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Abstract—Recent computational advances enable protein de-
sign pipelines to run end-to-end on GPUs, yet their heterogeneous
computational behaviors remain undercharacterized at the sys-
tem level. We implement and profile a representative pipeline
at both component and full-pipeline granularities across varying
inputs and hyperparameters. Our characterization identifies gen-
erally low GPU utilization and high sensitivity to sequence length
and sampling strategies. We outline future research directions
based on these insights and release an open-source pipeline and
profiling scripts to facilitate further studies.

Index Terms—Protein design, protein engineering, characteri-
zation, bioinformatics

I. INTRODUCTION

ROTEINS are the fundamental molecular machinery driv-

ing biological systems. Recent advances in protein Al
models [1]—[8] have significantly reduced the cost of computa-
tional protein structure prediction, enabling the design of pro-
teins with enhanced or novel functionalities relevant to next-
generation therapeutics, industrial biocatalysts, and biosen-
sors [9]. Protein design pipelines typically involve multiple
stages with distinct computational behaviors and heavy GPU
dependencies, yet their combined system-level performance
implications remain largely unexplored.

We address this gap by systematically profiling a representa-
tive GPU-based protein design pipeline at both component and
pipeline granularities, examining performance sensitivity to se-
quence length, hyperparameters, and sampling strategies. Our
study investigates GPU utilization patterns and the impacts of
GPU scheduling under co-location scenarios. We also outline
directions for future research, including developing cost-aware
metrics, scaling to multi-GPU environments, and exploring
agent-assisted orchestration. To foster reproducibility and ac-
celerate future studies, we release our pipeline and profiling
tools as open-source software.

II. BACKGROUND AND MOTIVATION

A. Proteins and In Silico Screening

Protein engineering. The diversity of protein function arises
from their three-dimensional structures encoded by amino acid
sequences. Changing the order and composition of amino acids
can therefore alter a protein’s function. Historically, discovery
and optimization heavily relied on physical screening and
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Fig. 1. Four major stages of a protein-design pipeline.

structural characterization, which are costly and slow, limiting
exploration of the protein design space.

Al-driven in silico screening. Recent advancements in Al
have transformed this workflow by providing reliable structural
and functional predictions at scale. With these models, the
marginal cost of evaluating designs computationally is sig-
nificantly lower compared to traditional wet-lab experiments.
Consequently, design cycles that previously took months now
require only hours using modest GPU clusters, paving the way
for a new paradigm of rapid, in silico screening.
High-throughput screening. This paradigm involves rapidly
evaluating extensive virtual libraries of protein candidates.
Early computational filters assess candidates based on func-
tionality, manufacturability, and stability, eliminating unsuit-
able designs early. The remaining high-priority candidates
receive focused experimental attention, advancing only the
strongest designs to physical validation. Under such condi-
tions, high-throughput in silico screening becomes critical.
Large batches increase the exploration of the design space and
enhance the probability of identifying superior candidates [[10].

B. Workflow of Protein Design

Protein design workflows vary depending on the specific ob-
jectives and are assembled from interchangeable components.
Nonetheless, they commonly follow a four-stage pattern, as
depicted in Figure [T}

@ Structure generation. Structure generation proposes en-
gineered protein structures satisfying geometric or functional
constraints, using models such as RFdiffusion [2]. Structures
can be designed from scratch or derived from a known scaffold
protein, often specifying target ligands for optimization.

@ Sequence design. Sequence design generates amino acid
sequences that match the given structures, using inverse fold-
ing models such as ProteinMPNN [3]. Protein language mod-
els, including ESM-2 [4]], further refine and explore sequences.
© Structure prediction. Structure prediction folds sequences
back into three-dimensional structures with predictors like
AlphaFold 3 [1]], ESMFold [4]], and Protenix [|6]. Most models
other than ESMFold require evolutionary context, performing
homology searches and sequence alignments via MMseqs2 [3].
@ Validation. Evaluation estimates key properties, such as
binding affinity and structural stability, by forming docked
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TABLE I
SELECTED SCAFFOLDS AND LIGANDS. WE REPORT PDB IDS WITH
LENGTHS: AMINO ACID RESIDUES (AA) AND HEAVY ATOMS (HA).

TABLE II
COMPONENTS AND HYPERPARAMETERS. THR./BAL./ACC. DENOTE
THROUGHPUT-OPTIMIZED, BALANCED, AND ACCURACY-ORIENTED.

Short Medium Long
Scaffold ID (AA) 1SHG (62) 1INOR (126) 1TIM (247)
Ligand ID (HA) 3DX1 (9) 4DEI (23)  3PRS (50)

complexes and applying scoring methods like AutoDock Vina
and DiffDock [7]], [[11]], [12]. For comprehensive context and
tool comparisons, refer to a recent survey [13]].

C. Heterogeneity across Components

Diverse workloads. Components employ varied model archi-
tectures and kernels, ranging from Diffusion [1f], [2], 6], [7],
Transformers [1]], [4]], [|6], graph neural networks [3], custom
GPU kernels for sequence alignment [5]], and scoring method-
ologies [12]. This architectural diversity results in distinct
computational patterns, activation footprints, and kernel behav-
iors. Inputs and hyperparameters further amplify this diversity.
Some components are sensitive to sequence length, and several
expose adjustable hyperparameters balancing throughput and
accuracy, such as diffusion step counts.

Need for characterization. These insights motivate two
complementary analyses. Initially, we characterize individual
components across various inputs and hyperparameters. Sub-
sequently, we evaluate the complete end-to-end pipeline per-
formance on shared GPUs, analyzing scheduling interactions
and performance implications at the system level.

III. PROTEIN DESIGN PIPELINE
A. Protein Engineering Scenario

We illustrate a protein engineering scenario wherein a sta-
ble, well-characterized scaffold protein is modified to engage
a specific small-molecule target ligand.

Protein and ligand pairs. We select four protein scaffolds
and three ligands to represent a diverse range of sequence
lengths and complexities, as detailed in Table [, For protein
scaffolds, we use well-established structures spanning short to
long sequences. For ligands, we sample three molecules from
the CASF-2016 [14]] dataset, choosing examples at the 1st,
50th, and 99th percentiles by length.

Components and hyperparameters. We select widely
adopted models for each pipeline component to reflect current
industry standards, as outlined in Section

Regarding hyperparameters, we establish three configura-
tions: throughput-optimized, balanced, and accuracy-oriented.
The balanced configuration aligns with default settings from
reference implementations whenever possible, while the other
configurations adjust computational resources to balance
throughput and quality. Table |lIf summarizes these hyperpa-
rameters for each component.

Scope and limitations. This synthetic scenario aims to charac-
terize system performance comprehensively. It captures size-
driven impacts and heterogeneity across pipeline components,
spanning representative computational conditions under con-
trolled variations in protein and ligand sizes. However, it does

Component Hyperparameter Thr. Bal.  Acc.
RFdiffusion num_steps 20 50 100
ProteinMPNN - - - -
ESM-2 model_size 150M 650M 3B
MMseqs2 max_iterations - 3 5
Protenix num_steps 100 200 300
Protenix num_cycles 2 4 8
ESMFold num_cycles 2 4 8
AlphaFold3 num_steps 100 200 300
AlphaFold3 num_cycles 5 10 15
DiffDock num_steps 10 20 30
Vina-CPU exhaustiveness 4 8 16
Vina-GPU - - - -

not evaluate biochemical compatibility or the experimental
viability of specific scaffold-ligand pairs.

B. Implementation Details

Software setup. Each component is containerized with Docker
to ensure reproducibility and portability. Pipeline workflows
are orchestrated using Nextflow [15]], a widely adopted bioin-
formatics workflow manager. Tasks are scheduled through
Kubernetes, augmented by the Alibaba GPUShare plugin,
which exposes GPU memory as a schedulable resource to
prevent out-of-memory errors during concurrent operations.
Empirically, we observe negligible performance impact from
these orchestration layers given our workload characteristics.
The software stack comprises Ubuntu 22.04, Nextflow 25.04,
Docker 28.1, and Kubernetes 1.33.

Hardware setup. Experiments are conducted on a server
equipped with one RTX 3090 GPU, two Intel Xeon Gold 6326
CPUs, 256 GB DRAM, and 4 TB PCle Gen 4 NVMe SSD.

IV. PERFORMANCE CHARACTERIZATION
A. Component-Level Observations

Figure [2] profiles individual components of the protein-

design pipeline across three operating points and nine scaf-
fold-ligand pairs spanning different sequence lengths. We
measure wall-clock time, temporal utilization, and peak de-
vice memory usage via the NVIDIA Management Library
(NVML). To evaluate spatial utilization, we first aggregate
kernels accounting for at least 90% of the execution time using
Nsight Systems, then calculate the runtime-weighted average
SM occupancy with Nsight Compute.
Inputs and hyperparameters. Input length significantly in-
fluences runtime across components. RFdiffusion exhibits a
particularly sharp increase, with runtime scaling up to 5.1 x
when scaffold length expands from 1SHG to 1TIM. Other
components experience noticeable but smaller runtime in-
creases. MMseqs2 shows variable runtime spikes driven by
factors beyond sequence length alone, including database in-
teractions. Hyperparameter adjustments consistently influence
runtime, although input length generally has a more substantial
effect. Accuracy-oriented configurations extend execution time
compared to throughput-oriented settings.
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Fig. 2. Profiling of individual pipeline components across varying inputs and hyperparameters. Vina-CPU does not utilize GPU resources. Vina-GPU is
implemented using OpenCL, which does not support spatial profiling; thus, only temporal utilization is reported.

GPU utilization. Temporal GPU utilization varies signifi-
cantly across components. RFdiffusion and Vina-GPU achieve
relatively high utilization. MMseqs2 shows moderate utiliza-
tion around 26%. Vina-GPU utilization notably improves for
larger ligands, reaching 70 to 91%. RFdiffusion similarly
achieves higher utilization with longer sequences. ESMFold,
Protenix, and AlphaFold 3 occasionally reach moderate utiliza-
tion with larger inputs, yet low utilization dominates overall.
Spatial utilization is generally modest, predominantly clus-
tering between 24% and 38%. Notable exceptions include
ESMFold’s large input scenario, which reaches approximately
54%, and MMseqs2, consistently higher at 61 to 63%. Exper-
iments conducted on an RTX 3090 suggest the model sizes
and execution parameters do not fully leverage the GPU’s
computational capacity, indicating room for optimization.
Peak GPU memory. Peak GPU memory usage remains con-
sistently below device limits of 24 GB, except for MMseqs2,
suggesting ample headroom for co-locating multiple processes.

B. Pipeline-Level Observations

We extend our analysis from isolated components to entire
end-to-end pipelines, using the balanced configuration with
medium-length scaffolds and ligands. For the structure pre-
diction stage, we select Protenix, and for the validation stage,
we use Vina-GPU.

Sampling for exploration. Several components offer sam-
pling hyperparameters that expand the search space. RFdif-
fusion can produce multiple backbone structures per prompt,
ProteinMPNN can generate multiple sequences per backbone,
ESM models propose sequence variants, AlphaFold-style pre-
dictors return multiple structural candidates, and AutoDock
evaluates several docking poses. When an upstream compo-
nent outputs multiple candidates, these propagate downstream.

To illustrate the impact of sampling, we experiment with a
uniform sampling configuration, setting sampling counts to 1,
2, or 3 for all components supporting sampling, producing
1, 16, and 81 samples, respectively. Figure [3] shows the
normalized runtime breakdown for each case. With a single
sample per component, the total runtime aligns with the sum
of component-level runtimes shown in Figure 2] Reusing
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Fig. 3. Normalized runtime of pipeline components across varied sampling.

common outputs from early stages significantly improves
exploration throughput, reducing per-sample latency from 4.32
minutes (uniform-1) to 1.18 minutes (uniform-2) and further
down to 0.83 minutes (uniform-3). As sample counts increase,
runtime shifts towards downstream components, reflecting
multiplicative workload expansion.

GPU co-location. Figure Eka) and (b) illustrate GPU tem-
poral utilization with and without co-location on a single
GPU, for uniform sampling counts of two and three, re-
spectively. Co-location, in which multiple processes timeshare
GPU resources, enhances temporal utilization and throughput,
reducing overall execution time. This benefit grows with
higher sampling counts, providing greater scheduling flexibil-
ity. Specifically, co-location decreases latency by 11.9% for
uniform-2 sampling and by 27.7% for uniform-3 sampling.
Later-stage components particularly benefit from co-location
due to their lower peak memory requirements, allowing more
concurrent executions.

Multi-GPU scaling. Figures [[c) and (d) evaluate scaling to
multiple GPUs using higher uniform sampling counts of four
and five with co-location enabled. In early stages, limited
sample availability causes low mean temporal utilization as
many GPUs remain idle. Utilization gradually improves over
time as more samples become available. At current uniform
sampling levels, GPUs remain generally underutilized, re-
sulting in weak scaling efficiency. Higher sampling counts
lead to stronger scaling improvements. For example, scaling
from one to two GPUs reduces latency by up to 42.8%
with uniform-5 sampling but shows less improvement with
uniform-4 sampling. Scaling efficiency noticeably declines at
three and four GPUs with latency reductions reaching only
47.6% and 50.2%, respectively. Improving GPU utilization
early in execution and achieving consistent scaling across
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Fig. 4. GPU temporal utilization over execution time.

multiple GPUs are key considerations for future work.

V. FUTURE DIRECTIONS

Compute-cost analysis. Selecting among model families and
hyperparameters shifts the Pareto frontier between accuracy
and throughput. Choices like substituting larger ESM variants,
using ESMFold or Protenix over alternative predictors, or
altering docking seed policies impact both quality and run-
time. Early exploration might prioritize rapid approximations,
increasing fidelity later. Current measurements, however, are
input-dependent, complicating comparisons across studies. We
propose standardized metrics such as per-sample latency or
energy per accepted candidate at defined quality thresholds.
Large-scale setups. Scaling pipelines introduces complexities
as increased sampling or tasks like multimer predictions
greatly expand computational demands. Deploying at scale
with multiple GPUs raises challenges in resource placement
and scheduling. Future work should examine packing strate-
gies considering compute and memory jointly and enabling
multi-GPU scheduling. Additional resources like CPU and
storage may gain importance. Investigating interactions be-
tween partitioning methods (e.g., MIG, MPS) and length-
bucketing strategies to reduce fragmentation is essential.

Agentic LLMs. Expanding candidate sets intensify the bottle-
neck of human oversight. Agentic language models (LLMs)
can rank candidates, allocate computational resources adap-
tively, and justify decisions like escalation or early stopping.
The Coscientist [16]], demonstrating agent-driven scientific
discovery, highlights similar orchestration roles in protein-
design pipelines. Integrating LLMs as a new computational
component necessitates analyzing their scheduling strategies,
resource management policies, and computational behaviors
within the existing pipeline infrastructure.

VI. RELATED WORK

To our knowledge, system-level characterizations that pro-
file the full protein design pipeline under realistic co-location
are still limited. At the component level, most works are
centered around structure prediction, including characteriza-
tion [17], system-level optimization for inference [8] and
training [[18]], and an ASIC design [[19] to support longer
sequences. Homology search has also seen substantial GPU
acceleration [5]. Our study complements these efforts by
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emphasizing end-to-end behavior, resource sharing, and uti-
lization patterns in complete pipelines.

VII. CONCLUSION

We present a reproducible GPU-centric characterization
of protein-design pipelines, highlighting computational het-
erogeneity and GPU underutilization. Our findings empha-
size GPU-aware resource management, cost-aware evaluation
metrics, and scalability analyses in multi-GPU setups. By
releasing open-source artifacts, we support future comparable
studies and practical pipeline optimizations.
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