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Abstract
Modern Large Language Model (LLM) serving system batches mul-
tiple requests to achieve high throughput, while batching attention
operations is challenging, rendering memory bandwidth a criti-
cal bottleneck. Today, to mitigate this issue, the community relies
on high-end GPUs with multiple high-bandwidth memory (HBM)
channels. Unfortunately, HBM’s high bandwidth often comes at the
expense of limited memory capacity, necessitating systems to scale,
which reduces core utilization and increases costs. Moreover, recent
advancements enabling longer contexts for LLMs have substantially
increased the key-value (KV) cache size, further intensifying the
pressures on memory capacity. To lower the pressure, the literature
has explored KV cache quantization techniques, which commonly
use low bitwidth (e.g., INT4) for most values, selectively using
higher bitwidth (e.g., FP16) for outlier values. While this approach
helps achieve high accuracy and low bitwidth simultaneously, it
comes with the limitation that the cost for online outlier detection
is excessively high, negating the advantages of quantization.

Inspired by these insights, we propose Oaken, an acceleration
solution that achieves high accuracy and high performance simul-
taneously through co-designing algorithm and hardware. To ef-
fectively find a sweet spot in the accuracy-performance trade-off
space of KV cache quantization, Oaken employs an online-offline
hybrid approach, setting outlier thresholds offline, which are then
used to determine the quantization scale online. To translate the
proposed algorithmic technique into tangible performance gains,
Oaken also comes with custom quantization/dequantization en-
gines and memory management units that can be integrated with
any LLM accelerators. We built an Oaken accelerator on top of
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an LLM accelerator, LPU, and conducted a comprehensive evalu-
ation. Our experiments show that for a batch size of 256, Oaken
achieves up to 1.58× throughput improvement over NVIDIA A100
GPU, incurring a minimal accuracy loss of only 0.54% on average,
compared to state-of-the-art KV cache quantization techniques.

CCS Concepts
• Computer systems organization → Neural networks; Multi-
core architectures; • Computing methodologies→ Neural net-
works.

Keywords
Accelerator; Large Language Models (LLM); Serving; Batched Infer-
ence; Quantization; Key-Value (KV) Cache

ACM Reference Format:
Minsu Kim, Seongmin Hong, RyeoWook Ko, Soongyu Choi, Hunjong Lee,
Junsoo Kim, Joo-Young Kim, and Jongse Park. 2025. Oaken: Fast and Ef-
ficient LLM Serving with Online-Offline Hybrid KV Cache Quantization.
In Proceedings of the 52nd Annual International Symposium on Computer
Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3695053.3731019

1 Introduction
The recent advent of large language models (LLMs) has signifi-
cantly impacted the computing industry. Almost every sector of the
modern economy is exploring the adoption of LLMs, with many al-
ready actively using them for various applications. Most real-world
applications rely on hyperscaler-provided LLM serving systems
because on-premise LLM deployment requires prohibitive costs.

As LLM inferencing is for multi-tenant environments, the serv-
ing systems batch multiple requests to parallelize the inference
computation [12, 14, 32, 36, 50, 64, 77]. While batching promises a
significant throughput boost for operations where operandmatrices
can be shared across requests on GPUs and other AI accelerators,
attention layers in transformer-based LLMs consist of un-batchable
operations with request-specific, un-shareable operands, lowering
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Figure 1: Existing solutions for LLM inference serving sys-
tems plotted on the bandwidth-capacity trade-off space. The
“effective bandwidth” and “effective capacity” represent the
scale of data that can be transmitted to/from and stored on
memory, respectively. We also delineate their corresponding
throughput (i.e., tokens/sec) using the colors presented on a
1D heatmap on the right side.

hardware utilization. As the un-batchable operations cannot exploit
on-chip data reuse, they produce enormous memory read, causing
memory bandwidth to become the key system bottleneck.

Additionally, request batching in LLM inference has another
resource implication. LLMs generate key-value activation and cache
them in memory for computation reuse, often called KV cache. As
this KV cache is not shared across different user requests, the large
batch size is directly translated into a large KV cache size, requiring
massivememory capacity. Furthermore, as KV cache size scales
linearly with the sequence length, the recent trend of supporting
very long sequences (e.g., 2 million tokens [76]) places even greater
pressure on memory capacity.

Consequently, LLM serving systems require both high bandwidth
and high capacity to enable fast inferencing. This resource demand
aligns with the immense user demand for LLM services, making
it challenging for service providers to build cost-effective LLM
serving systems. Existing solutions often choose to trade-off one
resource for the other, as visualized in Figure 1. Below, we classify
the existing solutions into the following three categories:
(1) Prioritizing bandwidth over capacity:Currently, usingHBM-

equipped GPUs is the de-facto standard solution for LLM in-
ference processing [28, 45, 49]. While this approach achieves
massive bandwidth, it often compromises capacity, forcing sys-
tems to scale out, which not only reduces core utilization but
also increases the cost of building the system.

(2) Leveraging PIM and/or PNM: Even with HBMs, LLM infer-
encing systems still face bandwidth bottlenecks. To address this
challenge, recent works have explored the near-data processing
(NDP) paradigm, leveraging PIM [20, 52, 59] and/or PNM [53].
While these approaches mitigate the bandwidth bottleneck,
their inherent nature requires further reductions in memory
capacity, limiting their viability as a fundamental solution.

(3) Exploring LLM quantization strategies: One fundamental
strategy for jointly addressing the conflicting objectives is to
minimize the memory footprint required for LLM inferencing.
To achieve this goal, a large body of prior work [10, 17, 22,

30, 31, 33, 40, 41, 43, 75, 78, 79, 86] have recently developed
LLM-targeted quantization techniques. While these techniques
successfully achieve significant reductions in bitwidth, they
often prioritize minimizing bitwidth over effectively translating
these reductions into practical inferencing speedups.
Alone, none of the solutions is sufficient for building fast and effi-

cient LLM serving systems, which motivates us to develop an accel-
eration solution, namely Oaken. By jointly leveraging algorithmic
and hardware techniques, Oaken achieves otherwise unattainable
levels of effective bandwidth and capacity, resulting in substantially
higher throughput than alternatives, as shown in Figure 1. Oaken
comprises (1) Algorithmic technique: an online-offline hybrid
KV cache quantization technique, and (2) Hardware technique:
the hardware incarnations of the proposed algorithms, including
quantization/dequantization engines and memory management
units that can be integrated with any existing LLM accelerators.
Oaken makes the following contributions:
(1) Online-offline hybrid KV cache quantization: Many of the

recently-proposed KV cache quantization techniques commonly
use low bitwidth (e.g., INT4) for most values, while selectively
using higher bitwidth (e.g., FP16) for outlier values [15, 19, 22,
33, 80, 86]. While this approach achieves high accuracy and
low bitwidth, the prohibitively high cost of online threshold
calculation or mixed-precision computation renders it nearly
impractical for real-world use cases. Thus, there is a critical
need for a cost-effective solution to identify thresholds that
distinguish outliers from inliers, enabling the translation of
KV cache quantization into tangible speedups. To achieve this
goal, Oaken employs an online-offline hybrid approach, where
data-agnostic outlier thresholds are determined at offline and
subsequently applied to set the quantization scale at online.
Furthermore, Oaken introduces a quantization loss mitigation
technique that shifts values toward a smaller range, converting
outliers into inliers prior to quantization. Finally, Oaken stores
the quantized values by using dense tensors for inliers and
fusing sparse outliers into the dense tensors.

(2) Quantization-aware hardware modules for LLM accelera-
tors: We devise custom quantization/dequantization engines
and memory management units, which are aware of the pro-
posed quantization algorithm. These hardware modules can be
integrated with any existing LLM accelerators such as GPUs,
NPUs, and LLM-customized ones [21, 23, 53, 82]. We place these
modules in the DMA unit that is commonly present in modern
LLM accelerators. In designing the memory management unit
(MMU), the challenge is to achieve the maximal bandwidth,
which is close to the physical limit, while effectively laying
out the dense and sparse matrices in memory. We design the
MMU with two management tables for dense and sparse data,
respectively, to handle virtual-to-physical address mappings
and manage the single address space at page granularity. This
design maximizes memory bandwidth utilization while avoid-
ing fragmentation and burst order issues.
To evaluate the effectiveness of Oaken, we use eight differ-

ent LLMs that include OPT [84], Llama2 [66], Mistral [25], and
Mixtral [26], with varying sizes. We use Wikitext, PIQA, Wino-
grande, and Hellaswag datasets, which are widely used in prior
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Figure 2: (a) Structure of LLM inference and decoder layer during the prefill and generation phases. (b) Operations in the
multi-head attention layer, including activation-weight and activation-activation operations, during the generation phase of
batched inference for three requests.

works [11, 22, 31, 33, 37, 41, 73, 86, 87]. We synthesize the Sys-
temVerilog RTL code of our accelerator in TSMC 28nm technology
using Synopsys Design Compiler, which offers the area information
of each component in the accelerator. Our experimental results
report that compared to NVIDIA A100 using state-of-the-art KV
cache quantization techniques, Oaken offers up to 1.58× through-
put speedup, owing to the bitwidth reduction that reaches up to
70.0%. We achieve this speedup by only introducing a modest 0.87%
accuracy degradation, which demonstrates the algorithmic robust-
ness of our KV cache quantization technique. Furthermore, Oaken
modules incur only 8.21% area overhead, which is negligible given
the significant performance benefits they enable. These advantages
demonstrate that Oaken achieves the dual objectives of bandwidth
and capacity, representing an important step toward building fast
and cost-effective LLM inference serving systems.

2 Background
2.1 A Primer on LLM Inference
As illustrated in Figure 2(a), inference of large language model is
mainly divided into two phases: the prefill phase and the generation
phase [4, 8, 25, 66, 84]. The prefill phase takes input tokens and
passes them through decoder layers to generate a single output
token. In the generation phase, the token generated in the previ-
ous iteration is used to produce the next token. This process is
autoregressive, with each iteration generating one token.

LLMs typically consist of multiple decoder layers, with multi-
head attention being one of the key operations. As visualized in
Figure 2(b), the multi-head attention begins with generating the
query, key, and value activations. The key and value are buffered in
the on-chip memory for subsequent operations and are also stored
as KV cache in the off-chip memory for future iterations. The query
is then multiplied with the transposed key, which is directly fetched
from the on-chip memory during the prefill phase, while it is loaded
from the off-chip KV cache during the generation phase. Similarly,
subsequent computation using the value requires access to either
on-chip memory or the KV cache in the same manner as the key.

2.2 Batching for High-Throughput LLM
Inference

Batching is a commonly used method to enhance inference through-
put in LLM serving systems [1, 20, 32, 64, 77]. It entails processing
multiple requests simultaneously and boosts inference throughput
by converting memory-bound operations into compute-bound ones
through on-chip data reuse. For instance, in the feed-forward net-
work, weights read from memory can be reused across multiple
requests, reducing memory access and increasing throughput.

Figure 2(b) depicts the two types of operations that comprises the
multi-head attention layer. In activation-weight operations, includ-
ing Generate QKV and Projection, the activations of the requests
share the same weights. This enables on-chip data reuse, reduc-
ing memory access and execution time. However, in activation-
activation operations, where the query is multiplied by the trans-
posed key or the score is multiplied by the value, each request
requires distinct keys or values, making batched processing chal-
lenging. As a result, batching fails to reduce memory accesses in
this case, providing no performance benefits in terms of latency.

2.3 LLM Quantization
Recently, as demands for LLM inference ever-increasing memory
capacity, the community has explored solutions to mitigate this
demand through quantization techniques that reduce the bit pre-
cision of weights or activations. Many of these studies focus on
easing the memory pressure caused by model weights, which is
particularly effective for accelerating small-batch inference [17,
30, 40, 42, 60, 69, 70, 78]. However, these methods achieve limited
speedup for larger batches and long sequence lengths due to the KV
cache, whose size scales with the batch size and sequence length.
Approaches to quantize both weights and activations also face simi-
lar limitations [15, 34, 64, 71]. To this end, researchers have recently
started directing their attention to KV cache quantization. Some of
these works propose quantizing the keys and values of the atten-
tion layers on a per-vector basis [22, 41, 43], while others propose
quantizing the KV cache into multiple vector groups of similar
magnitudes, applying channel reordering technique [5, 35, 39, 86].
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Figure 3: Characteristic analysis of LLM inference for (a) sin-
gle request and (b) batched multiple requests. (c) Utilization
measurement during the generation phase with batchedmul-
tiple requests using NVIDIA A100 GPU.

3 Motivation
This paper focuses on effectively utilizing batched LLM inference
to enhance throughput. To accomplish this, we thoroughly analyze
the characteristics of LLM inference, particularly comparing the
un-batched and batched execution in this section.

3.1 Characterization of Batched LLM Inference
Single-instance inferencing.Weanalyze the bottlenecks of batched
inference by examining accelerator core utilization in both single
and batched request scenarios. Figure 3(a) shows the difference in
core utilization between the prefill and generation phases when
processing a single request. During the prefill phase, multiple cores
are utilized to process multiple input tokens in a parallelized man-
ner. However, the generation phase processes only one token from
the previous iteration, making it highly sequential process that
limits parallelization. Therefore, the accelerator can utilize only a
few cores, resulting in high latency in generating all output tokens.
Batched inferencing. Figure 3(b) illustrates core utilization for
batched inference. Similar to the single-request scenario, the prefill
phase for batched requests is also parallelizable across multiple
cores, resulting in high core utilization. However, the generation
phase when processing batched requests still shows underutiliza-
tion, engendering even longer latency due to bandwidth contention.
This is because key-value from attention layers cannot be batched
and shared across requests, and the accelerator utilizes a limited
number of cores per request. Figure 3(c) shows GPU core utilization
during the generation phase of Llama2-13B model on an NVIDIA
A100 GPU, indicating that underutilization primarily arises from
the multi-head attention operations.
Batching: the double-edged solution.A straightforward solution
to this issue is to increase the batch size to fully utilize all the cores,
but this introduces a new challenge. The key-value size required for
attention operations is proportional to the batch size. However, as
the batch size increases, the memory footprint due to the KV cache
also grows, resulting in longer operation latency which is bounded
by memory bandwidth. Recent techniques, such as grouped and
multi-query attentions, reduce the memory overhead by shrinking
the KV cache size but cannot fully address this issue [3, 61].

Our analysis suggests the two key observations:
(1) While the prefill phase fully utilizes the compute resources, the

generation phase often fails to do so. This imbalance offers an
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LPDDRmemory when using (a) Llama2-13B and (b) OPT-30B
(OOM refers to “Out-of-Memory.”). (c) Accelerator specifica-
tion with HBM and LPDDR memory.

opportunity to enhance throughput with a larger batch size,
while it also increases the demand formemory capacity due
to the KV cache, driving up system construction costs.

(2) The increased KV cache size due to the aggressive batched
processing also causes a high demand formemory bandwidth
to efficiently compute attention operations, delaying the entire
generation phase during batched inference.

3.2 Trade-off between Bandwidth and Capacity
While LLM serving demands both high bandwidth and large ca-
pacity, memory technologies exhibit a trade-off between these two
resources. High-bandwidth memory (HBM) sacrifices a substantial
portion of capacity to deliver exceptional bandwidth, whereas Low-
Power Double Data Rate (LPDDR) DRAM occupies the opposite
end of the trade-off space. Motivated by these observations and
insights, we conduct preliminary studies to better understand the
performance implications of these conflicting resources on LLM
inferencing throughput.

Figure 4(a) and (b) present throughput comparison results for
Llama2-13B and OPT-30B models using two accelerator variants
with different memory types. We set both the input and output
sequence length to 1K and use an existing LLM-customized acceler-
ator [48]. Figure 4(c) lists the specifications of the two accelerators
evaluated. For the smaller LLM model, both accelerators achieve
sublinearly-scaling throughput as the batch size increases, with the
HBM-based accelerator achieving the highest performance due to
its superior bandwidth. However, for larger LLM models and batch
sizes, scaling challenges become evident for the HBM-based accel-
erator. In contrast, the LPDDR-based accelerator can accommodate
larger batches, demonstrating the best performance.
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To summarize, while high memory bandwidth is crucial for
achieving high throughput, sufficient memory capacity is also es-
sential to efficiently serve LLMs, particularly with larger models and
batches. Several recent studies also emphasize the importance of
memory capacity in LLM inference and suggest introducing large-
capacity memory into the LLM accelerators [53, 83]. Despite the
industry’s growing demand for large-scale LLM inference, current
memory technologies struggle to meet both capacity and bandwidth
requirements, necessitating a choice. We explore this trade-off by
evaluating our solution, equipped with either LPDDR or HBMmem-
ory, across various batched inference scenarios.

3.3 KV Cache Quantization
Leveraging the memory that offers either sufficient bandwidth or
capacity, combined with scaling out the system, can help address
the bottlenecks in batched inference. However, this approach incurs
substantial system-building costs and severe resource underutiliza-
tion, making it neither a fundamental nor a sustainable solution.
Algorithmic approach to the memory wall. To tackle the mem-
ory wall challenge, the community has explored algorithmic ap-
proaches to reduce the demands on both conflicting resources fun-
damentally. Quantization is one such direction, widely recognized
for its ability to alleviate both capacity and bandwidth bottlenecks
simultaneously. As discussed in Section 2.3, many efforts focus on
weight quantization and reducing the computation workload to
accelerate LLM inference [15, 17, 33, 51, 71, 78]. However, our ex-
perimental results show that weight-only quantization has a limited
impact on addressing the memory wall in the batched scenarios.
Limitations ofweight-only quantization techniques. Figure 5(a)
illustrates the memory capacity requirements for model weights
and KV cache as batch size increases. While the memory usage
for weights remains constant, the KV cache size grows, eventu-
ally dominating the entire device memory. Figure 5(b) compares
the performance between 4-bit weight quantization and 4-bit KV
cache quantization. The result shows a minimal performance im-
provement from weight quantization, showing its ineffectiveness in
addressing the memory wall for batched LLM inference. However,
KV cache quantization delivers larger performance gains, demon-
strating its effectiveness in relieving memory pressure.

Limitations of existing KV cache quantization solutions. Re-
cently, a large body of prior works has explored the KV cache quanti-
zation methods [5, 35, 41, 43, 86]. While these works have pioneered
a novel research direction, they are constrained by substantial run-
time overhead to enable quantization, compromises in accuracy
for faster quantization, or a combination of both. QServe [41] and
Atom [86] reorder key-value channels by applying the transfor-
mationmatrix adopted in RPTQ [78], while QServe also handles out-
liers by applying the scalingmatrix introduced by SmoothQuant [71].
Tender [35] performs channel reordering via indirect indexing and
groups key-value channels with similar magnitude. These solutions
have a limitation in that they come with accuracy degradation due
to their low quantization granularity and suffer from additional run-
time overhead of channel reordering. KIVI [43] and KVQuant [22]
propose to use per-vector mixed-precision quantization based on
the insight that each KV channel exhibits a distinct pattern in the
magnitude of its values. These methods minimize accuracy loss by
isolating outlier channels from the rest, but they incur substantial
overhead from sorting operations or mixed-precision computations,
which largely offsets the performance gains of quantization.

These limitations in existing solutions emphasize the need for
a KV cache quantization technique that achieves low bitwidth
without compromising accuracy. Furthermore, such low bitwidth
must translate into tangible throughput improvements at the hard-
ware level. To meet these demanding requirements, we propose an
algorithm-hardware co-designed acceleration solution for efficient
batched LLM inference, Oaken.

4 Oaken’s KV Quantization Algorithm
Our quantization algorithm is driven by three primary empirical
properties we obtain from observing the value distribution of the KV
cache during LLM inference. Building upon the three observed prop-
erties, we incorporate three algorithmic techniques into Oaken’s
KV cache quantization. Below, we will first discuss the empirical
analysis results for KV cache distribution and then describe the
three techniques one by one.

4.1 Observations in KV Distribution
Existing LLM quantization methods often suggest that dealing with
large values has a significant impact on model accuracy [15, 19,
22, 33, 71, 80, 86]. Moreover, other prior works suggest that small
values near zero can vanish due to underflow during quantization,
leading to larger error [2, 13, 27, 34]. These observations underscore
the importance of analyzing the distribution and characteristics of
the quantization targets. We examine the value distribution of the
KV cache across several LLMs and datasets and derive key insights
for designing effective quantization techniques.
Observation 1. Figure 6(a) presents the minimum and maximum
range of KV cache values for each decoder layer across various
LLMs using the Wikitext2 dataset. Notably, the magnitude of keys
and values varies across models and among decoder layers within
each model. These variations are distinctive properties of each
model and decoder layer, driven by differences in their model
weights. From this observation, we gain the insight that the quanti-
zation factor should be determined separately for each model and
its individual decoder layers.
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Observation 2. Figure 6(b) shows the minimum and maximum
range of KV values when using Llama2-7B model with Wikitext2,
PIQA, and Hellaswag datasets. We see that the range of KV cache
values remains consistent across these datasets. This observation
implies there is no need for the quantization factor to be tailored to
the input sequences but only a global quantization factor per layer.
Observation 3. Prior works have identified a pattern in the mag-
nitude of channel within the KV cache and proposed a per-vector
or per-vector-group quantization technique to leverage this pat-
tern [22, 41, 43, 86]. Figure 6(c) presents the distribution of the
top 4% values of the key from the sixth layer of the Llama2-7B
and OPT-6.7B models. The distributions exhibit multiple vertical
lines, indicating that high-magnitude values are concentrated in
specific channels. This pattern in the channel magnitudes, aligning
with previous observations, suggests the need for per-vector or
per-vector-group quantization. However, this result also reveals
exceptions to this pattern, appearing as discontinuous lines and
dots, which cause an accuracy drop when using only a single quan-
tization scale per vector or vector group. Based on this observation,
we introduce multiple quantization groups within a channel to
maintain accuracy, splitting the key-value vector into groups based
on the magnitude of each element.

In summary, we derive the following three insights for design-
ing Oaken’s quantization technique:

• Oaken should determine the quantization factor separately
for each model and decoder layer.

• Oaken can employ a common scaling factor regardless of
input prompts, showing its insensitivity to data patterns.

• Oaken should use multiple quantization groups segmented
by the magnitude of the values within each vector.

4.2 Algorithm Overview
We propose a quantization algorithm designed to improve per-
formance by maximizing the compression ratio of the KV cache
while minimizing quantization loss, based on the observations and
insights from Section 4.1. Figure 7 illustrates the overall flow of
Oaken’s quantization algorithm. Oaken’s quantization technique
consists of three components: (1) Threshold-based online-offline
hybrid quantization that separates and quantizes inlier and out-
lier values, (2) Group-shift quantization that quantizes values with
larger magnitude, and (3) Fused dense-and-sparse encoding that
minimizes capacity overhead due to sparse matrices. The following
sections introduce a detailed design of each component.

4.3 Threshold-based Online-Offline Hybrid
Quantization

Oaken minimizes quantization loss by isolating outlier values that
are either exceptionally large or exceptionally small compared to
typical inlier values. We propose a threshold-based online-offline
hybrid quantization method for more fine-grained grouping. Oaken
separates the per-token KV vector into three quantization groups:
outer, middle, and inner (Figure 7(a)). The middle group consists
of inliers where most KV values belong, while the outer and inner
groups consist of outliers, with large and small magnitudes, respec-
tively. Oaken prevents the quantization scale from being skewed
due to large-magnitude outliers by isolating the outer group, and
ensures the small-magnitude outliers do not vanish during quanti-
zation by isolating the inner group [2, 13, 27, 34].
Offline outlier threshold profiling. To separate outliers from
inliers, the topK operation is typically used to maintain a constant
ratio of outliers [22]. While this approach results in minimal quan-
tization loss, the topK operation, essentially a sorting with a time
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Figure 7: Oaken’s quantization algorithm consisting of three components: (a) threshold-based online-offline hybrid quantization,
(b) group-shift quantization, and (c) fused dense-and-sparse encoding.

complexity of𝑂 (𝑛 log𝑛), introduces significant overhead when per-
formed during inference, degrades end-to-end performance. Oaken
employs offline outlier threshold profiling, leveraging the consis-
tent characteristics in the distribution of KV cache discussed in
Section 4.1 to avoid expensive online operations.

The criteria for splitting the KV cache into three groups are based
on four thresholds determined through offline threshold profiling:
𝑇𝑜
𝑙𝑜
,𝑇 𝑖
𝑙𝑜
,𝑇 𝑖
ℎ𝑖
, and𝑇𝑜

ℎ𝑖
. Using these thresholds, the outer group, middle

group, and inner group are defined as follows:
𝐺𝑜 = {𝑥 | 𝑥 < 𝑇𝑜

𝑙𝑜
or 𝑇𝑜

ℎ𝑖
< 𝑥},

𝐺𝑚 = {𝑥 | 𝑇𝑜
𝑙𝑜

≤ 𝑥 < 𝑇 𝑖
𝑙𝑜

or 𝑇 𝑖
ℎ𝑖

< 𝑥 ≤ 𝑇𝑜
ℎ𝑖
},

𝐺𝑖 = {𝑥 | 𝑇 𝑖
𝑙𝑜

≤ 𝑥 ≤ 𝑇 𝑖
ℎ𝑖
}

(1)

Oaken performs approximately a hundred offline inferences with
sample input prompts to gather distribution information from the
KV cache of each decoder layer. The four group thresholds are
extracted during the profiling process from the KV cache of each in-
ference run using topK operations, and their averages are computed
for each decoder layer. These statistics are then used to establish
group thresholds for the KV cache. As discussed in Section 4.1,
Oaken’s offline profiling should be performed separately for each
model, whereas the KV cache distribution and the profiling are inde-
pendent of both the profiling dataset and future inputs. It effectively
minimizes accuracy loss with only a small number of inferences,
ensuring minimal and one-time overhead.
Uniformquantization.Oaken adopts uniform quantization, where
the scaling factor 𝜎 is calculated using only simple statistics to min-
imize hardware complexity:

𝜎 =
2𝑚 − 1

Max −Min
, (2)

Where𝑚 is the bitwidth of the quantized value, and Max and Min
represent the maximum and minimum of the values to be quantized.
The uniform quantization function, which converts a value 𝑥 into
its quantized value, is defined using the scaling factor from Eq. 2:

𝑄 (𝑥) = round((𝑥 −Min) × 𝜎). (3)

Oaken finds the minimum and maximum values for each of the
three quantization groups and computes the quantization scaling
factor for each group dynamically online.
Online KV cache quantization. As previously discussed, Oaken
performs per-token quantization on the KV cache, focusing only
on the key-value vector newly generated in each attention layer.

Oaken dynamically separates KV cache values into three groups
using four group thresholds obtained from offline profiling. It then
retrieves the minimum and maximum values for each quantization
group, calculates the scaling factor online, and quantizes the value
within each group accordingly.

4.4 Group-Shift Quantization
Oaken’s threshold-based online grouping effectively mitigates in-
formation loss by splitting values into three groups: outer, middle,
and inner group. However, this approach poses a new challenge.
When quantizing the outer group, whose values have large magni-
tudes, directly applying uniform quantization results in information
loss. Previous works have addressed this by using mixed precision
(e.g., FP16) for outliers, distinct from the precision used for inliers
(e.g., INT4) [22, 30, 33, 86]. However, using mixed precision for
outliers introduces sparsity, incurring a storage cost of 23 bits per
entry: 16 bits for the value, 6 bits for the index, and 1 bit to indi-
cate the group. Dealing with sparse, mixed-precision outliers also
requires additional hardware modules, which adds complexity to
the accelerator. While these overheads are negligible when the out-
lier fraction is small, they become substantial as the proportion
increases. Moreover, this extra complexity makes it challenging to
explore the sweet spot in the accuracy-performance trade-off by
adjusting the group thresholds.

One straightforward way to address this issue is to quantize out-
liers as well. However, as discussed in Section 4.1, quantizing outer
groups is challenging due to their wide magnitude range. To address
this, we propose group-shift quantization, a hardware-efficient algo-
rithm that minimizes quantization loss while compressing outliers
to a lower bitwidth.
Group-shift algorithm. The core idea of Oaken’s group-shift
algorithm is to shift the entire group using the thresholds obtained
from offline profiling to narrow the range of values, making low-
bit quantization possible. For instance, for the outer group, we
subtract𝑇𝑜

ℎ𝑖
from values larger than𝑇𝑜

ℎ𝑖
, and subtract𝑇𝑜

𝑙𝑜
from values

smaller than 𝑇𝑜
𝑙𝑜
. While the middle group corresponds to inliers,

our group-shift algorithm can also be applied in the same manner.
Figure 7(b) shows that applying the aforementioned method shifts
the distribution of both the outer and middle groups, concentrating
them within a narrower range. As a result, Oaken can quantize
groups spanning wide ranges to low bitwidth using group-shift,
minimizing the quantization loss. Note that the group-shift method
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does not require additional information beyond those obtained from
the offline profiling described in Section 4.3.

In summary, Oaken’s quantization function 𝑄𝑜 (𝑥), which con-
verts the value 𝑥 to the quantized one, is defined as follows:

𝑄𝑜 (𝑥) =



𝑄 (𝑥 −𝑇𝑜
ℎ𝑖
) 𝑥 ∈ 𝐺𝑜 and 𝑥 > 𝑇𝑜

ℎ𝑖

𝑄 (𝑥 −𝑇𝑜
𝑙𝑜
) 𝑥 ∈ 𝐺𝑜 and 𝑥 < 𝑇𝑜

𝑙𝑜

𝑄 (𝑥 −𝑇 𝑖
ℎ𝑖
) 𝑥 ∈ 𝐺𝑚 and 𝑥 > 𝑇 𝑖

ℎ𝑖

𝑄 (𝑥 −𝑇 𝑖
𝑙𝑜
) 𝑥 ∈ 𝐺𝑚 and 𝑥 < 𝑇 𝑖

𝑙𝑜

𝑄 (𝑥) 𝑥 ∈ 𝐺𝑖

, (4)

where 𝑄 (𝑥) is a quantization function defined in Eq. 3. Oaken
quantizes middle group into 4-bit, inner and outer groups into 5-bit.

4.5 Fused Dense-and-Sparse Encoding
Oaken employs a dense-and-sparse encoding strategy, as proposed
in prior works, to efficiently store dense inliers and sparse out-
liers [22, 30]. In Oaken, the middle group, which consists of inliers
and makes up the majority of the KV cache, is stored in a dense ma-
trix. The outer and inner groups, which consist of outliers, are stored
using a sparse matrix format, Coordinate List (COO) [16, 18, 72, 85],
with the corresponding elements in the dense matrix being zeroed.
COO format used in Oaken requires extra 6 bits to indicate the
location of each value, along with 1 bit to denote the quantization
group, and the bits used to represent the value for each entry.

To further reduce capacity overhead, we propose leveraging
the zeroed elements in the dense matrices. These zeroed elements,
corresponding to positions originally occupied by outliers in the KV
cache, remain unused after separating the KV cache into dense and
sparse matrices. We introduce a fused dense-and-sparse encoding
method that repurposes these unused 4 bits to store part of the
outliers, as illustrated in Figure 7(c). Specifically, four bits of the
quantized 5-bit outliers are embedded in the zeroed elements of the
dense matrix, while the remaining 6 index bits, 1 group bit, and 1
sign bit are stored in the sparse COO format.

Since the index bits in the COO format already indicate the
location of outliers within the dense matrix, a dedicated flag to
denote their presence is unnecessary. Moreover, with each entry in
the sparse matrix fixed at 8 bits and memory-aligned, the memory
management unit can efficiently handle both dense and sparse
matrices on a page basis, the details of which will be described in
Section 5.2. By combining our fused dense-and-sparse encoding
strategy with group-shift quantization, we reduce the bitwidth of
each outlier entry from 23 to just 8 bits, increasing the compression
ratio of the KV cache, while keeping memory alignment.

5 Oaken’s Accelerator Architecture
5.1 Architecture Overview
Figure 8 illustrates the overview of the proposed architecture, which
mainly consists of compute cores, memory controllers, a host inter-
face, and an interconnect. The compute cores are designed to sup-
port end-to-end LLM inference operations. The memory controllers
handle device memory to read data, including model parameters,
keys, and values, and are also responsible for writing keys and
values back to memory. The host interface employs a PCIe-based
connection to communicate with the host system. This interface
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Figure 8: Overall Oaken accelerator architecture.

also manages the scheduling of incoming requests and distributing
them across compute cores for efficient processing. An interconnect
links these components and is optimized to maximize bandwidth
utilization during memory read, ensuring efficient data transfer to
the compute cores. This design enables the concurrent use of all
memory controllers for reading model parameters and distributing
them across the compute cores. On the other hand, memory writes
from the compute cores are less frequent and involve smaller data
sizes, reducing bandwidth consumption and simplifying the logic
design without compromising performance.

5.2 Oaken Compute Core
Overall design. The main modules of the proposed accelerator
are the compute cores, which are adapted from the architecture
introduced in LPU [48] to enable end-to-end LLM inference. Each
compute core consists of a Matrix Processing Unit (MPU) and Vec-
tor Processing Unit (VPU) designed to execute LLM inference op-
erations token-by-token. These processing units are designed to
maintain high utilization throughout the entire process while mini-
mizing inefficient logic and ensuring low latency. MPU is designed
to stream weight read from memory to perform efficient matrix-
vector multiplication, while VPU handles element-wise operations
between matrix-vector computations. The direct memory access
(DMA) unit facilitates data transfer by reading weights from mem-
ory to feed the processing units and writing KV cache back to mem-
ory. This DMA unit also incorporates quantization/dequantization
engines and a memory management unit (MMU), all of which are
critical for implementing the proposed KV quantization technique.
Quantization engine. Figure 9(a) shows the quantization engine
in DMA unit, designed to perform online KV cache quantization.

First, the ① decomposer module partitions incoming activa-
tions into three quantization groups based on outlier thresholds
determined offline. It then performs group shift for the outer and
middle groups by subtracting their streamed thresholds from the
values of these groups. Finally, the middle group is directed to
the inlier quantization path, while outliers, whether from inner or
outer groups, are routed to the outlier quantization path, with zeros
inserted in the alternate path accordingly.

Both the ② inlier and ③ outlier quantizer modules handle
quantization for each key and value vector. Quantization scaling
factors are dynamically computed during runtime, based on per-
token min and max values for each group. After calculating the
scaling factors, these two modules finally perform 4/5-bit uniform
quantization. The quantized inlier and outlier values are merged
using anOR gate and sent to the quantized densematrix. The outlier
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compute core.

module generates an index and a group flag for COO transformation.
It employs a zero-remove shifter [57, 67] to implement fused dense-
and-sparse encoding, optimizing memory usage.
Dequantization engine. The dequantization engine, illustrated in
Figure 9(b), is also integrated into the DMA unit to dequantize the
KV cache retrieved from memory.

The ④ inlier dequantizer module buffers incoming dense data
to synchronize with sparse data processed by the outlier dequan-
tizer module. The ⑤ outlier dequantizer module handles sparse
COO data by performing a zero-insert [57, 67] operation to restore
the original data alignment. It identifies the original positions of
fused outliers using the index and group information of the sparse
data and inserts the necessary zeros accordingly. Both dequantizer
modules then restore the data, which is buffered to be aligned with
the outputs of the counterpart module. Finally, the outputs from
both dequantizer modules are merged via anOR gate and forwarded
to the processing unit.

Since the dequantization engine does not require the entire KV
cache for its operation, we designed it to function in a streaming
manner. This design allows the dequantization engine to maintain
low latency, while efficiently processing all past KV cache.
Memorymanagement unit. Figure 10 illustrates the operations of
memory management unit, which manages the reading and writing
of quantized KV cache. We design the MMU unit to handle dense-
and-sparse matrices in a page-based manner, optimizing bandwidth
utilization. It supports multiple memory accesses in burst mode and
streamlined operations to hide latency of memory and quantiza-
tion/dequantization operations. Since Oaken’s MMU units share a
common address space, MMU operates in each compute core inde-
pendently, preventing interference. Without this specialized MMU,
processing variable-sized sparse matrices would require additional
overhead for indexing, reshaping, and subsequent operations. There
are two major challenges associated with the design of MMU unit:
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Figure 10: Operations of memory management unit (MMU)
for handling dense and sparse data.

(1) Addresses and transfer size management: Dense matri-
ces have predictable sizes that are well-aligned within memory
spaces, while sparse matrices vary in size. Thus, management
tables are needed for both dense and sparse data to accommodate
this variability. These tables contain the virtual-to-physical ad-
dress mappings and transfer sizes for the KV cache, considering
up to the maximum sequence length per attention head. Physical
addresses and transfer sizes are dynamically calculated during
inference by checking available pages on demand.
(2) Read-write granularity and order determination: Tomax-
imizememory bandwidth utilization, burst access should be lever-
aged whenever possible to reduce the total number of memory
transactions. Writing KV cache involves relatively small sizes,
as it only includes the key-value for the current token, whereas
reading requires retrieving the KV cache for all previous tokens.
To address this, Oaken organizes KV cache for the current token
in a layout that facilitates burst reads in subsequent operations.
Key-value vectors generated in the current layer are divided by
attention head and written to distinct pages, as explained in Sec-
tion 5.2. When the KV cache for the next token is generated, it is
divided similarly and written sequentially, immediately follow-
ing the previous tokens’ KV cache. This sequential arrangement
allows that the KV cache for all previous tokens can be read in
burst mode, allowing Oaken to efficiently utilize bandwidth.

5.3 Token-level Batch Scheduling
Efficient scheduling is crucial for Oaken to efficiently serve LLM
inference. Each compute core in Oaken is optimized to process a
single token efficiently. During the prefill phase, input tokens from
each request are scheduled for parallel processing across multiple
cores. However, in the generation phase, each core handles a single
output token from one request, which reduce hardware utiliza-
tion. For larger batches, Oaken improves overall core utilization by
processing multiple requests in parallel.

Although the overhead for KV cache quantization and dequan-
tization is minimal, Oaken further minimizes this by overlapping
them with other operations. In batched inference, KV cache cannot
be shared across cores because each core processes distinct requests,
forcing each core to monopolize the memory bandwidth. Oaken
employs a scheduling strategy that hides latency by overlapping
KV quantization and dequantization with DMA reads and attention
computations from other requests.
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Table 1: Hardware specification of NVIDIA A100 GPU and
Oaken equipped with either HBM or LPDDR memory.

NVIDIA A100 Oaken-HBM Oaken-LPDDR
Peak FP16 TFLOPS 312 270 270
Operating frequency 1.4 GHz 1.0 GHz 1.0 GHz

Memory type HBM HBM LPDDR
Memory capacity 80 GB 80 GB 256 GB

Memory bandwidth 2.0 TB/s 2.0 TB/s 1.1 TB/s

6 Evaluation
6.1 Methodology
Models and datasets. For evaluation, we use Llama2-7B, 13B,
and 70B [66], OPT-6.7B, 13B, and 30B [84], Mistral-7B [25] and
Mixtral-8x7B [26] models. Llama2, Mistral, and Mixtral models im-
plement grouped-query attention [3], while Mistral and Mixtral
models also incorporate a sliding window [6]. Additionally, Mixtral
model further integrates mixture-of-experts (MoE) layers [62]. To
evaluate model accuracy, we utilize Wikitext2, PIQA, Winogrande,
and Hellaswag datasets, which are widely evaluated in prior stud-
ies [22, 31, 33, 35, 41, 86, 87]. Wikitext2 [46] dataset consists of
tokens extracted from Wikipedia articles, while PIQA [7], Wino-
grande [58], and Hellaswag [81] constitute questions and answers.
We report zero-shot accuracy (%) for PIQA, Winogrande, and Hel-
laswag datasets and perplexity for Wikitext2 dataset. Note that
for perplexity, lower values indicate better performance. For real-
world benchmarking, we use two open-source production traces
from Azure LLM inference services, Conversation [47, 54] and Burst-
GPT [68]. We follow the methodology established in prior work
to simulate inference serving scenarios [20]. Requests are sampled
from the trace over a time period, and batches are synthesized with
varying input and output sequence lengths. We repeat this process
across multiple batches, measuring the average performance.
Accelerator platforms. For the end-to-end performance evalua-
tion, we developed a hardware simulator for the Oaken accelerator
by extending the existing hardware simulator of LPU [21, 53]. LPU
was initially optimized for low-latency inference without batching
support, while the follow-up work scaled it to accommodate larger
batches [48]. We extend the LPU architecture to integrate Oaken
by incorporating quantization/dequantization engines and memory
management units into the LPU’s DMA units. For GPU baselines,
we use NVIDIA A100 GPUs equipped with 80 GB HBM [49]. We use
a single GPU for Llama2-7B, 13B, and Mistral-7B models, as it could
accommodate all the model parameters. For larger models including
OPT-30B, Mixtral-8x7B, and Llama2-70B models, we use two GPUs,
employing pipeline parallelism to keep computation capability and
memory bandwidth consistent, while scaling capacity to 160 GB.
Hardware specifications and implementation. Table 1 summa-
rizes the specifications of the NVIDIA A100 GPU and the Oaken
accelerator used in our evaluations. Oaken-LPDDR is equipped with
an LPDDR memory module matching the specifications used in
prior works [53, 83]. Oaken-HBM is configured with HBM memory
identical to that of the A100 GPU. The HBM memory offers higher
bandwidth but has a smaller capacity compared to LPDDR mem-
ory, making a trade-off between them. We implement the Oaken

hardware in RTL using SystemVerilog and verify its functionality
with Synopsys VCS functional verification solution. The RTL is
synthesized using Synopsys Design Compiler for a target clock
frequency of 1 GHz on TSMC 28nm technology.
Baselines. For accuracy evaluation, we use Tender [35], Atom [86],
QServe [41], KIVI [43], and KVQuant [22] as baselines. For perfor-
mance evaluation, we first use vLLM [32] as the FP16-operating
GPU baseline, as it represents the state-of-the-art LLM serving
system and delivers superior performance compared to other alter-
natives. We also use most of the baselines for accuracy evaluation,
excluding Atom, which lacks open-source code availability. KIVI,
QServe, and KVQuant serve as additional GPU baselines, running
on A100 GPUs. Tender [35] is an LLM inference accelerator employ-
ing quantization, which offers an open-source simulator. For a fair
comparison, we align Tender’s memory specifications and compute
capabilities with those of the A100 GPU. All quantization-based
baselines employ 4-bit KV cache-only quantization. While QServe
and Tender offer weight and activation quantization, we disable
these features for fair comparison with the other baselines.
Thresholds. Throughout the evaluation, we set the outer, middle,
and inner group ratio to 4%, 90%, and 6%, respectively. This global
configuration applies to all models and datasets for the following
two reasons. First, as discussed in Section 4.1, KV cache distribution
is independent of the input dataset. Second, although the optimal
group ratio varies slightly across LLMs, its impact on inference
performance and accuracy is marginal. Section 6.2 explores the
threshold search space and group count, justifying this choice.
Offline profiling. Oaken’s offline profiling is performed by collect-
ing topK values, which represent four boundaries of the quantiza-
tion groups, during inference and averaging the gathered values. As
mentioned, we use the same group ratio and the Wikitext2 dataset
for all LLMs. However, since the KV cache distribution varies by
model, requiring different group thresholds and individual profil-
ing. Despite this, Oaken’s offline profiling requires only about a
hundred inferences and takes approximately ten minutes, even for
the Llama2-70B model. Since this process is required only once
before serving LLM inference online, the overhead is negligible.

6.2 Experimental Results
Throughput. Figure 11 presents the end-to-end throughput com-
parison results among GPU baselines (vLLM, KVQuant, KIVI, and
QServe) and ASIC accelerators (Tender and Oaken). The results
are omitted when the baseline system lacks support for the corre-
sponding models. For a batch size of 256, Oaken-LPDDR achieves
an average throughput improvement of 1.79× over vLLM and 1.58×
over QServe. This improvement is attributed to the reduced ex-
ecution time of the attention operations, which accounts for the
majority of inference time. Oaken alleviates bandwidth and capacity
bottlenecks by minimizing memory access to the KV cache.

GPU baselines perform well for small batches and models, but as
the batch size grows, they cannot accommodate the entire batch due
to capacity constraints, leading to performance saturation. Tender,
which uses the same HBM memory as A100 GPUs, also does not
scale for large batches. Oaken-HBM outperforms other baselines
and Oaken-LPDDR for small models and batch sizes. However, it
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Figure 11: Throughput results of GPU baselines, LPU, Tender, and Oaken equipped with LPDDR and HBM across six LLMs. We
sweep the batch size from 16 to 256. The input and output sequence lengths are set to 1K:1K.

Table 2: Perplexity results on Wikitext2, and zero-shot accuracy results on PIQA, Winogrande, and Hellaswag datasets with
effective bitwidth of each quantization technique.

Mistral Mixtral
7B 13B 70B 6.7B 13B 30B 7B 8x7B 7B 13B 70B 7B 13B 70B 7B 13B 70B 7B 13B 70B

Task
Metric
Original 5.47 4.88 3.32 10.86 10.13 9.56 5.25 3.84 79.05 80.52 82.70 69.13 72.80 80.20 75.98 79.38 83.82 16.00 16.00 16.00
KVQuant 5.49 4.94 3.33 10.88 10.14 9.58 5.33 3.87 78.35 79.33 82.21 67.80 71.74 77.98 75.82 79.25 83.70 4.82 4.81 5.01
KIVI 5.50 4.90 3.33 10.88 10.16 9.58 5.34 3.84 78.07 79.05 78.07 67.84 70.96 76.81 75.57 78.97 83.47 4.99 4.99 4.99
Tender 6.42 5.74 4.25 11.80 11.05 10.44 5.54 NaN 74.27 76.12 77.91 62.90 65.69 74.59 73.89 77.16 75.04 4.07 4.07 4.10
Atom 5.62 4.98 3.37 11.01 10.22 9.64 5.42 4.05 76.17 76.99 81.34 66.46 67.09 75.77 72.22 76.21 80.52 4.25 4.25 4.63
QServe 5.67 5.12 3.36 10.95 10.28 9.62 5.42 4.03 77.37 77.48 81.77 65.29 66.80 76.09 74.41 76.69 83.24 4.25 4.25 4.25
Oaken 5.53 4.93 3.34 10.88 10.16 9.58 5.35 3.90 78.29 79.71 82.59 67.64 70.56 76.64 73.72 78.24 83.50 4.82 4.82 4.89

Effective Bitwidth

Llama2 OPT Llama2 Llama2 Llama2 Llama2

PIQA Winogrande Hellaswag

Model

-
Perplexity (↓) Accuracy (%) Accuracy (%) Accuracy (%)

Wikitext2

faces challenges in accommodating large models such as Mixtral-
8x7B and Llama2-70B, or handling large batches due to its insuffi-
cient memory capacity. Mistral-7B, Mixtral-8x7B, and Llama2-70B
models employ grouped-query attention to reduce KV cache size,
helping to alleviate bandwidth bottlenecks even without KV quan-
tization. However, for larger batch sizes, capacity limitations still
cause saturation, while Oaken accelerators offer scalability, demon-
strating the effectiveness of our KV cache quantization technique.
Accuracy. Table 2 presents the accuracy results of each baselines
across eight LLMs onWikitext2, PIQA, Winogrande, and Hellaswag
datasets, along with the effective bitwidth on the Llama2 models.
Oaken exhibits an average accuracy loss of 0.87% compared to
the original FP16 baseline, with 0.54% and 0.32% lower accuracy
than KVQuant and KIVI, respectively, while achieving 1.38% higher
accuracy than QServe. KVQuant and KIVI requires a larger effective
bitwidth due to their use of sparse layout for outlier values and fine-
grained grouping, respectively. They achieve higher accuracy than
Oaken, but their advantages are largely offset by the prohibitively
high overhead of online sorting and mixed-precision operations.
On the other hand, Tender, Atom, and QServe employ an indirect
indexing technique and a transformation matrix to reorder KV

channels and group those with similar magnitudes. This approach
impose minimal overhead due to their low effective bitwidth, as
they do not require individual processing of outliers; however, this
comes at the cost of larger accuracy losses, as they rely on coarse-
grained per-group or per-channel quantization without considering
exceptions in KV distribution, as discussed in Section 4.1.
Trade-offbetween accuracy and compression ratio. Figure 12(a)
illustrates the trade-off between accuracy and compression ratio
in Oaken’s KV cache quantization on Llama2-7B model, which
can also be interpreted as a trade-off between accuracy and per-
formance. We sweep the group ratio and measure the perplexity
on Wikitext2 dataset. The effective bits in Oaken are determined
by the ratio of inner and outer groups, as their location is stored
in the sparse matrix. All points on the same horizontal line share
the same outlier ratio and effective bits, but differ in group compo-
sition. We select a ratio of 4%, 90%, and 6% for the outer, middle,
and inner groups, respectively, throughout the entire evaluation,
as they are one of the Pareto-optimal points highlighted as a light
blue line. While using higher effective bits might improve accuracy
even better than the current configuration, it negatively impacts
the inference performance due to its low compression ratio.
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Figure 12: (a) Accuracy and effective bits with varying quanti-
zation group ratios. (b) Latency breakdown for non-attention,
attention, quantization and dequantization operations using
Llama2-7B model across varying batch size.

Table 3 presents the perplexity and effective bitwidth for dif-
ferent numbers of groups evaluated on the Llama2-7B model. We
fix the total ratio of inner and outer groups at 10%. Oaken’s fused
dense-and-sparse encoding eliminates the need for a bit to represent
outliers when using two groups. However, this disrupts memory
alignment, as each sparse COO entry consists of 6 index bits and
1 sign bit. To mitigate hardware overhead, an extra padding bit is
added, maintaining the same effective bitwidth. Using four or five
groups improves accuracy but increases bitwidth, as 9-bit COO en-
tries require two bits for inner and outer groups. This also misaligns
memory layout, requiring additional padding. While using 4-bit
outliers to keep 8-bit alignment preserves the effective bitwidth, it
slightly reduces accuracy. In summary, Oaken’s three-group quan-
tization offers the optimal balance between cost and accuracy.
Latency breakdown. To better understand the impact of KV cache
quantization on performance, we break down the end-to-end infer-
ence latency of LPU and Oaken-LPDDR as we vary the batch size.
We also implement Oaken’s quantization algorithm on GPU and
measure its operation latencies. Figure 12(b) shows that the latency
of attention operations increases proportionally with the batch size.
While Oaken does not directly affect the execution time of non-
attention operations, it alleviates bandwidth bottleneck through KV
quantization. As a result, the execution time of attention operations
is, on average, 55.0% shorter than that of LPU, contributing to a
reduction in end-to-end latency. When the batch size is 64, quanti-
zation and dequantization account for only 1.29% and 3.23% of the
entire latency, respectively. On the contrary, Oaken algorithm on
GPU demonstrates long quantization and dequantization latencies
due to warp divergence in CUDA, which is required to separate
multiple quantization groups. Note that Oaken hides both quantiza-
tion and dequantization latencies by overlapping them with other
operations and processing them in a streaming manner.
Sensitivity to sequence length. Figure 13 shows throughput re-
sults when sweeping the total sequence length from 1K to 32K.
For shorter sequence lengths below 8K, the proportion of compute-
bound, batchable operations is larger than memory-bound, non-
batchable attention operations. Therefore, the performance of QServe
and vLLM outperform Oaken in this range by leveraging the higher
parallelizable resources available on GPUs. However, as the se-
quence length increases, Oaken-HBM surpasses other baselines,

Table 3: Accuracy and effective bits using the Llama2-7B
model with varying number of groups and group ratios while
keeping the total inner and outer group ratio at 10%.

(o / m / i)
4 / 90 / 6 5 4.8 5.526

90 / 10 5 4.8 5.804
10 / 90 5 4.8 5.546

4 / 90 / 3 / 3 5 5.6 5.523
2 / 2 / 90 / 6 5 5.6 5.516
2 / 2 / 90 / 3 / 3 5 5.6 5.516

4 / 90 / 3 / 3 4 4.8 5.572
2 / 2 / 90 / 6 4 4.8 5.531
2 / 2 / 90 / 3 / 3 4 4.8 5.532
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Figure 13: Throughput results on Llama2-13B model with a
batch size of 16 when increasing total sequence length from
1K to 32K. The ratio of input and output length is set to 1:1.

including Oaken-LPDDR, with its high memory bandwidth and
KV cache quantization. However, HBM-based systems including
QServe and Oaken-HBM cannot handle sequences longer than 16K,
making it difficult to complete the entire batch due to insufficient ca-
pacity. Oaken-LPDDR, on the other hand, can accommodate longer
sequences of up to 32K by mitigating both bandwidth and capacity
pressure through KV quantization and large-capacity memory.
Real-world benchmark. Figure 14 presents the generation through-
put results for Llama2-13B and Mixtral-8x7B models, evaluated us-
ing two real-world LLM inference traces. We exclude Oaken-HBM
and QServe for Mixtral-8x7B model, as Oaken-HBM’s memory can-
not accommodate the entire model and QServe lacks support for
MoE layers. Tender, which employs systolic arrays, suffers under-
utilization due to the padding required by varying prompt lengths
within a batch. Conversation trace features short output lengths,
resulting in a brief generation phase. As the bandwidth bottleneck
due to the KV cache is noticeable in generation phase, a short gen-
eration length reduces the advantage of Oaken’s KV cache quanti-
zation. Conversely, BurstGPT trace features longer output lengths,
where KV cache quantization in Oaken becomes more beneficial.
Mixtral-8x7B model utilizes grouped query attention to reduce
its KV cache size compared to multi-head attention. Quantization
baselines, including Oaken-LPDDR and Tender, show little to no
performance gain over full-precision baselines. However, as batch
size increases or with the BurstGPT trace with longer generation
lengths, Oaken-LPDDR demonstrates greater performance gains.
In summary, Oaken delivers an advantage over existing solutions in
real-world scenarios for the Llama2-13B and Mixtral-8x7B models.
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Figure 14: Real-world benchmark results for generation
throughput on Llama2-13B and Mixtral-8x7B models evalu-
ated with two LLM inference traces: Conversation [47] and
BurstGPT [68]. We sweep the batch size from 16 to 128.

Area and power. As reported in Table 4, the quantization and
dequantization engines account for a minor percentage of the total
compute core area at 1.86% and 6.35%, respectively. In addition, the
power consumption of the entire accelerator embedded with Oaken
modules is 222.7W, which is 44.3% lower than the 400W TDP of the
A100 GPU. These results clearly indicate that integrating Oaken’s
quantization and dequantization modules only imposes minimal
hardware overhead while improving performance and achieving
better energy efficiency compared to the GPU.

7 Related Work
LLM quantization.Most prior work on LLM quantization focuses
on weight and/or activation quantization [17, 40, 42, 60, 69, 70] to
reduce inference computation costs. RPTQ [78], SpinQuant [44],
and QuaRot [5] introduce transformation matrices for weight and
activation quantization. SmoothQuant [71] mitigates the quantiza-
tion difficulty by transferring activation outlier scales to weights.
SqueezeLLM [30] applies dense-and-sparse quantization for stor-
ing weight outliers in full precision. However, many existing ap-
proaches overlook the KV cache, whose size scales with sequence
length and batch size, often becoming a major bottleneck for la-
tency and throughput in batched LLM inference. Oaken overcomes
this issue by employing an offline-online KV cache quantization
algorithm with a customized hardware module, achieving high
throughput with minimal accuracy degradation.
LLM inference accelerator. DFX [21] is one of the first LLM ac-
celerators, which is designed to accelerate the entire GPT2 model
using HBM and FPGA. CXL-PNM [53] introduces a LLM accelerator
largely leveraging the DFX design, while employing LPDDR for
striking a sweet spot in the bandwidth-capacity tradeoff space for
large-scale LLM serving. LPU [48] is another LLM accelerator that
differs from prior work in optimizing its design for minimal latency.

Table 4: Area overhead analysis of compression and decom-
pression engines on TSMC 28nm.

Module Area (mm2) Area ratio (%)
Matrix processing unit 0.908 22.86
Vector processing unit 0.239 6.03
Quantization engine 0.074 1.86

Dequantization engine 0.252 6.35
Compute core 3.971 100

TransPIM [88] proposes a PIM accelerator targeted for encoder-
based transformer models such as BERT. AttAcc [52], IANUS [59],
and NeuPIMS [20] employ PIM technologies for decoder-based
transformer LLM serving, while they impose capacity pressure on
the large-batch long-sequence serving scenarios. Unlike these prior
works, this work devises Oaken, which jointly employs KV quan-
tization and LPDDR for unleashing larger capacity and increased
bandwidth to enable fast and efficient LLM serving.
Acceleration for quantized model inference. There have been
several prior works on accelerating quantized neural network infer-
ence [9, 24, 29, 38, 55, 56, 63, 65, 74, 82]. Mokey [80] and Olive [19]
apply outlier-aware quantization methods to transformer-based
LLMs. LUT-GEMM [51] proposes a lookup-table-based GPU kernel
to eliminate dequantization overhead in quantized LLM inference.
Tender [35] quantizes KV cache as well as weights and activations,
but its accuracy loss is significant. In contrast, Oaken is an LLM in-
ference acceleration solution optimized for KV cache quantization,
offering a scalable solution while minimizing accuracy loss.

8 Conclusion
Batched LLM inference faces significant challenges from high mem-
ory bandwidth and capacity demands, exacerbated by the growing
size of KV caches in modern LLMs that produce long-sequence out-
puts. This paper tackles this challenge by proposing an acceleration
solution, Oaken, that jointly exploits (1) an offline-online hybrid
KV cache compression technique and (2) custom hardware modules
tailored for the proposed algorithm that can be integrated with LLM
accelerators. Oaken effectively unlocks sufficient bandwidth and
capacity, which would otherwise be unattainable, leading to signif-
icant throughput improvements with only marginal accuracy loss.
These compelling advantages demonstrate that Oaken efficiently
addresses the two primary bottlenecks of modern LLM serving.
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