resource to provider
}  Always possible

}  Allocation
}  Taking new resource from provider
}  Not always possible

}  Two solutions
}  Synchronous DRR
}  Queue-based DRR

Dynamic Resource Reconfiguration

Synchronous DRR
}  Headroom

}  Remained by provider
}  Idle and available resource

on each physical machine
}  Shared by all VMs

on a physical machine

master

source node

headroom

target node

headroom

physical machine physical machine

slave

slave

Queue-based DRR
master

AQ

DQ

AQ

DQ

1.  Reconfiguration from vm A to vm C
2.  Reconfiguration from vm D to vm B

vm A

vm C vm B

vm D

physical machine physical machine

vm A vm B vm C vm D

Queue-based DRR
master

AQ

DQ

AQ

DQ

1.  Reconfiguration from vm A to vm C
2.  Reconfiguration from vm D to vm B
3.  Reconfigure (vm A, vm B) and (vm C, vm D)

vm A

vm C vm B

vm D

physical machine physical machine

vm B vm C vm D vm A

Synchronous vs. Queue-based
}  Synchronous DRR

}  No waiting time until reconfiguration
}  Synchronously executed allocation and deallocation
}  Overall resource under-utilization because of headroom

}  Queue-based DRR
}  Realistic and industry-applicable mechanism
}  Performance degradation if queuing delay is large

Evaluation
}  Environment

}  EC2 cluster: 100 VM instances
}  8 virtual cores, 7 GB memory (High-CPU Extra Large Instance)
}  Synchronous DRR only

}  Private cluster: 30 VMs on 6 physical machines
}  6 cores, 16GB memory
}  Synchronous DRR + Queue-based DRR

}  Workloads
}  Hive performance benchmark

}  grep, select, join, aggregation, inverted index

}  Job schedule
}  Randomly generated schedule based on the trace of the ind

ustry [Eurosys’10]

Large-scale Evaluation

}  Overall speedup : 15%

0

20

40

60

80

100

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Locality (%) Speed-up

(Workloads, # of map tasks)

Original Hadoop Synchronous DRR

(Workloads, # of map tasks)

Evaluation on the Private Cluster

}  Overall speedup
}  Synchronous DRR : 41%
}  Queue-based DRR : 35%

Locality (%) Speed-up

Original Hadoop Synchronous DRR

0.8

1

1.2

1.4

1.6

Synchronous DRR Queue-based DRR

(Workloads, # of map tasks) (Workloads, # of map tasks)

0

20

40

60

80

100

Queue-based DRR

Conclusion
}  Propose a dynamic VM reconfiguration mechanism

 for distributed data-intensive platforms on virtual
ized cloud environment

}  Improve the input data locality of a virtual MapRe
duce cluster, by temporarily increasing cores to V
Ms to run local tasks, and it is called Dynamic Res
ource Reconfiguration (DRR)

