
Accelerating String-key Learned Index Structures
via Memoization-based Incremental Training

Minsu Kim
KAIST

mskim@casys.kaist.ac.kr

Jinwoo Hwang
KAIST

jwhwang@casys.kaist.ac.kr

Guseul Heo
KAIST

gsheo@casys.kaist.ac.kr

Seiyeon Cho
KAIST

sycho@casys.kaist.ac.kr

Divya Mahajan
Georgia Tech

divya.mahajan@gatech.edu

Jongse Park
KAIST

jspark@casys.kaist.ac.kr

ABSTRACT
Learned indexes use machine learning models to learn the map-
pings between keys and their corresponding positions in key-value
indexes. These indexes use the mapping information as training
data. Learned indexes require frequent retrainings of their mod-
els to incorporate the changes introduced by update queries. To
efficiently retrain the models, existing learned index systems often
harness a linear algebraic QR factorization technique that performs
matrix decomposition. This factorization approach processes all
key-position pairs during each retraining, resulting in compute
operations that grow linearly with the total number of keys and
their lengths. Consequently, the retrainings create a severe perfor-
mance bottleneck, especially for variable-length string keys, while
the retrainings are crucial for maintaining high prediction accuracy
and in turn, ensuring low query service latency.

To address this performance problem, we develop an algorithm-
hardware co-designed string-key learned index system, dubbed
SIA. In designing SIA, we leverage a unique algorithmic property
of the matrix decomposition-based training method. Exploiting
the property, we develop a memoization-based incremental train-
ing scheme, which only requires computation over updated keys,
while decomposition results of non-updated keys from previous
computations can be reused. We further enhance SIA to offload a
portion of this training process to an FPGA accelerator to not only
relieve CPU resources for serving index queries (i.e., inference),
but also accelerate the training itself. Our evaluation shows that
compared to ALEX, LIPP, and SIndex, a state-of-the-art learned
index systems, SIA-accelerated learned indexes offer 2.6× and 3.4×
higher throughput on the two real-world benchmark suites, YCSB
and Twitter cache trace, respectively.

PVLDB Reference Format:
Minsu Kim, Jinwoo Hwang, Guseul Heo, Seiyeon Cho, Divya Mahajan,
and Jongse Park. Accelerating String-key Learned Index Structures
via Memoization-based Incremental Training. PVLDB, 17(8): 1802 - 1815,
2024.
doi:10.14778/3659437.3659439

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 8 ISSN 2150-8097.
doi:10.14778/3659437.3659439

Time

Figure 1: Increasing retraining time as the size of a learned in-
dex system grows, resulting from a stream of update queries.
Markers on the same line represent sequential retraining
runs, where leftward markers precede those on the right.

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/casys-kaist/sia.

1 INTRODUCTION
Machine learning for system infrastructure is growing particu-
larly in areas where data-driven decisions can make meaningful
strides [7, 20, 62]. Efficient data access is one such avenue, where
learning indexes have proven to be effective and practical [1, 11, 12,
17, 27, 29, 33–36, 38, 41–43, 51, 52, 54–57, 59–61, 64, 65, 73, 74, 76].
The pioneering work [27] proposed in this space uses a collection of
machine learning models to create a read-only ordered index for in-
teger keys. Due to its popularity and applicability, numerous follow-
up research projects have extended the initial work to support read-
write (updatable) indexes [11, 15, 29, 33, 35, 57, 58, 61, 64, 65, 68, 72],
string keys [53, 61, 63], multi-dimensional indexes [12, 17, 43, 60],
spatial indexes [34, 51, 73, 76], and other variants [36, 38, 54, 74].
This paper focuses on identifying performance challenges of up-
datable string-key learned indexes and addressing the challenges
through an algorithm-hardware co-designed solution.

Regardless of the data types of keys, an algorithmic common-
ality among most existing learned indexes is that the indexes are
constructed as a hierarchical structure where each node is a linear
model [10–12, 27, 33, 35, 36, 57, 61, 64, 65, 74, 75]. These linear
models are designed to collaboratively learn the mappings between
keys and their corresponding positions, using this information as
training data. The training process is inherently repetitive since the

https://doi.org/10.14778/3659437.3659439
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3659437.3659439
https://github.com/casys-kaist/sia

key-position mappings constantly change due to the update queries
(e.g., insert or delete), which necessitates retrainings to incorporate
the changes into the models.

In learned indexes, training of linear models is essentially solving
the following linear equation, 𝑋𝛽=𝑌 where 𝑋 is a key matrix, 𝛽
is a learnable parameter vector, and 𝑌 is the corresponding posi-
tion vector. When learned indexes only support integer keys, the
training process is computationally trivial since 𝑋 is a vector of
integer key values (i.e., 𝑛×1 matrix). However, when the keys are
variable-length strings,𝑋 becomes a 𝑛×𝑘-size matrix where 𝑘 is the
key length, which makes solving the equation a computationally
non-trivial task. To algorithmically reduce the compute load of this
training, existing string-key learned indexes [27, 53, 61, 63] employ
a matrix factorization strategy known as QR decomposition, which
enables training to be free from the burdens of matrix inversion.

Despite the algorithmic optimization, we observe that in the ex-
isting systems, the repetitive retrainings incur a severe performance
bottleneck, since (1) the complexity of QR decomposition, although
lower than matrix inversion, remains high, and (2) retrainings and
index query servicing for existing keys (i.e., inference) compete for
the limited CPU resource. Figure 1 shows that retraining time pro-
gressively grows as the number of keys and key lengths increase, on
a state-of-the-art string-key learned index, SIndex [61]. Each point
in the graph represents a retraining run. Increased retraining times
negatively impact the inference throughput, as they result in an
outdated index. This, in turn, lowers the index prediction accuracy
and necessitates a costly linear search to locate the correct position.
Thus, retraining is crucial for reducing service latency as well as
improving index throughput.

To address the aforementioned bottlenecks, we introduce SIA:
String-key Learned Index Acceleration. SIA enables efficient and
scalable indexing by reducing the compute load of the retraining
process through an algorithmic technique and judiciously offloads a
portion of the training computation onto an FPGA accelerator. The
challenge is that current learned indexes need to perform costly
matrix decomposition using the entire key-position mappings as
input to maintain model accuracy, which is pivotal for achieving
high index performance. To tackle this challenge, SIA utilizes a
modified parallel decomposition technique that allows for piece-
wise computation of matrix decomposition. In designing SIA, we
leverage the insight that these retrainings occur on progressively
updated indexes, thus offering an opportunity to reuse computa-
tions from prior results via memoization. It is important to note
that training using the memoized decomposition results produces
mathematically identical outcomes to those obtained if the models
were fully retrained from scratch using the complete set of keys.

Building on the memoization-based decomposition, we develop
a learned index training algorithm that incrementally retrains the
models by leveraging the results of prior matrix decomposition.
This enhanced algorithm reduces the computational complexity
and retraining time, which in turn frees up CPU resources for
servicing queries. However, our empirical analyses suggest that
the algorithmic optimization, while helpful, offers a limited benefit
since the retrainings still compete over the limited CPU resource. To
further reduce the retraining time, we enable the retrainings to be
accelerated using an FPGA.We choose FPGA over GPU owing to its
customizability to index-specific algorithm configurations, leading

to enhanced energy efficiency. SIA combines these elements to offer
a novel learned indexmechanism that aims to improve system query
throughput through both algorithmic and hardware innovations.
This work makes the following contributions:
• Identifies the system bottlenecks in current updatable learned

index structures for string-keys, specifically, retraining the
ensemble models in the hierarchical structure. We observe
that as the retraining time grows, it progressively leads to
lower performance of learned index systems.

• Introduces a novel learned index system, SIA, that acceler-
ates the retraining process through an enhanced mathematical
approach to matrix decomposition, enabling incremental train-
ing. With incremental training, only updated keys are used
for computation, while the computation result for old keys is
reused.

• Further accelerates SIA’s incremental training process using
an FPGA-based design that reduces training time and frees up
CPU resources for index query servicing.

We demonstrate the effectiveness of SIA using two real-world
benchmark suites, YCSB and Twitter cache trace. For YCSB, we use
two datasets available to the public, Amazon review and Meme-
Tracker datasets, as well as a synthetic dataset.We integrate SIA into
the three updatable string-key learned indexes, includingALEX [11],
LIPP [64], and SIndex [61]. Compared to baseline learned indexes,
SIA provides 2.6× and 3.4× higher throughput for YCSB and Twit-
ter cache trace workloads, respectively. From an in-depth ablation
study using SIndex that breaks down the benefits of SIA, we observe
that employing solely the memoization decomposition-based incre-
mental learning algorithm offers 1.6× and 1.9× higher throughput.
However, when the FPGA-based SIA accelerator is employed, it
offers 2.8× and 4.3× higher throughput than the baselines, which
are respectively 1.8× and 2.3× additional speedup, a substantial
performance boost compared to the software-only counterpart.
These results suggest that taking an algorithm-hardware co-design
approach, SIA enables heterogeneous CPU-FPGA architecture to
operate as a platform of choice to achieve high throughput for
updatable string-key learned indexes. Our software and hardware
code for SIA is available at https://github.com/casys-kaist/sia.

2 A PRIMER ON LEARNED INDEX
Key-value stores are widely deployed in data management appli-
cations, where the index maps keys to their corresponding posi-
tions in a list of records. This pairing can be denoted as a function,
𝑓 (𝑘𝑒𝑦, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), with key as the input and position as the out-
put. Conventionally, hash-map and B-tree structures are commonly
used to store this mapping in an array of records. Despite its popu-
larity, they still have shown several limitations, which prevent their
“one-size-fits-all” deployment. While hash-maps typically offer low
average access time, they can be susceptible to hash collisions that
may lead to unpredictable increases in lookup and construction
time. Additionally, hash-mapsmay not perform as well as other data
structures for range queries. On the other hand, B-trees and their
variants do not have the same limitations as hash-maps, but their
average-case performance, in terms of both latency and throughput,
is generally lower than that of hash-maps. To overcome these limi-
tations, the community has explored the use of machine learning

https://github.com/casys-kaist/sia

f00

f11f10

f20 f21 f22 f23

Key

pos

(a)

Modelt+1Modelt

Rt+1

CPU

key
Update

(c)

Memoize

Rt

Use
memoized
result

FPGA

Modelt+1Modelt

Inference Thread Training Thread

Update

(b)

CPU

key

Figure 2: (a) Read-only learned index in a hierarchical structure, (b) updatable learned index, and (c) SIA: the proposed updatable
string-key learned index that leverages computation reuse and hardware acceleration to improve the system throughput.

Th
ro

ug
hp

ut
 (

op
s/

se
c)

Wormhole Cuckoo Trie ALEX LIPP XIndex/SIndex

(a) Integer keys (b) String keys

Figure 3: Throughput results of two conventional indexes
and three learned indexes for YCSB workloads.

(ML) approaches to develop learned indexes as an alternative index
structure [10–13, 27, 34, 41, 57, 61, 64].
Learning to index keys. The initial work on learned indexes [27]
demonstrated that it is possible for ML models to learn the map-
pings between keys and their corresponding positions, using this
information as training data. Unlike traditional machine learning
models, which aim to generalize to unseen inputs, learned index
models are intentionally overfit to the training data, as index struc-
tures mostly encounter keys that have been inserted. Despite the
overfitting during training, inference-based indexing can still pro-
duce incorrect predictions due to the inherent approximation nature
of machine learning. When the queried key is not found at the pre-
dicted position, learned indexes search for the key within a bounded
range around the predicted position (i.e., [𝑝 + 𝑒𝑟𝑟𝑚𝑖𝑛 , 𝑝 + 𝑒𝑟𝑟𝑚𝑎𝑥]),
ensuring accurate indexing functionality [27].

When designing a ML model for learned indexes, there are vari-
ous alternatives that trade off accuracy (model size and architec-
ture) against cost (inference latency and training time). Several
works [13, 27, 57, 61] have shown that a hierarchical structure of
linear models effectively balances this tradeoff. Each node in the
hierarchical structure is a linear regression model that needs to
be trained for a subset of the key-position mappings. These initial
works focus on read-only indexes, and hence training is carried out
once when building the indexes before deployment. The hierarchi-
cal structure for read-only indexing is depicted in Figure 2(a).
Updatable string-key learned index. Although restricting the
scope to read-only indexes was an effective setting to demonstrate

initial applicability of the “learning” approach, practical data man-
agement necessitates support for “update” queries (e.g., insert
and delete). Follow-up works overcome this limitation and devise
“updatable” learned indexes [11, 57, 61, 64]. ALEX [11] expands
nodes with deliberately-reserved empty spaces for unseen future
keys, which hold the newly inserted keys until the updated keys are
retrained. LIPP [64] ensures precise model prediction results and
removes costly local search usually used in other learned indexes.
XIndex [57] is another variant that maintains reserved spaces for
future keys, while unlike ALEX, the new keys are stored in sepa-
rate temporary buffers. SIndex [61] is one of the initial efforts to
support variable-length string keys in learned indexes. As string
keys are an important datatype used in diverse applications such as
web servers, sequence analysis, and genomics, modern key-value
stores often have strong support for this datatype [3, 19, 21, 24, 28,
31, 37, 61, 66, 67, 70, 71]. Despite its importance, its performance
implication on updatable string-key learned index systems remains
under-examined in existing literature, which is the primary focus
of this work.
Intertwinement of retraining and inference. Unlike traditional
machine learning, training and inference phases in these updatable
learned indexes are not clearly demarcated. Instead, learned indexes
require iterative retrainings, because the training data is constantly
changing due to update queries. Concurrently, the index systems
must serve index queries by performing inference. This convergence
of training and inference can influence each other’s performance,
potentially resulting in a marked degradation of overall efficiency.
Figure 2(b) delineates the common execution flow where certain
threads are dedicated to query servicing and certain to retraining.
Effectiveness of learned indexes. To better understand the effec-
tiveness of learned indexes, we conduct preliminary experiments
comparing the throughput of learned index structures with two
non-learned indexes, Wormhole [66] and Cuckoo Trie [71]. We use
the Yahoo! Cloud Serving Benchmark (YCSB) [8], a key-value store
benchmark suite with six different workloads (see Section 7.1 for
details). Figure 3 shows that learned indexes generally offer compa-
rable or higher performance than the two baseline indexes for both
integer and string key cases. However, the notable observation is
that when keys are string, learned indexes perform much worse
than the baselines for workload D and E. Workload D and E contain

insert queries, which necessitate the constant retrainings for in-
dex updates. While the retrainings impose marginal overhead when
keys are integers, retrainings for string keys become severe per-
formance bottleneck, cancelling the performance gains of learned
indexes, as will be deeply analyzed in Section 3. This is the very
challenge we aim to tackle in this work through SIA.
Our approach. SIA sets out to tackle the challenges posed by
current updatable string-key learned indexes, with the following
objectives: (1) SIA aims to reduce the cost of training linear mod-
els without any mathematical implication on model quality, and
(2) it aims to enhance the system with an FPGA accelerator that
can execute the compute-intensive portion of training, thus reliev-
ing CPU resources for inference. Figure 2(c) depicts SIA’s system
architecture, which is built upon existing learned index systems.

3 ANALYSES OF LEARNED INDEXES
We conduct in-depth performance characterizations through a set
of experiments and obtain three main insights from the results.
These insights form the key driving forces behind SIA. For these
analyses, we use a SIndex system running on a 16-core server, the
details of which are provided in Section 7.1. We use a workload with
uniformly distributed keys, generating read and insert queries
based on a predetermined ratio (e.g., 70% read and 30% insert
queries). Insert queries raise the retraining complexity by adding
more keys to the index. We initialize the index with 1M keys.

3.1 Retraining-Time Scalability Analysis
Existing updatable string-key learned indexes suffer from a limita-
tion in that they aggregate all keys into a single dataset, making
computations more demanding as the number of keys increases. To
examine the scalability aspect of learned indexes, we measure the
retraining time as we gradually increase the total number of keys
from 1M to approximately 100M. Figure 1 shows the results with
each marker representing a retraining invocation. The experiment
shows that for total numbers of keys reaching 100M, the retraining
time becomes prohibitively long. Retraining time for the shortest
key length of 16 increases up to 100 seconds, while it exceeds 5 min-
utes for the case of key length 96. These extended retraining times
for indexing are infeasible as they result in the index being signifi-
cantly outdated. The results also show that progressively prolonged
retraining time ends up leading to longer intervals between retrain-
ing invocations. This delay occurs because the growing retraining
time increases the number of keys waiting for the next round of
retraining, resulting in a lower frequency of model updates.

This analysis shows that the existing updatable string-key learned
index systems face scalability issues. Thus, there is a need for a solu-
tion that minimizes the retraining time for linear models, especially
when dealing with large index sizes and long key lengths.

3.2 Impact of Slow Retraining on Throughput
Given the aforementioned insight, a subsequent research question
could be, “Why is retraining vital for the overall efficacy of the
learned index system?” The response to this inquiry is that training
influences throughput in two significant ways. (1) First, slow re-
training causes the models to become outdated, resulting in reduced

Figure 4: Throughput as training time varies from 5 to 300
seconds. Training does not utilize any CPU cycles. The inser-
tion ratio sweeps from 0% (read-only) to 50%.

index prediction accuracy and requiring a costly linear search to
locate the correct position. This, in turn, leads to prolonged index
search latencies for more read queries, negatively impacting the
overall system throughput. (2) Second, as retraining and inference
run simultaneously on the same system and compete for CPU re-
sources, the inference throughput is adversely affected. We discuss
the first implication in this section and leave the discussion for the
second effect to Section 3.3.

To demonstrate the impact of slow training over throughput, we
develop a “fictitious” system that can retrain linear models within
a predetermined training time without using any CPU resources
for training. This method allows us to isolate the impact of slow
retraining separate from the implications of CPU resource con-
tention. Figure 4 depicts the throughput of this fictitious system
as the retraining duration shifts between 5s and 300s. The results
show a consistent decline in throughput as the retraining time
lengthens, since learned indexes must use outdated models during
the retraining period, which would increase the frequency and de-
gree of linear search to locate the correct position. Additionally, we
observe that as the insertion ratio rises, the system sees a decline
in throughput. This is because a greater number of inserted keys
await in the buffer before integration into the learned index, which
again requires more overhead on linear search at the non-trained
key buffers. While the reported throughput averages over time, in
a practical scenario, throughput would gradually drop as runtime
progresses, because, unlike our hypothetical system, a real system
would face an ever-increasing retraining time.

Our study suggests that a long retraining period hurts the end-to-end
system throughput of updatable string-key learned index systems.
Therefore, fast retraining of linear models is imperative.

3.3 Implication of CPU Resource Allocation
A straightforward solution to reduce training time would be to
allocate more CPU resources. To better understand the correlation
between throughput and CPU resources, we perform an experiment
that measures the system throughput as we vary the number of
threads allocated for inference (index serving) and training, while
maintaining the number of threads assigned to the other task at 1.
This approach allows us to determine the performance benefits that
inference and training could achieve with additional CPU resources,
respectively. As our system has 16 cores, we vary the number of

(a) (b)

Figure 5: Throughput with varying threads for (a) inference
and 1 for training, (b) training and 1 for inference.

cores allocated to either inference or training threads from 1 to 15,
maintaining the insertion ratio at 50% and the key length at 32.

Figure 5(a) and Figure 5(b) show throughput trends. When the
number of threads for training is 1, the additional CPU threads
allocated for inference result in sub-linear yet substantial perfor-
mance scaling. This is because inference is read-only and multiple
inferences can be executed independently and in parallel across
threads. However, when the inference process is restricted to a
single thread while training utilizes an increasing number of cores,
the additional resources only yield marginal benefits. The limited
effectiveness of CPU for training can be attributed to the limited
parallelism in the matrix decomposition algorithm used for linear
regression training, as explained in further detail in Section 5.2.

We note that inference gains more from extra CPU resources com-
pared to training. As a result, we propose a heterogeneous system
that allocates CPU resources primarily for inference, while employ-
ing an FPGA accelerator for the training process.

4 SIA DESIGN PRINCIPLES
Building upon the insights, we propose a hardware-accelerated up-
datable string-key learned index system, dubbed SIA. First, SIA pro-
poses a novel incremental index learning algorithm, which reduces
the computing complexity and execution time of each retraining
process. SIA then dedicates most of the CPU resource for inference
serving by offloading the training to an FPGA accelerator, thus
collaboratively achieving high throughput. This section outlines
the design principles of each SIA component.
Algorithm design principle: Performing only necessary com-
putations for learned indexes. The fundamental challenge ad-
dressed in this work is the lack of scalability in learned index train-
ing since the compute operations for training compounds as the
number of keys grows. In learned index systems, every retraining
run necessitates the processing of the entire dataset. The current
state-of-the-art approach involves performing matrix decomposi-
tion, matrix inverse, dot product, and transpose operations over
the entire dataset to determine the parameters of the linear models.
To reduce the computing complexity of the training, we devise an
incremental index learning algorithm that memoizes the results of
previous retraining computations and reuses them in combination
with the new results obtained from the augmented training data.
With this algorithm, the computational load is not determined by
the total number of keys, but rather by the number of updated keys.

f00

f11f10

f20 f21 f22 f23

Key-Position Training Dataset

pos

(a) (b)

Linear regression using
QR decomposition

X� = y where X = QR

XT X� = XT Y

� = (XT X)�1XT Y

� = ((QR)T (QR))�1XT Y

� = (RT QT QR)�1XT Y

� = (RT R)�1XT Y

� = (R�1R�1T
)XT Y

<latexit sha1_base64="En/CHzgnUBBpI/KdoXO0NZvs/ug=">AAAC3XichZLLTttAFIbH5p5yCbBkMyICJQsiOyC1m0qobFiSiIBpHKLx5CQZZXzRzJgqsix1wwJUddv36o734AEYOxGXEMGR7PP7/7+R5+ZFnEllWQ+GOTe/sLi0vFL4srq2vlHc3LqQYSwoNGnIQ+F4RAJnATQVUxycSADxPQ6X3vAkyy9vQEgWBudqFEHbJ/2A9RglSlud4iN2XA8Uwfv4Ox5hF/8agADdsaONegO7bsG5Ts7TV1j+fZUlL155DFWukwM7nQmU641K5mf9A6yRmfX81fgM+wTQUTJuaUZUnrlOsWRVrbzwe2FPRAlN6qxT/O92Qxr7ECjKiZQt24pUOyFCMcohLbixhIjQIelDS8uA+CDbSX46Kd7TThf3QqGfQOHcfT0iIb6UI9/TpE/UQE5nmTkra8Wq962dsCCKFQR0/KNezLEKcXbUuMsEUMVHWhAqmJ4rpgMiCFX6QhT0JtjTS34vLmpV+7Baqx+Vjn9MtmMZ7aBdVEY2+oqO0Sk6Q01EjZ/Gb+POuDc75q35x/w7Rk1jMmYbvSnz3xPUCdjA</latexit>

Figure 6: (a) Recursive Model Index, and (b) Linear regression
training operations required per model.

Hardware design principle: Designing the accelerator specifi-
cally for training to ensure high energy efficiency as index
systems are often dedicated for the exclusive purpose and are
consistently operational. Updatable learned indexes must cease-
lessly perform training to keep up with the changes made by update
queries, which makes achieving high energy efficiency a primary
concern in designing the systems. Although employing a GPU is
seemingly a straightforward approach to attaining high throughput,
the advantage is offset by substantial energy consumption. Thus,
in this work, we choose FPGA as our platform. FPGA not only
allows us to customize accelerators for diverse algorithm/system
constraints and thus achieve high energy efficiency, but also it is
already available in the form of off-the-shelf cards, which facilitates
integration with the existing systems [25, 45]. To effectively utilize
FPGAs for changing training configurations and index model sizes,
we develop a hand-optimized design specifically for the proposed
memoization-based incremental training algorithm.
Software design principle: Enabling plug-and-play based run-
time software for generality and non-invasiveness. While
hardware acceleration can offer significant performance gains, the
proposed technique needs to be integrated seamlessly with existing
learned index systems. Thus, SIA cannot be specific to a certain up-
datable learned index. SIA’s system software is built by determining
the commonalities of existing updatable learned indexes and inte-
grating the FPGA-based accelerator with minimal modifications to
the existing software stack. To accomplish this objective, we utilize
the fact that although various learned indexes may have different
model structures and index management mechanisms, they all rely
on linear regression models as the fundamental kernel, which can
be readily separable from the other components of the index system.
Given this insight, we encapsulate the accelerator and its driver as
a linear model training library, which is customized for the case
where the training data incrementally grows or shrinks.

5 INCREMENTAL INDEX LEARNING
Reducing the training workload of the updatable learned index
structures is a key challenge tackled by this work. In this section, we
first provide the background on training hierarchically structured
learned indexes, which requires linear regression training using
matrix decomposition.We then introduce SIA’s novel index learning
algorithm, which effectively reduces the computational load of the
training process via reuse, without any changes to model quality.

Algorithm 1: Householder QR decomposition.
Input :𝑋 : Matrix of size𝑚 × 𝑛
Output :𝑅: Upper triangular matrix of size 𝑛 × 𝑛

1 for (𝑖 ← 0 to 𝑛 − 2) do
2 𝑐𝑜𝑙𝑖 = 𝑋 [𝑖 :𝑚, 𝑖]
3 𝑑 =

√︁
dot (𝑐𝑜𝑙𝑖 , 𝑐𝑜𝑙𝑖)

4 𝑟𝑒 𝑓𝑖 = cal_reflector (𝑐𝑜𝑙𝑖 , 𝑑)
5 𝛾 = −2 / dot(𝑟𝑒 𝑓𝑖 , 𝑟𝑒 𝑓𝑖)
6 for (𝑗 ← 𝑖 to 𝑛 − 1) do
7 𝑐𝑜𝑙 𝑗 = 𝑋 [𝑖 :𝑚, 𝑗]
8 𝛼 = 𝛾 × dot (𝑟𝑒 𝑓𝑖 , 𝑐𝑜𝑙 𝑗)
9 𝑐𝑜𝑙 𝑗 = axpy (𝛼 , 𝑟𝑒 𝑓𝑖 , 𝑐𝑜𝑙 𝑗)

10 𝑅 [𝑖, 𝑗] = 𝑋 [𝑖, 𝑗]
11 end
12 end

5.1 Hierarchical Model Index Training
Most learned indexes [11, 13, 26, 27, 33, 35, 36, 38, 57, 60, 61, 64, 65]
share a unique commonality by employing a hierarchical model
index structure, as illustrated in Figure 6(a). In the hierarchical
structure, the internal and leaf nodes have different roles: learned
models at internal nodes predict which node to traverse among the
children and learned models at leaf nodes predict the positions for
the queried keys. This structure splits the entire key range into a
series of small and possibly overlapping ranges, where each range
is assigned to a leaf node and learned with the associated model.
Note that due to update queries, the index structure can potentially
expand or shrink, as the total number of keys handled by the system
increases and decreases.

The hierarchical index is trained in two main ways: (1) cold
training from scratch, which is for new nodes created due to the in-
dex structure changes, and (2) updating pre-existing models within
the existing nodes due to key additions or deletions without any
alterations to the hierarchical index structure. Cold training is infre-
quent, typically triggered only when the prediction accuracy falls
below a set threshold. Mostly, keys are updated without the need
to add or remove any nodes. Hence, SIA focuses on optimizing the
latter, reserving conventional training techniques for the former.

5.2 Linear Regression Training
Linear regression (LR) models the relationship between variables by
fitting a linear equation to training data. Formally, given an input
𝑋 = ((𝑥11, .. , 𝑥1𝑝), .. , (𝑥𝑛1, .. , 𝑥𝑛𝑝)) and output 𝑌 = (𝑦1, .. , 𝑦𝑛), a
LR model is 𝑌 = 𝑋𝛽 where 𝛽 = (𝛽1, .. , 𝛽𝑝). Training determines 𝛽
for a given dataset. In the context of learned index that uses variable-
length string keys, the input to the models is a matrix𝑋 with 𝑛 rows
where each row is a numerically encoded key vector of length 𝑝 ,
and 𝑌 (output) is a vector of integer values that represent the keys’
positions in the sorted key array. Even for updating the pre-existing
models, the entire 𝑋 and 𝑌 are required to retrain all the models
traversed in the hierarchical structure and determine their new
𝛽𝑠 . After retraining, the index for a given key can be predicted by
performing a series of dot products between the traversed model
input 𝑋 and their corresponding 𝛽𝑠 .
Learning the parameters. Every 𝛽 can be obtained by invers-
ing the matrix 𝑋 and multiplying it with the output vector 𝑌 (i.e.,

Q1,2

Q1,3

Q1,1

Q1,4

Q2,1

Q2,2

Q3,1

X2

X3

X1

X4

R1,1

R1,2

R1,3

R1,4

R2,2

R2,1 R3,1✕

➊ 1st Stage ➋ 2nd Stage ➌ 3rd Stage

✕

✕

✕

✕

✕

✕

X

Figure 7: Parallel QR decomposition.

𝛽 = 𝑋 −1𝑌). However, computing the inverse matrix 𝑋 −1 can be
computationally prohibitive, especially when the matrix size is
large. To tackle the challenge, an existing alternative approach
commonly and widely used in practice is to employ a matrix fac-
torization method, known as QR decomposition (QRD) technique.
QRD decomposes a matrix 𝑋 into a multiplication of two matrices:
𝑄 , an 𝑛x𝑝-sized matrix with 𝑄𝑇𝑄 = 𝑄𝑄𝑇 = 𝐼 , and 𝑅, a 𝑝x𝑝-sized
upper triangular matrix.

Figure 6(b) illustrates the linear algebra operations required to
determine 𝛽 , leveraging the QRD technique. At first, the QRD of the
input dataset 𝑋 is performed, which produces 𝑄 and 𝑅. After the
decomposition, the following operations are performed: (1) comput-
ing the inverse of the upper triangular matrix (𝑅−1), (2) transposing
matrices (𝑅−1𝑇 and 𝑋𝑇), (3) multiplying the resulting small matri-
ces (𝑅−1𝑅−1𝑇), and (4) matrix-vector multiplication (𝑋𝑇𝑌). Note
that during training, only the 𝑅 matrix is required.
Householder QR decomposition. QR decomposition can be com-
puted using various algorithmic methods [14, 18, 23]. Among these
methods, we base SIA on the Householder algorithm [23] owing to
its relatively enhanced numerical stability, while SIA remains com-
patible with other alternatives due to their algorithmically similar
traits. Algorithm 12 illustrates the Householder algorithm [23]. The
algorithm has two loops. In the outer loop, the algorithm iterates
over the columns of the input matrix and calculates a vector, called a
reflector (𝑟𝑒 𝑓𝑖), and a scalar value 𝛾 . For each column, the inner loop
visits all the columns located on the right of the current column
one by one, and updates the visiting column while producing the
𝑅 [𝑖] [𝑗] values. The nature of this process is fundamentally serial.
Parallelizing QR decomposition. Vanilla QRD algorithms, in-
cluding Algorithm 12, execute sequentially by sweeping through
the columns of an input matrix and gradually filling the rows and
columns of the 𝑄 and 𝑅 matrices, respectively. Thus, QRD can be
slow for large matrices, as is the case with learned index. As the
number of keys grows, the height of the key matrix𝑋 also increases
(𝑛 × 𝑝 matrix where 𝑛 » 𝑝), making it a tall-and-skinny matrix.

Prior works [6, 16, 47] offer a parallelization mechanism cus-
tomized for tall-and-skinny matrices. The parallelization mecha-
nism exploits a mathematical property of orthogonal matrix 𝑄 that
its transpose is equal to its inverse matrix, as depicted with an ex-
ample in Figure 7. Let 𝑋 be an input matrix for an LR model within

Q

Q∆t

Qt+1X

X∆t

Qt
Rt✕

QRD at time 0

QRD at time t

QRD at time t+1

R

R∆t

Rt Rt+1Rt-1

R∆t

✕

✕

✕✕

Q∆t+1
R∆t+1

X∆t+1

R∆t+1

Figure 8: Memoized QR decomposition.

Algorithm 2: Incremental index learning algorithm.
Input :𝑀𝑜𝑙𝑑 : Current linear models

𝑋𝑜𝑙𝑑 : Current key matrices
𝑋Δ: Newly inserted key matrices
𝑌𝑜𝑙𝑑 : Current index vectors
𝑅𝑜𝑙𝑑 : Memoized R matrices

Output :𝑀𝑛𝑒𝑤 : Updated linear models
𝑋𝑛𝑒𝑤 : Updated key matrices
𝑌𝑛𝑒𝑤 : Updated index vectors
𝑅𝑛𝑒𝑤 : Newly memoized R matrices

1 Initialize𝑀𝑛𝑒𝑤 ← ∅, 𝑋𝑛𝑒𝑤 ← ∅, 𝑅𝑛𝑒𝑤 ← ∅
2 while (𝑚 ∈ 𝑀𝑜𝑙𝑑) do
3 𝑚𝑖𝑑 ←𝑚.𝑚𝑜𝑑𝑒𝑙_𝑖𝑑
4 𝑋𝑛𝑒𝑤 [𝑚𝑖𝑑] ← concat (𝑋𝑜𝑙𝑑 [𝑚𝑖𝑑], 𝑋Δ [𝑚𝑖𝑑])
5 𝑌𝑛𝑒𝑤 [𝑚𝑖𝑑] ← calc_index(𝑌𝑜𝑙𝑑 [𝑚𝑖𝑑], 𝑋𝑛𝑒𝑤 [𝑚𝑖𝑑])
6 𝑡𝑚𝑝 = (𝑋𝑛𝑒𝑤 [𝑚𝑖𝑑])𝑇 × 𝑌𝑛𝑒𝑤 [𝑚𝑖𝑑]
7 𝑅Δ ← QR(𝑋Δ [𝑚𝑖𝑑])
8 𝑅𝑡𝑚𝑝 ← concat(𝑅𝑜𝑙𝑑 [𝑚𝑖𝑑], 𝑅Δ)
9 𝑅𝑛𝑒𝑤 [𝑚𝑖𝑑] ← QR(𝑅𝑡𝑚𝑝)

10 𝛽 = ((𝑅𝑛𝑒𝑤 [𝑚𝑖𝑑])−1 × ((𝑅𝑛𝑒𝑤 [𝑚𝑖𝑑])−1)𝑇) × 𝑡𝑚𝑝

11 𝑀𝑛𝑒𝑤 [𝑚𝑖𝑑] .𝛽 ← 𝛽

12 end

the tree. 𝑋 is decomposed through three steps: (1) 𝑋 is vertically
split into smaller sub-matrices (𝑋1, 𝑋2, 𝑋3, 𝑋4) and decomposed into
QR matrices in parallel; (2) the QR decomposition is performed on
the vertically concatenated 𝑅 matrices (concat(𝑅1,1, 𝑅1,2) and con-
cat(𝑅1,3, 𝑅1,4)); (3) finally, the last QR decomposition is applied over
concat(𝑅2,1, 𝑅2,2) to produce 𝑅3,1. The resulting 𝑅3,1 is mathemati-
cally equivalent to 𝑅, obtainable by decomposing the 𝑋 as a whole
without parallelization.

5.3 SIA’s Incremental Index Learning
Memoized QRD via computation reuse. Exploiting the math-
ematical insight of parallelized QRD, we modify the vanilla QRD
that incurs a heavy amount of computation and devise a memoized
QRD. Figure 8 shows the memoized QRD algorithm. We exclu-
sively consider the case that the number of keys grows due to the
insert queries1. When a learned index is retrained, we require the
𝑅 matrix corresponding to the current 𝑋 . To do so, we memoize
the computed 𝑅 matrix in memory at every retraining invocation
(𝑅𝑡). When a retraining is invoked, the rows of collected additional

1We will discuss the delete query handling in Section 6.4.

Time

Figure 9: Increasing retraining time as the total number of
keys increases with CPU-based memoized QRD on SIndex.
For comparison, the shaded lines depict the results presented
in Figure 1.

Figure 10: Breakdown of linear model training runtime.

keys 𝑋Δ𝑡+1 is decomposed. Then, similar to the parallelized QRD,
we concatenate the 𝑅𝑡 and 𝑅Δ𝑡+1, and perform one more QRD to
obtain the final 𝑅𝑡+1. Now, 𝑅𝑡+1 is used for linear model training
and cached in memory for the next retraining run. Note that SIA’s
QRD algorithm involves only two small QR decompositions, which
significantly reduces the compute load by reusing the performed
computations. Moreover, the size of each 𝑅 matrix is 𝑝 × 𝑝 where
𝑝 is the key length, thus is very small and does not incur large
memory footprint overhead. For instance, with a key length of 96,
the size of 𝑅 is merely 72 KB (=96×96×8).
SIA’s incremental index learning algorithm. SIA’s incremental
index learning algorithm uses the memoized QRD to train the
models in the updatable learned indexes. Algorithm 12 describes
SIA’s training process. The algorithm loops over the list of linear
models in the hierarchical structure, which need to be updated. It
concatenates the existing keys 𝑋𝑜𝑙𝑑 with new keys 𝑋Δ to obtain
𝑋𝑛𝑒𝑤 , calculates indexes for the new keys to update𝑌𝑜𝑙𝑑 with𝑌𝑛𝑒𝑤 ,
and computes the (𝑋𝑛𝑒𝑤)𝑇𝑌𝑛𝑒𝑤 . Then, the algorithm performs the
memoized QRD, which results in 𝑅𝑛𝑒𝑤 . Using 𝑅𝑛𝑒𝑤 , the algorithm
obtains the 𝛽 and updates the model parameters with the new 𝛽 .
The obtained 𝑅𝑛𝑒𝑤 is memoized for next retrainings. The same
training process is repeated until the models of all leaf and internal
nodes in the index structure are updated.
Limitation of software-only solution.We observe that the SIA’s
learning algorithm already substantially reduces the computational
cost of training the learned index, even when implemented in soft-
ware without hardware acceleration. Figure 9 shows the improved
training time with the proposed memoized algorithm. Compared
to the baseline reported in Figure 1, which is presented as dimmed
lines in Figure 9, the retraining time is reduced for all the evaluated

(a)

Sc
ra
tc
hp
ad

Sy
st
ol
ic
 A
rr
ay

Sc
ra
tc
hp
ad

Inner Loop
PEN

PU1

PUM

Q
RD
 U
ni
t C
on
tr
ol
le
r

Reflector
Buffer

Scalar
Register

M
at
rix
 B
uf
fe
r

R
M
at
rix
 B
uf
fe
r

Concat

Inner Loop
PE1

Inner Loop
PE2

Outer Loop
PE

(b)

5
mid
△R
mid
△R

Ac
ce
le
ra
to
r

Co
nt
ro
lle
r

QRD Unit

Systolic
Array

Scratchpad

DRAM

DRAM
Controller

D
M
A

Co
nt
ro
lle
r

Concat
4

Training Engine

tmpR

mid
△R

newR

Training
Thread

CPU

8

9
3

6

5

7

1

PCIe

mid

DRAM

2

FPGA

Transpose
Unit

mid
△R

mid
oldR

mid
△x

mid
△x

0
oldR

1
oldR

mid
oldR

Figure 11: (a) SIA’s system where the CPU runs the training thread to issue jobs to the accelerator. Accelerator executes the
training operations on the training engine; (b) Microarchitecture of QR decomposition unit.

key lengths, as reflected by the slopes of line graphs. Moreover,
this shortens the retraining interval, as shown in Figure 9 report-
ing a greater number of data points (markers), each corresponding
to a retraining. However, Figure 9 also shows that the resulting
reduction in training time is insufficient, still extending up to 200s.
Acceleration target determination. This observation motivates
us to devise an efficient and performant hardware accelerator for
training. However, the first crucial step is to determine the accelera-
tion targets for offloading to the hardware. For this purpose, we first
characterize the core compute kernels of training. Figure 10 shows
the results as we vary the key length from 16 to 96.We look into four
kernels: (1) training data matricization, (2) QR decomposition, (3) R
matrix inverse calculation and matrix-matrix multiplication, and
(4) matrix-vector multiplication. As the data matricization is mostly
memory copy, it needs to be performed by CPU. We also rule out
matrix-vector multiplication from the acceleration targets since it
requires a memory copy for the entire 𝑋 matrix from host to FPGA.
To this end, this work focuses on accelerating QR decomposition,
R inverse, and GEMM operations on the FPGA.

6 SIA SYSTEM DESIGN
While SIA employs the incremental learning algorithm to reduce
the computation load, we enhance this algorithmic approach by in-
corporating an FPGA accelerator and customized runtime software
to further accelerate SIA’s training. We first describe the overview
of SIA’s system, and then, elaborate each component in detail.

6.1 FPGA-Accelerated Training Infrastructure
FPGAs have been commonly used as a successful platforms for
acceleration [39, 40, 46, 50] and are even deployed in cloud data-
centers [48]. Figure 11(a) depicts the SIA system accelerated using
FPGA. As in existing learned index systems, SIA employs a multi-
core CPU that can serve both inference and training. However,
SIA also comes with an FPGA accelerator to offload training com-
putation. We chose FPGA as the acceleration platform owing to
its customizability to index-specific algorithms and high energy

efficiency, which is crucial for index systems since trainings are con-
sistently conducted throughout their lifespan. Unlike the existing
systems, SIA only runs a single training thread to not only compute
the non-accelerated memory-bound kernels, but also manage the
data transfer between host and FPGA and control the accelerator
invocations. The training thread iterates over a list of linear models
within the hierarchical structure and initiates the retrainings of
these models one by one on available Training Engines (TEs). To
train a model, the newly inserted keys accumulated in the buffer
(𝑋Δ) are first copied from host to FPGA. FPGA’s off-chip memory
maintains an array of 𝑅𝑜𝑙𝑑 matrices, which are memoized from the
previous retraining runs. In the figure, the superscript𝑚𝑖𝑑 on the 𝑅
and𝑋 matrices refers to the model ID. After the memory copy from
the host to FPGA is completed, the training thread sets a control
register in the accelerator controller, scheduling the training com-
putation to an available TE. The training thread is also responsible
for updating the model parameters, which occurs repeatedly during
runtime, allowing the index to integrate new keys.

6.2 Accelerator Architecture
Training Engine. Figure 11(a) also depicts the TE architecture.
The first computation performed by TE is the SIA’s QRD algorithm
described in Section 5.2. The TE feeds 𝑋Δ to the QRD unit. It then
obtains the 𝑅Δ, which is concatenated with the memoized 𝑅𝑜𝑙𝑑 in
the scratchpad memory to produce the 𝑅𝑡𝑚𝑝 . This 𝑅𝑡𝑚𝑝 is then fed
to the QRD unit as an input that produces 𝑅𝑛𝑒𝑤 . The next step is to
perform 𝑅𝑛𝑒𝑤 matrix inversion and matrix-matrix multiplication
(i.e., GEMM) between the inverse and its transpose. We exploit
a parallelized matrix inverse algorithm, Heller’s algorithm [22],
which effectively converts a matrix inverse into a series of recursive
GEMMs. As we transform all needed operations into a series of
GEMMs, a systolic-array accelerator equipped with a transpose
unit can complete all the necessary kernel executions. Once the
computation is completed, the accelerator controller uses a control
flag to inform the training thread about the completion.

QRD Unit. Due to its computational intensity in mathematical
problems, QRD has been a target for hardware acceleration [6, 30,
49]. We devise the architecture of our QRD unit inspired by an exist-
ing QRD accelerator [6], which executes the Householder algorithm
described in Algorithm 12. Figure 11(b) shows the microarchitec-
ture of the QRD unit in each Training Engine. QRD unit constitutes
an array of Processing Units (PUs), each of which executes a QRD.
The results of PUs are concatenated and stored back to the matrix
buffer for the next stage of QRD (Figure 7). Each PU first gets its
input data from scratchpad memory (𝑋Δ or 𝑅Δ) and stores them
in the matrix buffer. Then, the outer loop in Algorithm 12 is per-
formed at the “Outer Loop PE”, which calculates the reflector and
𝛾 . These two inputs are sent to a set of "Inner Loop PEs", which are
responsible for calculating 𝑅𝑛𝑒𝑤 [𝑖] [𝑗] for different columns in par-
allel. Each “Outer Loop PE” and “Inner Loop PE” is equipped with a
vector of multiply-and-accumulate (MACC) units for dot products.
The resulting 𝑅𝑛𝑒𝑤 matrix is sent to the scratchpad memory and
replaces 𝑅𝑜𝑙𝑑 for future retrainings.

6.3 Runtime Software Interface
As emphasized in Section 5.1, in designing the SIA system, we
leverage a commonality of most learned indexes that they use linear
regression as their backend machine learning models. This unique
property enables us to build an abstraction between various learned
indexes and our hardware accelerator solution. Hence, SIA could
be readily adopted by any linear model-based learned indexes.

To transparently develop the abstraction and facilitate the use
of underlying acceleration solution, we encapsulate the SIA ac-
celerator along with its device driver and accelerator invocation
runtime software as a library. In fact, as existing learned index
systems often employ LAPACK, a famous linear algebra library, we
propose SIA’s interfaces to be equivalent to the LAPACK’s, so that
the integration of SIA with the existing systems becomes straight-
forward. The runtime interface of SIA includes two functions: (1)
cold_train: a function for full model training with key matrix and
key’s position vector, and (2) incre_train: a function for incremen-
tal learning with memoization that takes the memoized 𝑅 matrix
as an additional argument. These two functions closely resemble
the LAPACK’s gels function, enabling existing updatable learned
indexes to leverage SIA’s incremental index learning algorithm and
hardware acceleration with minimal software modifications.

6.4 Lazy Delete Query Handling
While this paper has focused on the insert query handling thus far,
updatable learned indexes must be able to handle delete queries as
well. Conventional updatable learned indexes handle these delete
queries through retraining, similarly to the insert queries. In con-
trast, our incremental learning algorithm exploits a memoization
technique, which relies on the assumption that the existing keys
used to compute the memoized 𝑅 matrix are not changed. There-
fore, the removal of keys from the index inevitably forces SIA to
discard the memoized 𝑅 matrix and necessitates a cold training,
which undercuts the advantages of our proposed technique.

To tackle this problem, we employ a lazy delete handling tech-
nique where the deleted keys are simply flagged as “deleted”, yet the
information of these deleted keys still remains in the memoized 𝑅

matrices. This way, our incremental training method remains effec-
tive during retraining. It is important to note, however, that upon
marking as “deleted”, the key string and associated value data are
immediately erased from the indexes for security purposes. Memo-
ized R matrices for the “deleted” keys are eliminated during cold
training, where the models are trained from scratch without utiliz-
ing the memoized matrices. Note that our lazy deletion technique
does not affect the functionality of indexes, but only influences per-
formance, since deleted-yet-unremoved information would lower
the prediction accuracy and end up increasing the linear search cost
for mispredicted accesses. However, we observe that lazy deletion
has a marginal impact on performance, with less than 5% overhead.

6.5 Implication of Node Split and Merge
The hierarchical structure of learned index undergoes structural
modifications through either split ormerge, as new keys are inserted
or deleted. Model split involves partitioning the keys assigned to a
node into two nodes when the accuracy of the corresponding model
drops, while model merge combines two nodes into one when both
have sufficiently high accuracy. SIA employs the same threshold
determination mechanism for split and merge as the default learned
index system, without any modifications. Note that SIA should
perform cold trainings for split nodes as they lack memoized 𝑅

matrices, while for merged nodes, SIA can merge the 𝑅 matrices
and use the merged 𝑅 matrix for further incremental training.

7 EVALUATION
To evaluate the effectiveness of SIA, we use two open-source bench-
mark suites, YCSB and Twitter cache trace, using two real-world
datasets, Amazon review and MemeTracker. We evaluate through-
put, system-level energy efficiency, and memory usage of SIA-
accelerated learned indexes, compared to other index structures.

7.1 Methodology
YCSB. To evaluate SIA, we primarily use a real-world key-value
store benchmark suite, YCSB [8]. YCSB contains six diverse work-
loads (A-F), each characterized by its unique mix of query types.
As SIA is for updatable learned index systems, we focus on the two
workloads among the six, which include insert queries: (D) read
latest that tend to have read queries for recently inserted keys,
along with roughly the 5% of insert queries, and (E) short ranges
that consists of 95% range queries, and 5% of insert queries. Note
that while YCSB’s query compositions mirror real-world applica-
tion patterns, the key lengths do not. To better emulate real-world
key-value stores, we employ two genuine string datasets: Amazon
review data and the MemeTracker dataset. Amazon review data
(amaz) [44] is collected from user reviews on products from Ama-
zon with the user IDs as keys of length 12. MemeTracker dataset
(meme) [32] comprises quotes and phrases collected from the web
and online news URLs referring to them with the URLs as keys
of length 128. We use these datasets since they are widely used in
prior works [61, 66, 70] to evaluate the string-key key-value stores.
Additionally, we use a randomly synthesized dataset (rand) with a
uniform key distribution.
Twitter cache trace. Complementing YCSB, we also utilize the
Twitter cache trace [69] to enrich our experimental methodology.

Table 1: Hardware specifications and resource utilization of
the Intel Arria 10 with the configuration of with 4 TEs, each
having 2 PUs, and each PU containing 3 Outer Loop PEs.

ALM RAM Blk PLL Blk RAM DSP
Used 278,759 2,123 48 4,648,464 244
Total 427,200 2,713 176 55,562,240 1,518

Utilization 65.3% 78.3% 27.3% 8.4% 16.1%

Intel
Arria 10
GX-1150

Wormhole
Cuckoo Trie

ALEX
ALEX-SIA

LIPP
LIPP-SIA

SIndex
SIndex-SIA

(a) YCSB (b) Twitter
Workloads Clusters

D-rand
E-rand

D-amaz
E-amaz

D-meme

E-meme
12.2 15.5 31.1 37.3

Figure 12: Throughput comparison of non-learned (conven-
tional) and learned indexes for YCSB and Twitter cache trace.

Twitter cache trace constitutes a pile of indexing traces collected
from Twitter clusters, which allows it to concurrently serve as a
workload and a dataset. Among the provided 54 cluster traces, we
specifically select four cluster traces with a relatively significant
volume of update queries, each of which exhibits a distinct query
composition, represented by the following tuples of (cluster ID,
update query ratio): (12.2, 43%), (15.5, 59%), (31.1, 56%), (37.3, 42%).
Baselines. As baselines, we use three state-of-the-art learned in-
dexes, ALEX [11], LIPP [64], and SIndex [61], all of which are chosen
for their open-source implementations available at our disposal.
We added the variable-length string key and multi-threading sup-
port on top of ALEX and LIPP, as they lack the features. We built
their corresponding SIA-accelerated counterparts by integrating the
implementation with our SIA library. Note that while the three sys-
tems have disparities in how to initially build the indexes through
bulk loading (e.g., top-down vs. bottom-up), it does not affect our
performance evaluations because the index building only requires
cold retrainings, which cannot exploit the proposed incremental
index learning algorithm.

Furthermore, we include comparisons between SIA-accelerated
learned indexes and two state-of-the-art non-learned indexes,Worm-
hole [66] and Cuckoo Trie [71], all of which support variable-length
string keys. Wormhole [66] is an optimized B-tree in which part of
the tree is replaced with a trie utilizing hashes. Cuckoo Trie [71]
is a hash-based trie index that achieves high performance through
overlapping memory accesses.
System specifications. The SIA-accelerated learned index systems
are equipped with a 16-core Intel Xeon Gold 6226R and 128 GB
DRAM. For building SIndex-GPU, GPU-accelerated variant of SIn-
dex, we employ NVIDIA GeForce RTX 2080 TI GPU along with the

Tree traversal
Hashing

ML inference
Local search

Buffer search
Range scan

10.7 27.3

(a) YCSB-D (b) YCSB-E

Figure 13: Latency breakdown for YCSB D/E workloads using
rand dataset. Range scan includes buffer search for YCSB-E.

same CPU and memory configuration. SIndex-GPU uses CuSolver
library in CUDA version 11.7. For the runtime measurement of the
baseline learned index systems, we use a highly-optimized, parallel
linear algebra library, Intel Math Kernel Library (MKL) 2019.0.
FPGA platform details. Table 1 shows the hardware resource
specification of the evaluated FPGA, Intel Arria 10 GX-1150, and
its utilization when we program our accelerator on it. We develop
a custom accelerator controller on the programmable logic to inter-
face with the device’s main memory. We synthesize the hardware
with Quartus II v20.1, and achieve a frequency of 272 MHz.
Power measurement. To measure the end-to-end system power,
we use an off-the-shelf power meter, WATTMAN HPM-100A [2].
This power meter is placed between the power outlets and the
server, which are configured with various processor combinations,
including CPU-only, CPU-GPU, and CPU-FPGA setups. The mea-
sured power can be monitored per each second through the vendor-
provided software, which we average over the experiment runtime.

7.2 Experimental Results
7.2.1 Throughput. Figure 12 shows the throughput comparison
results among two non-learned indexes (Wormhole and Cuckoo
Trie), three learned indexes (ALEX, LIPP, SIndex), and their SIA-
accelerated counterparts (ALEX-SIA, LIPP-SIA, SIndex-SIA).
YCSB results. Figure 12(a) illustrates the results using two YCSB
workloads across three datasets: rand, amaz, and meme. Although
there is some variability in the results, we observe a consistent
trend that the SIA-accelerated indexes outperform the learned index
baselines, as well as the conventional, non-learned index baselines.
This translates to approximately an average 2.6× throughput im-
provement over CPU-only learned index systems. This substantial
enhancement is attributed to SIA’s utilization of both iterative learn-
ing algorithm and customized hardware accelerator. This approach
dedicates the majority of CPU cores to inferences, while the system
allocates only one training thread for memory-bound kernels and
accelerator management, not performing any expensive operations.
Twitter cache trace results. Figure 12(b) reports the throughput
results for Twitter cache trace. Twitter cache trace has diverse
key lengths that range from 19 to 82. As the key length directly
affects the computational load, there are variations among clusters
in the throughput results. On average, the SIA-accelerated learned
indexes offer 3.4× throughput improvement over CPU-only systems,

Figure 14: Memory consumption of traditional (non-learned)
indexes, baseline learned indexes, and learned indexes with
SIA. Key and value data is excluded.

representing a more substantial performance improvement than
observed in the YCSB scenario. The larger gain comes from that the
dataset of Twitter cache trace has generally longer keys, making the
keymatrix larger, which can be better parallelized by the accelerator.
Overall, the results suggest that SIA is an effective solution for
enabling updatable string-key learned indexes without suffering
from performance bottlenecks caused by training computations.

7.2.2 Query Latency. To understand the source of performance
improvements, we further analyze the query latency for YCSBwork-
load (D) and (E), and present the breakdown results in Figure 13.
Non-learned indexes,Wormhole and Cuckoo Trie, require traversal
through their tree structures, which often involve multiple DRAM
accesses, leading to high query latency. In contrast, learned indexes
(SIndex and SIndex-SIA) require much fewer memory accesses for
graph traversal. In fact, the depth of hierarchical learned index
structure of SIndex is only two, which imposes significantly lower
memory access overhead than the alternatives. As the cost of these
benefits, the learned indexes must pay other costs such asML in-
ference, local search in case of misprediction, and buffer search
for seeking the “not-yet-trained” keys. The outcomes of the study
reveal that the buffer search is the largest overhead, especially for
SIndex, because it piles up a large number of keys in the buffer due
to slow retraining. On the contrary, SIA accelerates the retrainings
and frequently empties the buffers of SIndex-SIA, which substan-
tially reduces the buffer search latency, directly leading to the total
latency reduction.

7.2.3 Memory Usage. Figure 14 reports the memory usage of five
baselines (learned and non-learned) and three SIA-accelerated learn-
ed indexes. To specifically assess the memory usage difference
among the indexes, we exclusively measure the memory usage
for indexes, not key and values. Learned indexes typically require
significantly less memory because they efficiently compress the
key-position mapping information from hierarchical data struc-
tures into a series of compact machine learning models. SIA incurs
marginal overhead in memory usage as it must additionally store
the 𝑅 matrices for memoized computation. However, the average
overhead measured in our experiments is merely 6.0%, which is
negligible and justifiable with the significant performance improve-
ments.

7.2.4 Ablation Study. For a more thorough analysis of the fac-
tors contributing to performance improvements, we focus on the

(a) YCSB (b) Twitter
Workloads Clusters

D-rand
E-rand

D-amaz
E-amaz

D-meme

E-meme
12.2 15.5 31.1 37.3

SIndex-CPU
SIndex-SIA-HWSIndex-SIA-SW SIndex-Ideal
SIndex-GPU

Figure 15: Ablation study results using SIndex variants.

SIA-accelerated SIndex and conduct an ablation study. Figure 15
compares the throughput of the five SIndex variants. SIndex-GPU
is a system offloading retraining to GPU, while SIndex-Ideal is a sys-
tem equipped with an infinitely fast accelerator that trains models
in zero time. On the other hand, SIndex-SIA-SW and SIndex-SIA-
HW are the SIA-accelerated SIndex systems with algorithm-only
and algorithm-hardware co-designed SIA solutions, respectively.
SIndex-GPU achieves 2.3× throughput improvement compared to
the default CPU baseline, SIndex-CPU. While SIndex-SIA-SW of-
fers 1.7× improvement over SIndex-CPU, the benefit is 56.5% lower
than that of SIndex-GPU, which demonstrates the limitation of the
software-only solution. However, SIndex-SIA-HW achieves 2.0×
additional improvement over SIndex-SIA-SW, closely approach-
ing to SIndex-Ideal, 11.6% higher than what SIndex-GPU offers,
which presents the effectiveness of hardware acceleration. These
results show the effectiveness and necessity of SIA as a solution
that synergizes algorithm and hardware designs for acceleration.

7.2.5 System Power Consumption. We choose FPGA due to its
capability to tailor the hardware architecture for the given task,
incremental training, delivering notably higher energy efficiency
compared to GPU. Figure 16 illustrates the system-level power
consumption of SIndex variants: SIndex-CPU, SIndex-GPU, and
SIndex-SIA, which demonstrates the advantages of FPGA acceler-
ation in power efficiency. We observe that the CPU-only system,
SIndex-CPU, operates at 150W, with a significant portion of this
power attributed to CPU-based training. SIndex-GPU operates at
203W, dissipating 79W for training at GPU and the remaining 123W
for the CPU-based system. In contrast, SIndex-SIA, a CPU-FPGA
heterogeneous system, consumes only 126W as the FPGA accelera-
tor adds only 3W to the CPU-only system, which demonstrates the
power efficiency of the FPGA.

7.2.6 Throughput-per-watt. As noted in the power consumption
analysis, if we only consider the accelerator itself instead of the
entire system, FPGA offers 28× less power consumption compared
to GPU. However, when we consider the system-level power con-
sumption with their throughput together, SIndex-SIA achieves only
1.76× higher throughput-per-watt compared to SIndex-GPU. While
the gain may be deemed modest, the 76% gap could translate into
substantial cost disparities in terms of actual monetary expendi-
ture since index systems tend to remain operational continuously,

Figure 16: Average power consumption of SIndex-CPU,
SIndex-GPU, and SIndex-SIA end-to-end systems. Vertical
lines indicate minimum and maximum power consumption.

Wormhole
Cuckoo Trie

ALEX
ALEX-SIA

LIPP
LIPP-SIA

SIndex
SIndex-SIA

Figure 17: Throughput of non-learned and learned indexes
for queries with different request distributions.

consistently dissipating considerable amounts of energy. These re-
sults suggest that for the given task, the continuous retrainings of
updatable learned indexes, FPGA is a more attractive option as an
acceleration platform compared to GPU.

7.2.7 Implication of Request Distributions. Figure 17 illustrates the
throughput of each index across six different request distributions
as used in prior works [5, 10]: sequential, zipfian, hotspot, exponent,
uniform and latest. Across all query distributions, learned indexes
accelerated with SIA consistently show significant performance
improvement, which ranges from 3.9× to 6.2× compared to the base-
lines. Note that zipfian, hotspot, and exponent distributions exhibit
skewed patterns, resulting in certain key ranges being accessed
more frequently than others, causing more node splits. As node
splits trigger cold trainings, it imposes performance overhead, while
we observe that its impact on the end throughput is negligible.

7.2.8 Implication of Lazy Delete Query Handling. We analyze the
impact of lazy delete query handling on the performance of SIA-
accelerated learned indexes. We configure the cold training interval
to various durations: 5, 30, 100, and 300 seconds, and sweep the
delete query ratio from 5% to 15%, filling the remaining queries
with read queries. We observe that at a deletion ratio of 5%, there
is a performance degradation of 3.2% when the training interval is
300 seconds. Meanwhile, with a deletion ratio of 10% and 15%, the
larger number of unhandled keys results in a greater performance
loss, which increases up 4.1% to 4.6%, respectively. Nonetheless,
the performance degradation remains at a marginal level, which
validates the viability of the lazy approach, particularly considering
the significant costs associated with complete cold training.

8 ADDITIONAL RELATEDWORK
Learned index structures. There has been a large body of prior
works [1, 9, 10, 12, 13, 26, 34, 41, 43, 54, 64, 73, 75, 76] for learned
index systems. RadixSpline [26] and PLEX [54] further optimize
learned index construction. Flood [43] and Tsunami [12] exploit the
learning approach for multi-dimensional indexes to automatically
optimize the index structure for the given data and query distri-
butions. On the other hand, SIA optimizes training via memoized
QRD algorithm enhanced by an accelerator and builds a system for
integration with learned index structure.
Learned index acceleration. Colin [75] builds and manages CPU
cache-friendly learned index structure on top of PGM-index, with
performing key insertions in place to better utilize the caching.
Anderson et al. [4] perform microarchitectural analysis of ALEX
on commodity CPU and show the impact of memory hierarchy
on read/write latency. Unlike these works that aim to benefit from
microarchitectural optimizations on the CPU, SIA devises iterative
QRD to leverage computation reuse and further enhances the index
system by offloading the training process to a separate accelerator.
QR decomposition accelerator. As the QR decomposition makes
up an essential building block of many modern applications, sev-
eral architectural design for accelerators has been studied in the
literature [6, 30]. Although the QRD unit is motivated from past
works, none of them use these in the context of learned index
systems. Moreover, SIA’s accelerator is designed to execute multi-
dimensional parallelism in the context of retraining models in
learned indexes, while QRD accelerator is a small function unit.

9 CONCLUSION
Thiswork offers SIA, an accelerated string-key learned index system.
These index structures require constant retraining of their machine
learning models to determine the mapping between keys and their
positions. SIA mitigates the bottleneck of the current systems that
incur huge overhead of training when the keys are updated. Train-
ing observes multi-fold issues, where it is inefficient to execute
on the CPU, is serial across runs as it writes to the model, and
cannibalizes CPU resources from inference queries. Based on these
insights, SIA enhances the learned index training by leveraging
the mathematical property that keys can be updated incrementally,
and thus, can benefit from computation reuse via memoization. SIA
further boosts this training on an energy-efficient FPGA accelerator
and relieves CPU resources for inference, collaboratively offering
significant speedup.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) (No.2024-00396013,
No.2022-0-01037, No.2018-0-00503) under the Graduate School of
Artificial Intelligence Semiconductor (IITP-2024-RS-2023-00256472),
Information Technology Research Center (ITRC) support program
(IITP-2024-2020-0-01795), andArtificial IntelligenceGraduate School
Program (KAIST) (No.2019-0-00075), all funded by the Korea gov-
ernment (MSIT).

REFERENCES
[1] Hussam Abu-Libdeh, Deniz Altınbüken, Alex Beutel, Ed H. Chi, Lyric Pankaj

Doshi, Tim Klas Kraska, Xiaozhou (Steve) Li, Andy Ly, and Chris Olston (Eds.).
2020. Learned Indexes for a Google-scale Disk-based Database. https://arxiv.org/
pdf/2012.12501.pdf

[2] ADpower. 2023. Wattman (HPM-100A). http://adpower21com.cafe24.com/shop2/
product/wattman-hpm-100a/17.

[3] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim Yaseen, Jin-Soo Kim,
and Seungryoul Maeng. 2016. ForestDB: A Fast Key-Value Storage System for
Variable-Length String Keys. IEEE Trans. Comput. 65, 3 (2016), 902–915.

[4] Mikkel Møller Andersen and Pinar Tözün. 2022. Micro-Architectural Analysis of
a Learned Index. In Proceedings of the Fifth International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management (Philadelphia, Pennsyl-
vania) (aiDM ’22). Association for Computing Machinery, New York, NY, USA,
Article 5, 12 pages. https://doi.org/10.1145/3533702.3534917

[5] Esmail Asyabi, Yuanli Wang, John Liagouris, Vasiliki Kalavri, and Azer Bestavros.
2022. A New Benchmark Harness for Systematic and Robust Evaluation of
Streaming State Stores. In Proceedings of the Seventeenth European Conference on
Computer Systems (Rennes, France) (EuroSys ’22). Association for Computing Ma-
chinery, New York, NY, USA, 559–574. https://doi.org/10.1145/3492321.3519592

[6] Jose M. Rodriguez Borbon, Junjie Huang, Bryan M. Wong, andWalid Najjar. 2021.
Acceleration of Parallel-Blocked QR Decomposition of Tall-and-Skinny Matrices
on FPGAs. ACM Trans. Archit. Code Optim. 18, 3, Article 27 (may 2021), 25 pages.
https://doi.org/10.1145/3447775

[7] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 3393–3404.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[9] Andrew Crotty. 2021. Hist-Tree: Those Who Ignore It Are Doomed to Learn. In
Conference on Innovative Data Systems Research (CIDR’21).

[10] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2020. From WiscKey
to Bourbon: A Learned Index for Log-Structured Merge Trees. In Proceedings of
the 14th USENIX Conference on Operating Systems Design and Implementation
(OSDI’20). USENIX Association, USA, Article 9, 17 pages.

[11] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Han-
tian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David
Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 969–984. https://doi.org/10.1145/3318464.3389711

[12] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-Dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (oct 2020), 74–86. https://doi.org/10.14778/
3425879.3425880

[13] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-Index: A Fully-
Dynamic Compressed Learned Index with Provable Worst-Case Bounds. Proc.
VLDB Endow. 13, 8 (apr 2020), 1162–1175. https://doi.org/10.14778/3389133.
3389135

[14] L. FOX, H. D. HUSKEY, and J. H. WILKINSON. 1948. NOTES ON THE SOLU-
TION OF ALGEBRAIC LINEAR SIMULTANEOUS EQUATIONS. The Quarterly
Journal of Mechanics and Applied Mathematics 1, 1 (01 1948), 149–173. https:
//doi.org/10.1093/qjmam/1.1.149 arXiv:https://academic.oup.com/qjmam/article-
pdf/1/1/149/5322943/1-1-149.pdf

[15] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In Proceedings of
the 2019 International Conference on Management of Data (Amsterdam, Nether-
lands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA,
1189–1206. https://doi.org/10.1145/3299869.3319860

[16] K. A. Gallivan, R. J. Plemmons, and A. H. Sameh. 1990. Parallel Algorithms
for Dense Linear Algebra Computations. SIAM Rev. 32, 1 (mar 1990), 54–135.
https://doi.org/10.1137/1032002

[17] Jian Gao, Xin Cao, Xin Yao, Gong Zhang, and Wei Wang. 2023. LMSFC: A Novel
Multidimensional Index Based on Learned Monotonic Space Filling Curves. Proc.
VLDB Endow. 16, 10 (aug 2023), 2605–2617. https://doi.org/10.14778/3603581.
3603598

[18] Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (third ed.).
The Johns Hopkins University Press.

[19] Tim Gubner, Viktor Leis, and Peter Boncz. 2021. Optimistically Compressed
Hash Tables & Strings in TheUSSR. SIGMOD Rec. 50, 1 (jun 2021), 60–67. https:
//doi.org/10.1145/3471485.3471500

[20] Milad Hashemi, Kevin Swersky, Jamie A. Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. 2018. Learning
Memory Access Patterns. arXiv:1803.02329 http://arxiv.org/abs/1803.02329

[21] Steffen Heinz, Justin Zobel, and Hugh E. Williams. 2002. Burst Tries: A Fast,
Efficient Data Structure for String Keys. ACMTransactions on Information Systems
20, 2 (2002), 902–915.

[22] Don Heller. 1978. A Survey of Parallel Algorithms in Numerical Linear Algebra.
SIAM Rev. 20, 4 (1978), 740–777. https://doi.org/10.1137/1020096

[23] Alston S. Householder. 1958. Unitary Triangularization of a Nonsymmetric
Matrix. J. ACM 5, 4 (oct 1958), 339–342. https://doi.org/10.1145/320941.320947

[24] Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind Arvind, and Sungjin Lee. 2020.
PinK: High-Speed in-Storage Key-Value Store with Bounded Tails. In Proceedings
of the 2020 USENIX Conference on Usenix Annual Technical Conference (USENIX
ATC’20). USENIX Association, USA, Article 12, 15 pages.

[25] Intel. 2023. Intel FPGA. https://www.intel.com/content/www/us/en/products/
details/fpga.html.

[26] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: A Single-Pass Learned
Index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management (Portland, Oregon) (aiDM ’20).
Association for Computing Machinery, New York, NY, USA, Article 5, 5 pages.
https://doi.org/10.1145/3401071.3401659

[27] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). As-
sociation for Computing Machinery, New York, NY, USA, 489–504. https:
//doi.org/10.1145/3183713.3196909

[28] Branimir Lambov. 2022. Trie Memtables in Cassandra. Proc. VLDB Endow. 15, 12
(aug 2022), 3359–3371. https://doi.org/10.14778/3554821.3554828

[29] Hai Lan, Zhifeng Bao, J. Shane Culpepper, and Renata Borovica-Gajic. 2023.
Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to
Design Choices. Proc. ACM Manag. Data 1, 2, Article 139 (jun 2023), 22 pages.
https://doi.org/10.1145/3589284

[30] Martin Langhammer and Bogdan Pasca. 2018. High-Performance QR Decompo-
sition for FPGAs. In Proceedings of the 2018 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (Monterey, CALIFORNIA, USA)
(FPGA ’18). Association for Computing Machinery, New York, NY, USA, 183–188.
https://doi.org/10.1145/3174243.3174273

[31] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. Recipe: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Comput-
ing Machinery, New York, NY, USA, 462–477. https://doi.org/10.1145/3341301.
3359635

[32] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-Tracking and
the Dynamics of the News Cycle. In Proceedings of the 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (Paris, France)
(KDD ’09). Association for Computing Machinery, New York, NY, USA, 497–506.
https://doi.org/10.1145/1557019.1557077

[33] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: A Fine-Grained
Learned Index Scheme for Scalable and Concurrent Memory Systems. Proc. VLDB
Endow. 15, 2 (oct 2021), 321–334. https://doi.org/10.14778/3489496.3489512

[34] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A
Learned Index Structure for Spatial Data. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2119–2133.
https://doi.org/10.1145/3318464.3389703

[35] Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan. 2023.
DILI: A Distribution-Driven Learned Index. Proc. VLDB Endow. 16, 9 (jul 2023),
2212–2224. https://doi.org/10.14778/3598581.3598593

[36] Baotong Lu, Jialin Ding, Eric Lo, Umar FarooqMinhas, and TianzhengWang. 2021.
APEX: A High-Performance Learned Index on Persistent Memory. Proc. VLDB
Endow. 15, 3 (nov 2021), 597–610. https://doi.org/10.14778/3494124.3494141

[37] Siqiang Luo, Subarna Chatterjee, Rafael Ketsetsidis, Niv Dayan, Wilson Qin,
and Stratos Idreos. 2020. Rosetta: A Robust Space-Time Optimized Range
Filter for Key-Value Stores. In Proceedings of the 2020 ACM SIGMOD Inter-
national Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2071–2086.
https://doi.org/10.1145/3318464.3389731

[38] Chaohong Ma, Xiaohui Yu, Yifan Li, Xiaofeng Meng, and Aishan Maoliniyazi.
2022. FILM: A Fully Learned Index for Larger-Than-Memory Databases. Proc.
VLDB Endow. 16, 3 (nov 2022), 561–573. https://doi.org/10.14778/3570690.
3570704

[39] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun Kumar,
and Hadi Esmaeilzadeh. 2018. In-RDBMS hardware acceleration of advanced
analytics. Proc. VLDB Endow. 11, 11 (jul 2018), 1317–1331. https://doi.org/10.
14778/3236187.3236188

[40] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-
bakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. 2016. TABLA: A unified

https://arxiv.org/pdf/2012.12501.pdf
https://arxiv.org/pdf/2012.12501.pdf
http://adpower21com.cafe24.com/shop2/product/wattman-hpm-100a/17
http://adpower21com.cafe24.com/shop2/product/wattman-hpm-100a/17
https://doi.org/10.1145/3533702.3534917
https://doi.org/10.1145/3492321.3519592
https://doi.org/10.1145/3447775
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3318464.3389711
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.14778/3389133.3389135
https://doi.org/10.1093/qjmam/1.1.149
https://doi.org/10.1093/qjmam/1.1.149
https://arxiv.org/abs/https://academic.oup.com/qjmam/article-pdf/1/1/149/5322943/1-1-149.pdf
https://arxiv.org/abs/https://academic.oup.com/qjmam/article-pdf/1/1/149/5322943/1-1-149.pdf
https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1137/1032002
https://doi.org/10.14778/3603581.3603598
https://doi.org/10.14778/3603581.3603598
https://doi.org/10.1145/3471485.3471500
https://doi.org/10.1145/3471485.3471500
http://arxiv.org/abs/1803.02329
https://doi.org/10.1137/1020096
https://doi.org/10.1145/320941.320947
https://www.intel.com/content/www/us/en/products/details/fpga.html
https://www.intel.com/content/www/us/en/products/details/fpga.html
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.14778/3554821.3554828
https://doi.org/10.1145/3589284
https://doi.org/10.1145/3174243.3174273
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/1557019.1557077
https://doi.org/10.14778/3489496.3489512
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.14778/3598581.3598593
https://doi.org/10.14778/3494124.3494141
https://doi.org/10.1145/3318464.3389731
https://doi.org/10.14778/3570690.3570704
https://doi.org/10.14778/3570690.3570704
https://doi.org/10.14778/3236187.3236188
https://doi.org/10.14778/3236187.3236188

template-based framework for accelerating statistical machine learning. In 2016
IEEE International Symposium onHigh Performance Computer Architecture (HPCA).
14–26. https://doi.org/10.1109/HPCA.2016.7446050

[41] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (sep 2020), 1–13. https://doi.org/10.14778/
3421424.3421425

[42] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and
Optimizing Learned Index Structures. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2789–2792.
https://doi.org/10.1145/3318464.3384706

[43] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-
ing Multi-Dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 985–1000.
https://doi.org/10.1145/3318464.3380579

[44] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Association for Computational Linguistics, Hong Kong, China, 188–197.
https://doi.org/10.18653/v1/D19-1018

[45] Nvidia. 2023. Nvidia Flex NIC with FPGA. https://www.nvidia.com/en-us/
networking/ethernet/innova-2-flex/.

[46] Jongse Park, Hardik Sharma, Divya Mahajan, Joon Kyung Kim, Preston Olds, and
Hadi Esmaeilzadeh. 2017. Scale-Out Acceleration for Machine Learning. In 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
367–381.

[47] Robert J Plemmons. 1988. Parallel Block Schemes for Large-Scale Least-Squares
Computations. Urbana: University of Illinois Press.

[48] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2015. A Reconfigurable
Fabric for Accelerating Large-Scale Datacenter Services. IEEE Micro 35, 3 (2015),
10–22. https://doi.org/10.1109/MM.2015.42

[49] Abid Rafique, Nachiket Kapre, and George A. Constantinides. 2012. Enhancing
performance of Tall-Skinny QR factorization using FPGAs. In 22nd International
Conference on Field Programmable Logic and Applications (FPL). 443–450. https:
//doi.org/10.1109/FPL.2012.6339142

[50] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung
Kim, Chenkai Shao, Asit Mishra, and Hadi Esmaeilzadeh. 2016. From high-
level deep neural models to FPGAs. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1–12. https://doi.org/10.1109/MICRO.
2016.7783720

[51] Yufan Sheng, Xin Cao, Yixiang Fang, Kaiqi Zhao, Jianzhong Qi, Gao Cong, and
Wenjie Zhang. 2023. WISK: A Workload-Aware Learned Index for Spatial Key-
word Queries. Proc. ACM Manag. Data 1, 2, Article 187 (jun 2023), 27 pages.
https://doi.org/10.1145/3589332

[52] Jiachen Shi, Gao Cong, and Xiao-Li Li. 2022. Learned Index Benefits: Machine
Learning Based Index Performance Estimation. Proc. VLDB Endow. 15, 13 (sep
2022), 3950–3962. https://doi.org/10.14778/3565838.3565848

[53] Benjamin Spector, Andreas Kipf, Kapil Vaidya, Chi Wang, Umar Farooq Minhas,
and Tim Kraska. 2021. Bounding the Last Mile: Efficient Learned String Indexing.
arXiv:2111.14905 [cs.DB]

[54] Mihail Stoian, Andreas Kipf, Ryan Marcus, and Tim Kraska. 2021. Towards
Practical Learned Indexing. arXiv:2108.05117 [cs.DB]

[55] Jinghan Sun, Shaobo Li, Yunxin Sun, Chao Sun, Dejan Vucinic, and Jian Huang.
2023. LeaFTL: A Learning-Based Flash Translation Layer for Solid-State Drives.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 442–456. https://doi.org/10.1145/3575693.3575744

[56] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index: A Compre-
hensive Experimental Evaluation. Proc. VLDB Endow. 16, 8 (jun 2023), 1992–2004.
https://doi.org/10.14778/3594512.3594528

[57] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie
Wang, and Haibo Chen. 2020. XIndex: A Scalable Learned Index for Multi-
core Data Storage. In Proceedings of the 25th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (San Diego, California) (PPoPP
’20). Association for Computing Machinery, New York, NY, USA, 308–320.
https://doi.org/10.1145/3332466.3374547

[58] Yulai Tong, Jiazhen Liu, Hua Wang, Ke Zhou, Rongfeng He, Qin Zhang, and
Cheng Wang. 2023. Sieve: A Learned Data-Skipping Index for Data Analytics.

Proc. VLDB Endow. 16, 11 (jul 2023), 3214–3226. https://doi.org/10.14778/3611479.
3611520

[59] Shengzhe Wang, Zihang Lin, Suzhen Wu, Hong Jiang, Jie Zhang, and Bo Mao.
2023. LearnedFTL: A Learning-based Page-level FTL for Improving Random
Reads in Flash-based SSDs. arXiv:2303.13226 [cs.AR]

[60] Yifan Wang, Haodi Ma, and Daisy Zhe Wang. 2022. LIDER: An Efficient High-
Dimensional Learned Index for Large-Scale Dense Passage Retrieval. Proc. VLDB
Endow. 16, 2 (oct 2022), 154–166. https://doi.org/10.14778/3565816.3565819

[61] Youyun Wang, Chuzhe Tang, Zhaoguo Wang, and Haibo Chen. 2020. SIndex: A
Scalable Learned Index for String Keys. In Proceedings of the 11th ACM SIGOPS
Asia-Pacific Workshop on Systems (Tsukuba, Japan) (APSys ’20). Association for
Computing Machinery, New York, NY, USA, 17–24. https://doi.org/10.1145/
3409963.3410496

[62] Zheng Wang and Michael O’Boyle. 2018. Machine Learning in Compiler Opti-
mization. Proc. IEEE 106, 11 (2018), 1879–1901. https://doi.org/10.1109/JPROC.
2018.2817118

[63] Xingda Wei, Rong Chen, Haibo Chen, and Binyu Zang. 2021. XStore: Fast RDMA-
Based Ordered Key-Value Store Using Remote Learned Cache. ACM Trans.
Storage 17, 3, Article 18 (aug 2021), 32 pages. https://doi.org/10.1145/3468520

[64] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing.
2021. Updatable Learned Index with Precise Positions. Proc. VLDB Endow. 14, 8
(apr 2021), 1276–1288. https://doi.org/10.14778/3457390.3457393

[65] Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun Jason
Xue. 2022. NFL: Robust Learned Index via Distribution Transformation. Proc.
VLDB Endow. 15, 10 (jun 2022), 2188–2200. https://doi.org/10.14778/3547305.
3547322

[66] Xingbo Wu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Ordered Index
for In-Memory Data Management. In Proceedings of the Fourteenth EuroSys
Conference 2019 (Dresden, Germany) (EuroSys ’19). Association for Computing
Machinery, New York, NY, USA, Article 18, 16 pages. https://doi.org/10.1145/
3302424.3303955

[67] Giorgos Xanthakis, Giorgos Saloustros, Nikos Batsaras, Anastasios Papagiannis,
and Angelos Bilas. 2021. Parallax: Hybrid Key-Value Placement in LSM-Based
Key-Value Stores. In Proceedings of the ACM Symposium on Cloud Computing
(Seattle, WA, USA) (SoCC ’21). Association for Computing Machinery, New York,
NY, USA, 305–318. https://doi.org/10.1145/3472883.3487012

[68] Jin Yang, Heejin Yoon, Gyeongchan Yun, Sam H. Noh, and Young-ri Choi. 2023.
DyTIS: A Dynamic Dataset Targeted Index Structure Simultaneously Efficient
for Search, Insert, and Scan. In Proceedings of the Eighteenth European Conference
on Computer Systems (Rome, Italy) (EuroSys ’23). Association for Computing Ma-
chinery, New York, NY, USA, 800–816. https://doi.org/10.1145/3552326.3587434

[69] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A Large Scale Analysis of
Hundreds of In-Memory Cache Clusters at Twitter. In Proceedings of the 14th
USENIX Conference on Operating Systems Design and Implementation (OSDI’20).
USENIX Association, USA, Article 11, 18 pages.

[70] Geoffrey X. Yu, Markos Markakis, Andreas Kipf, Per-Åke Larson, Umar Farooq
Minhas, and Tim Kraska. 2022. TreeLine: An Update-in-Place Key-Value Store
for Modern Storage. Proc. VLDB Endow. 16, 1 (sep 2022), 99–112. https://doi.org/
10.14778/3561261.3561270

[71] Adar Zeitak and Adam Morrison. 2021. Cuckoo Trie: Exploiting Memory-Level
Parallelism for Efficient DRAM Indexing. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany) (SOSP ’21).
Association for Computing Machinery, New York, NY, USA, 147–162. https:
//doi.org/10.1145/3477132.3483551

[72] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: a cache-aware learned index with a
cost-based construction algorithm. Proc. VLDB Endow. 15, 11 (jul 2022), 2679–2691.
https://doi.org/10.14778/3551793.3551823

[73] Songnian Zhang, Suprio Ray, Rongxing Lu, and Yandong Zheng. 2021. SPRIG:
A Learned Spatial Index for Range and KNN Queries. In 17th International
Symposium on Spatial and Temporal Databases (virtual, USA) (SSTD ’21). As-
sociation for Computing Machinery, New York, NY, USA, 96–105. https:
//doi.org/10.1145/3469830.3470892

[74] Zhou Zhang, Zhaole Chu, Peiquan Jin, Yongping Luo, Xike Xie, Shouhong Wan,
Yun Luo, Xufei Wu, Peng Zou, Chunyang Zheng, Guoan Wu, and Andy Rudoff.
2022. PLIN: A Persistent Learned Index for Non-Volatile Memory with High
Performance and Instant Recovery. Proc. VLDB Endow. 16, 2 (oct 2022), 243–255.
https://doi.org/10.14778/3565816.3565826

[75] Zhou Zhang, Peiquan Jin, Xiaoliang Wang, Yanqi Lv, Shouhong Wan, and Xike
Xie. 2021. COLIN: A Cache-Conscious Dynamic Learned Index with High
Read/Write Performance. Journal of Computer Science and Technology 36 (2021),
721–740.

[76] Zejian Zhang, Yan Wang, and Shunzhi Zhu. 2021. LIDUSA – A Learned Index
Structure for Dynamical Uneven Spatial Data. In Algorithms and Architectures
for Parallel Processing: 21st International Conference, ICA3PP 2021, Virtual Event,
December 3–5, 2021, Proceedings, Part III. Springer-Verlag, Berlin, Heidelberg,
737–753. https://doi.org/10.1007/978-3-030-95391-1_46

https://doi.org/10.1109/HPCA.2016.7446050
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.1145/3318464.3384706
https://doi.org/10.1145/3318464.3380579
https://doi.org/10.18653/v1/D19-1018
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://www.nvidia.com/en-us/networking/ethernet/innova-2-flex/
https://doi.org/10.1109/MM.2015.42
https://doi.org/10.1109/FPL.2012.6339142
https://doi.org/10.1109/FPL.2012.6339142
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1109/MICRO.2016.7783720
https://doi.org/10.1145/3589332
https://doi.org/10.14778/3565838.3565848
https://arxiv.org/abs/2111.14905
https://arxiv.org/abs/2108.05117
https://doi.org/10.1145/3575693.3575744
https://doi.org/10.14778/3594512.3594528
https://doi.org/10.1145/3332466.3374547
https://doi.org/10.14778/3611479.3611520
https://doi.org/10.14778/3611479.3611520
https://arxiv.org/abs/2303.13226
https://doi.org/10.14778/3565816.3565819
https://doi.org/10.1145/3409963.3410496
https://doi.org/10.1145/3409963.3410496
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1109/JPROC.2018.2817118
https://doi.org/10.1145/3468520
https://doi.org/10.14778/3457390.3457393
https://doi.org/10.14778/3547305.3547322
https://doi.org/10.14778/3547305.3547322
https://doi.org/10.1145/3302424.3303955
https://doi.org/10.1145/3302424.3303955
https://doi.org/10.1145/3472883.3487012
https://doi.org/10.1145/3552326.3587434
https://doi.org/10.14778/3561261.3561270
https://doi.org/10.14778/3561261.3561270
https://doi.org/10.1145/3477132.3483551
https://doi.org/10.1145/3477132.3483551
https://doi.org/10.14778/3551793.3551823
https://doi.org/10.1145/3469830.3470892
https://doi.org/10.1145/3469830.3470892
https://doi.org/10.14778/3565816.3565826
https://doi.org/10.1007/978-3-030-95391-1_46

	Abstract
	1 Introduction
	2 A Primer on Learned Index
	3 Analyses of Learned Indexes
	3.1 Retraining-Time Scalability Analysis
	3.2 Impact of Slow Retraining on Throughput
	3.3 Implication of CPU Resource Allocation

	4 SIA Design Principles
	5 Incremental Index Learning
	5.1 Hierarchical Model Index Training
	5.2 Linear Regression Training
	5.3 SIA's Incremental Index Learning

	6 SIA System Design
	6.1 FPGA-Accelerated Training Infrastructure
	6.2 Accelerator Architecture
	6.3 Runtime Software Interface
	6.4 Lazy Delete Query Handling
	6.5 Implication of Node Split and Merge

	7 Evaluation
	7.1 Methodology
	7.2 Experimental Results

	8 Additional Related Work
	9 Conclusion
	Acknowledgments
	References

