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Abstract—Recently, there has been an extensive research effort
in building efficient large language model (LLM) inference
serving systems. These efforts not only include innovations in the
algorithm and software domains but also constitute developments
of various hardware acceleration techniques. Nevertheless, there
is a lack of simulation infrastructure capable of accurately
modeling versatile hardware-software behaviors in LLM serving
systems without extensively extending the simulation time.

This paper aims to develop an effective simulation tool,
called LLMServingSim, to support future research in LLM
serving systems. In designing LLMServingSim, we focus on two
limitations of existing simulators: (1) they lack consideration
of the dynamic workload variations of LLM inference serving
due to its autoregressive nature, and (2) they incur repeti-
tive simulations without leveraging algorithmic redundancies in
LLMs. To address these limitations, LLMServingSim simulates
the LLM serving in the granularity of iterations, leveraging the
computation redundancies across decoder blocks and reusing
the simulation results from previous iterations. Additionally,
LLMServingSim provides a flexible framework that allows users
to plug in any accelerator compiler-and-simulation stacks for
exploring various system designs with heterogeneous processors.
Our experiments demonstrate that LLMServingSim produces
simulation results closely following the performance behaviors of
real GPU-based LLM serving system with less than 14.7% error
rate, while offering 91.5× faster simulation speed compared to
existing accelerator simulators.

Index Terms—Large language model (LLM), Inference serv-
ing, Simulation infrastructure, Neural processing unit (NPU),
Processing-in-memory (PIM), Heterogeneous system

I. INTRODUCTION

Currently, there is a significant surge in efforts to exploit
large language model (LLM) as a crucial component in real-
world applications [44], [83]. Given the prohibitively high
costs associated with building on-premise infrastructure for
LLM inference, the common practice is to offload LLM
inference to multi-tenant “inference serving” systems in the
cloud, exemplified by OpenAI’s ChatGPT service [47]. The
massive compute and memory requirements (both bandwidth

and capacity) are forcing these systems to be equipped with
many AI accelerators (or NPUs).

There has been a large body of research works that aim to
develop efficient hardware and software for LLM inference
serving systems. Some works target to develop customized
hardware techniques for accelerating LLM inference serv-
ing [23], [49], while others focus on developing optimized
system software on GPU-based scale-out systems [10], [33],
[41], [46], [52]. Recently, a few pioneering works propose to
take into consideration both hardware and software together
for designing holistic end-to-end accelerated systems [22],
[48]. However, there is currently a lack of simulation in-
frastructure that allows researchers to explore their hardware-
software proposals in a scale-out setting. This limitation not
only makes it difficult for architecture researchers to explore
scalable accelerator solutions, but also forces system software
researchers to exclusively rely on GPU-based system software
in the era of specialized hardware.

This paper sets out to address this limitation and develop
a LLM inference serving system simulator, called LLM-
ServingSim, that jointly simulates the behaviors of LLM-
customized accelerators and LLM inference serving system
software. LLMServingSim is built on top of an existing AI
system simulator, ASTRA-sim [74], which jointly models
both hardware and software for AI workloads. However,
there are primarily two algorithmic differences, making the
design principles of LLMServingSim and ASTRA-sim largely
different, as described below.
• Autoregressive nature of LLM generation. ASTRA-sim

focuses on distributed training, which entails millions of
“identical” iterations of computing that simplify the simu-
lation. On the contrary, we target LLM inference serving
that involves autoregressive token generations, producing
dynamically changing behaviors across different iterations,
requiring independent simulation runs.

• Redundancies across decoder blocks in LLMs. Unlike
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ASTRA-sim that targets general models, we focus on
LLMs, thus offering opportunities to customize simulations
for LLM’s model architecture. Modern LLMs constitute a
set of decoder blocks that share common compute patterns,
while the hyperparameters can vary.

To this end, we design LLMServingSim in such a way that
it prudently compromises simulation accuracy for achieving
feasible simulation time, effectively bridging the so-called
“real2sim” gap, and facilitating future research in LLM in-
ference serving systems. To accomplish these objectives, we
exploit the following three major techniques.

• Iteration-level hardware-system simulation. As each iter-
ation takes different input prompts, LLMServingSim simu-
lates the iterations one by one temporally and aggregates
the entirety of resulting statistics at the end. For each
iteration, LLMServingSim first performs prompt scheduling
that determines tasks for accelerators, then analyzes the
accelerator behaviors using hardware simulator, and finally
sweeps through the stages in the system pipeline to sim-
ulate overall system behaviors. For hardware simulation,
we employ GeneSys [18], an open-source end-to-end NPU
simulator that comes with a full software stack. Note that
although we use GeneSys for prototyping purposes, any
NPU simulator can be integrated into LLMServingSim, as
the system simulation workflow remains consistent regard-
less of the specific simulator employed. The aforementioned
three steps are repeated over the iterations progressively.

• Compiler and simulator optimization through com-
putation reuse. We notice that the hardware simulator
experiences a substantial bottleneck at the compilation and
hardware simulation phases. LLMServingSim addresses this
bottleneck by optimizing implementations exploiting the
redundancy of common LLM architecture and employing
computation reuse techniques. Exploiting the property that
the decoder-based LLM architecture consists of repeated
transformer blocks, LLMServingSim compiles just one trans-
former block and replicates it, significantly reducing the
overall compile time required. In addition, we also reduce
simulation time by separating simulations of attention layers
from non-attention layers since it is the only computational
difference between the initiation and generation phases.

• Operator mapping and scheduling for heterogeneous
accelerator simulations. As modern LLM serving systems
are often equipped with heterogeneous accelerators such as
GPU, NPU, and PIM, accurately simulating the heteroge-
neous systems is an important challenge. While ASTRA-
sim is capable of simulating heterogeneous accelerators,
their operator mapping and scheduling are manually and
statically determined, which would not work for LLM
serving since the tasks dynamically change. LLMServingSim
provides a flexible framework that allows users to plug in
any accelerator compiler-and-simulation stacks for explor-
ing various system designs with heterogeneous processors.
To achieve this goal, LLMServingSim comes with a “skele-
ton” interface where the simulator users can fill the system-
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Fig. 1. Architecture of large language model.

specific operator mapping and scheduling mechanisms.
The interface connects the mapping-scheduling mechanisms
with the accelerator’s compiler and system simulators.
Our experiments demonstrate that the simulation results

produced by LLMServingSim experience average 14.7% error
rate, showing a similar trend as in the real LLM inference serv-
ing system, vLLM [33], equipped with multiple GPUs. Note
that we observe that LLMServingSim consistently produces
accurate simulation results as we vary LLM architectures,
parallelization schemes, number of NPUs, and different hetero-
geneity. LLMServingSim achieves the high level of accuracy,
while offering 34.7× to 491.0× faster simulation speed com-
pared to three existing accelerator simulators: mNPUsim [27],
GeneSys [18], and NeuPIMs [22]. These promising results
suggest that LLMServingSim has a significant potential to be
an effective system simulation tool for LLM serving system
research, in hardware, software, or both. LLMServingSim is
available at https://github.com/casys-kaist/llmservingsim.

II. BACKGROUND

A. Characteristics of LLM Model Architecture

Most modern large language models (LLMs) employ
decoder-based transformer architecture [72], as described in
Figure 1. This architecture consists of its fundamental building
blocks: the embedding layer, transformer blocks, and language
modeling (LM) head. Each transformer block constitutes three
main components: Query-Key-Value (QKV) generation, multi-
head attention, and feedforward networks.

Decoder-based transformer model operates in two distinct
phases during their inference: initiation and generation phase.
The initiation phase begins with receiving the prompt as input
and generates QKV for all input tokens. Generated QKV
values pass through subsequent multi-head attention layers
and feed-forward networks. This phase predominantly involves
General Matrix Multiply (GEMM) operations, which handle
the bulk of computation by processing multiple data points
collectively. Once the initiation phase is completed, the model
outputs one token and transitions to the generation phase,
with the generated token as the new input. This generation
phase has autoregressive characteristics where each output
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token is passed to the next iteration, and the generation
continues sequentially. In this phase, QKV values for newly
generated tokens need to be computed, while utilizing the
cached key-values of previous tokens, known as KV cache.
Consequently, this phase is characterized by General Matrix-
Vector Multiply (GEMV) in Score and Attend operations of
multi-head attention, which involve handling single vector
calculations against the entire matrix of keys and values.

B. Batching and Memory Management for LLM

To minimize latency and maximize hardware utilization,
LLM inference serving system often employs batching, which
involves grouping multiple requests into a single group. How-
ever, it presents a challenge, particularly with the multi-head
attention layer, which makes batching difficult. Additionally,
it faces the drawback of needing to complete all requests
before proceeding to the next batch, which can lead to in-
efficiencies. To tackle this challenge, Orca [81] proposes two
techniques: selective batching and iteration-level scheduling.
Selective batching allows batching in specific layers, such
as QKV generation and feed-forward networks, while in
multi-head attention layers, it allows a batch to be divided
and allocated to multiple workers individually. Iteration-level
scheduling involves rescheduling the batch at each iteration,
removing completed requests, and adding new ones. This
technique enhances hardware utilization and reduces latency
by dynamically updating the batch to include only active
requests, thereby streamlining the process.

Another challenge in the scale-out inference serving system
is to effectively handle KV cache. Conventional LLM serving
allocates KV cache based on the maximum possible sequence
length, and this results in underutilized memory spaces and
limited batch sizes. vLLM [33] introduces a paging scheme
for memory management that functions similarly to the virtual
memory of operating systems. Managing memory on a page-
by-page basis, vLLM effectively reduces memory fragmenta-
tion, enabling larger batch size and higher throughput.

C. Processing-in-Memory (PIM) for LLM

In the generation phase, LLM inferencing heavily relies
on General Matrix-Vector multiplication (GEMV) operations,
especially within the multi-headed attention layers. These
GEMV operations are characterized by being memory-bound
with low arithmetic intensity due to the lack of matrix reuse.
Processing-in-Memory (PIM) techniques are recognized for
their ability to accelerate memory-intensive operations such as
GEMVs. PIM optimizes memory-intensive tasks by reducing
data movement through the placement of compute unit in each
memory bank. This approach utilizes aggregated bandwidth to
read intermediate values, execute computations, and send only
the results to the host system.

There has been significant research on using PIM to ac-
celerate LLM inference. TransPIM [86] has proposed a PIM-
focused solution specifically for speeding up end-to-end Trans-
former inference. More recently, AttAcc [48], IANUS [59],
and NeuPIMs [22] have developed approaches that integrate
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Fig. 2. (a) Simulation time comparison between mNPUsim, GeneSys, and
NeuPIMs. (b) Roofline analysis on the arithmetic intensity of LLM inference
operations.

PIM for GEMV and activation function computations, along-
side compute-centric accelerators such as NPUs and GPUs,
aiming to improve the overall efficiency of LLM inference.

III. MOTIVATION

A. Need for LLM Serving System Simulators

LLMs with parameters ranging from a few hundred million
to several hundred billion or even trillions, require enormous
computational and memory capabilities for inference. To han-
dle batched requests from multiple users, the scale-out serving
systems often constitute hundreds of nodes, each equipped
with multiple high-performance AI accelerators with high-
bandwidth and high-capacity memories [22], [45], [48], [49].
Recently, several studies have explored solutions involving
software, hardware, or both of them for such large-scale LLM
serving systems [21], [23], [38]. However, the absence of an
effective system-level simulator for scale-out LLM serving
systems remains a major barrier for researchers and engineers
who continue to explore solutions.

B. Limitation of Existing AI System Simulators

ASTRA-sim. We are not the first one who propose to de-
velop scale-out system simulators for AI workloads. ASTRA-
sim [74] is an effective open-source tool for simulating scale-
out system for AI workloads and can be considered as an
alternative to LLMServingSim. However, ASTRA-sim focuses
on training with repetitive yet identical iterations, which does
not align well with the nature of LLM inference serving,
where each iteration processes different batches with varying
compositions of variable-length prompts. While ASTRA-sim
is insufficient for our purposes as it stands, we notice that it
offers essential features for simulating a scale-out AI system.
Therefore, we decided to avoid reinventing the wheel and
integrate ASTRA-sim as a module within LLMServingSim to
simulate a single iteration.
LLM inference simulators. Rather disjointly, there have been
recent research efforts to build LLM inference simulators [18],
[19], [22], [27], while they are not suitable for system-level
simulation at scale. The main reason is that the current
simulators operate at a slow pace, rendering them insufficient
for simulating large-scale LLM inference serving, which is
inherently iterative in nature. Figure 2(a) shows the simulation
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time for one inference iteration of existing LLM simulators,
including mNPUsim [27], GeneSys [18], and NeuPIMs [22].
We observe that NPU simulators, mNPUsim and GeneSys,
take about 10 and 1.5 hours respectively, while NeuPIMs,
which simulates NPU-PIM hardware, takes roughly 2 hours.
To fully process requests, multiple iterations are required
until the generation phase ceases, significantly extending the
entire simulation time, exceeding far beyond the simulation
time reported above. Thus, it is apparent that exploring the
LLM serving system designs with these inefficient simulators
is nearly infeasible. This insight motivates us to devise a
new LLM serving system simulator that enables efficient
system-level exploration within feasible simulation time, while
accurately evaluating the hardware-software behaviors.

C. Need for Simulators with Heterogeneity

As discussed in Section II-A, one of the notable character-
istics of LLM inference is that compute-intensive operations
and memory-intensive operations are intermixed. We analyze
and compare the computation and memory usage of each op-
eration using GPT3-7B model with NVIDIA RTX 3090 GPU.
Figure 2(b) shows the result of roofline analysis comparing
arithmetic intensity of operations during inference. We notice
that operators of multi-head attention and layer normalization
have low arithmetic intensity and are bandwidth-bound. On the
contrary, operators of QKV generation and feed-forward net-
works have high arithmetic intensity and are compute-bound.
These two types of operators require high memory bandwidth
and high compute capability, respectively. Meanwhile, another
characteristic of LLM inference is that key-value (KV) cache
imposes a significant overhead on memory capacity [24], [33],
[84], since keys and values are generated for every token of
the entire sequence and every transformer block.

Requirements for high memory bandwidth, memory capac-
ity, and computation power of LLM inference make it difficult
to find “one-fits-all” solution for acceleration. GPUs equipped
with high-bandwidth memory such as NVIDIA H100 [45]
appear to be this solution, but they have small and limited
scalability of capacity. Several recent studies have proposed
solutions with heterogeneous accelerators for LLM inference
serving [22], [34], [48], [52]. A system using heterogeneous
accelerators maps operators with conflicting properties to
devices with different characteristics. For instance, with in-
ference acceleration solutions using PIM and NPU [22], [48],
operators with low arithmetic intensity are mapped to PIM
devices, and other operators are mapped to NPU devices.
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Following this pioneering research, various combinations of
heterogeneous accelerators are being explored [22], [29], [48],
highlighting the need for simulator frameworks to support
these efforts. This phenomenon suggests that LLMServingSim
must provide rich flexibility in system configurations, while
supporting simulation of various hardware in a plugin manner.

IV. LLMSERVINGSIM

We design LLMServingSim, a novel system-level simulator
for LLM inference workloads that jointly simulates LLM serv-
ing system software and heterogeneous hardware accelerators.
For simplicity of explanation, we provide an example where
LLMServingSim simulates a distributed and heterogeneous
system consisting of one host node, NPU nodes, and PIM
nodes. Figure 3 illustrates an example LLMServingSim system
topology configured to utilize hybrid parallelism with 4 NPU
groups and 16 NPU nodes. Note that LLMServingSim can
be flexibly configured with various system topologies and
combinations of heterogeneous accelerators.

A. Simulator Design

Overview. Figure 4 depicts the LLMServingSim workflow,
which is designed to perform iteration-level simulation for dis-
tributed system with heterogeneous hardware. LLMServingSim
consists of the following components:
(1) Scheduler receives and organizes user requests into fea-

sible batches based on the scheduling, KV cache manage-
ment, and operator mapping strategy. It also makes the next
scheduling decision based on the results of ASTRA-sim.

(2) Execution engine stack compiles the model according to
the batch configuration created by Scheduler, and performs
hardware simulation for a single device. Each heteroge-
neous accelerator has distinct engine and produces distinct
trace. Execution engine stack schedules operators from
multiple traces and reconstructs them into a single trace.

(3) Graph converter generates execution graphs using the
given trace from execution engine stack, according to the
configured parallelism strategy.

(4) ASTRA-sim [74] takes execution graph represented in
Chakra graphs [65] as inputs, performs system simulation,
and returns results back to the scheduler.



Iteration-level scheduling. LLM processes input prompts
autoregressively by generating one token at a time during
inference. To efficiently process the iterations, a state-of-the-
art LLM serving system, Orca [81], proposes iteration-level
scheduling. We employ this technique in LLMServingSim by
designing the simulation workflow as repeated alternations of
prompt batch scheduling, hardware simulation, and system
simulation at the iteration level.

LLMServingSim scheduler first receives requests and com-
pares their arrival times to the scheduler’s timer to select
batchable requests. In response to the dynamic changes in
requests, the scheduler leverages execution engine stack, con-
sisting of the engine-specific compilers and simulators, to
simulate the behavior of accelerators. In a heterogeneous
environment, operators are dealt in different accelerators, so
the scheduler offloads operators to each execution engine
according to the mapping strategy. Each execution engine
compiles the model and simulates the hardware with specified
input configurations. After hardware simulation, the graph
converter converts the simulation results to an execution graph
that maps the hardware to the system. This graph is then fed
into ASTRA-sim to simulate and analyze the system behavior
comprehensively. System simulation results are fed back to the
scheduler, and the scheduler’s timer, which is used to assemble
a new batch for the next iteration, is updated accordingly.
This cyclical interaction enables LLMServingSim to progress
through iterations efficiently.

Supporting for LLM parallelism strategies. In the context
of LLM inference, parallelism that distributes the model
weights and layers of substantial size is crucial for enhancing
performance. There are three major types of model parallelism:
tensor parallelism, pipeline parallelism, and hybrid paral-
lelism [64]. Tensor parallelism distributes the weight matrix
across multiple workers. Pipeline parallelism assigns different
layers of the model to different workers. Hybrid parallelism
combines features of both tensor and pipeline parallelism.

LLMServingSim can be configured to utilize a specific par-
allelism strategy by setting the number of accelerator groups
according to the system’s topology. When graph converter
receives the output trace from execution engine stack, it iden-
tifies configured parallelism strategy and constructs execution
graph accordingly for each accelerator. For tensor parallelism,
it distributes tensors across the entire nodes and inserts ALL-
REDUCE operators to the execution graph for intermediate
synchronization. For pipeline parallelism, it allocates decoder
blocks to nodes in sequence, allowing chained computation
across them. Hybrid parallelism combines both parallelism
strategies by distributing tensors and layers within and across
accelerator groups, respectively.

To employ selective batching, where attention layers are
processed in parallel across different workers, the execution
engine stack and graph converter work together. Hardware
simulator assigns unique identifiers to the attention layers
and records them in the output trace. Graph converter then
assigns these attention layers to different nodes based on their
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identifiers. As illustrated in Figure 3, each node within an
accelerator group independently processes distinct inputs with
different sequence lengths, parallelizing batch processing.

KV cache-aware memory modeling. While ASTRA-sim has
a simple memory model in its implementation, it lacks some
memory constraints such as capacity and memory fragmenta-
tion. However, LLM inference is sensitive to memory capacity
due to their significant memory usage of model parameters
and KV cache. LLMServingSim uses detailed memory mod-
eling scheme with several memory constraints to reduce the
gap with actual systems. Memory model of LLMServingSim
includes management of KV cache and generated tokens by
incorporating demand paging technique from vLLM [33].

The management of KV cache and generated tokens in
LLMServingSim scheduler is intertwined with iteration-level
scheduling, which conducts batch reconstruction each itera-
tion, by checking generated tokens and KV cache size of each
batch. First, scheduler assesses the length of incoming requests
to determine the required number of KV cache pages and
allocates them to the local memory of accelerators accordingly
to form a single batch. After an iteration completed, the
scheduler reassesses the requests. If increased sequence length
due to generated tokens requires additional page or incoming
requests need to be added to the batch, new page is allocated
on demand. If there is insufficient memory capacity for new
pages, the entire page for KV cache and sequence of the last
added requests are evicted to host memory. When memory
availability permits, evicted KV cache blocks are reloaded
from host memory for processing in subsequent batches.

The graph converter inserts operators into the execution
graph for page eviction and reloading based on the decision of
the scheduler. Whenever page eviction or reloading occurs, it
inserts memory store or load operators embedded with the time
taken to transfer the pages between accelerator device memory



and host memory into the graph. This interaction between
the scheduler and graph converter enables LLMServingSim to
effectively utilize page-based memory modeling.

B. Simulating Heterogeneity in LLM Serving

Heterogeneous system overview. LLMServingSim supports
simulation of heterogeneous systems composed of two or more
different types of accelerator hardware beyond homogeneous
systems. In this paper, we use example systems consisting of
NPU devices for compute-bound operations and PIM devices
for memory-bound operations. While we use these particular
systems as running examples, it is worthwhile to note that
LLMServingSim also supports simulation with hardware ac-
celerators other than NPU or PIM by adding new execution
engine to LLMServingSim infrastructure in a plug-in manner.

As discussed in Section IV-A, LLMServingSim can flexibly
configure the system topology. Figure 5 illustrates two exam-
ple systems: a heterogeneous system where NPU and PIM
devices are directly connected, and a heterogeneous system
where there are separate pools of NPU devices and PIM
devices. For both example systems, accelerator nodes are
connected to other accelerator nodes and hosts through high
bandwidth interconnects such as CXL [8].

Algorithm 1 describes the overall workflow of LLMServ-
ingSim scheduler, execution engine stack, and graph converter
to generate execution graph with the given request batch in the
context of operator mapping and scheduling. In the following
section, we discuss how LLMServingSim’s operator mapping
and scheduling decisions are made depending on the system
topology or computational properties of acceleration hardware.
Operator mapping. The components that perform operator
mapping could be different depending on the heterogeneous
system’s topology and configuration. In LLMServingSim, the
components responsible for operator mapping are execution
engine, scheduler, and graph converter. To understand how
these three components interplay, we describe operator map-
pings in the two example systems depicted in Figure 5.
1 Operator mapping in execution engine. For instance, in

a heterogeneous system consisting of NPU and PIM devices,
memory-bound operations such as Attend and Score of multi-
head attention layers are mapped to the PIM module. And,
remaining compute-bound operations are mapped to the NPU
module. However, as the NPU and PIM devices are directly
connected each other, they act as one node at the system-
level, so there is only one execution engine in LLMServingSim.
Therefore, in the simulation of NPU-PIM system, mapping
decision is done in the internal scheduler of execution engine.
2 Operator mapping in scheduler. On the other hand, in

a heterogeneous system consisting of NPU and PIM pools,
operator mapping is done in two components, scheduler and
graph converter, rather than execution engine. In Line 6 of
Algorithm 1, the scheduler decides which operator will be
mapped to which device by considering the characteristics
of both the operators and the hardware devices, and creates
simulation plans. Then the scheduler delivers simulation plans

Algorithm 1: Operator Mapping and Scheduling
Input: Lreq : A list of proceeding request information

Ldev : A list of devices for mapping operators
Memfree : Available memory for storing KV cache
T imecur : Current system clock time
Criteria : Key criteria to evenly partition batch

Output: Gexec : Execution graph for system simulation
1 Batch = Batch formatting(Lreq , Memfree, T imecur);
2 Lsub batch = Batch partitioning(Batch, Criteria);
3 Lsub batch sim ← [];
4 foreach sub batch in Lsub batch do
5 Lops = Operator profiling(sub batch);
6 Lops mapped = Operator mapping(Lops, Ldev);
7 Lsim ops ← [];
8 foreach (operator, device) in Lops mapped do
9 Opssim = Execution engine(operator, device);

10 Lsim ops.append(Opssim);
11 end
12 Lsub batch sim.append(Lsim ops);
13 end
14 Trace = Operator scheduling(Lsub batch sim);
15 Gexec = Graph converter(Trace);
16 return Gexec

composed of various operators mapped to the appropriate
execution engine based on the operator mapping strategy.
For instance, in the simulation of a heterogeneous system
consisting of NPU and PIM pools, LLMServingSim sched-
uler creates a simulation plan consisting of memory-bound
GEMV operations and delivers it to the PIM execution engine.
Conversely, a simulation plan consisting of the remaining
compute-bound operations is delivered to the NPU execution
engine. Finally, the scheduler triggers an execution engine
stack consisting of compilers and simulators, each of which
executes the scheduler’s simulation plan to generate a trace,
the input to LLMServingSim’s graph converter.
3 Operator mapping in graph converter. LLMServingSim

graph converter translates output trace into an execution graph,
in Line 15 in Algorithm 1. It embeds the type and ID of
compute node where each operator will be executed into
the execution graph, allowing accurate simulation based on
the mapping result. The graph converter also inserts data
transfer operators to indicate the exchange of intermediate
results between different accelerator pools. In the example
system shown in Figure 5(b), the NPU pool and PIM pool are
connected through high bandwidth interconnects, so the graph
converter inserts data transfer operators before and after the
GEMV operator, which is processed in the PIM pool. Operator
mapping is done orthogonally to the parallelism strategy
discussed in Section IV-A, and distinct network topologies and
parallelism strategies can be applied to each accelerator pool.
Operator scheduling. Due to dependency between opera-
tors, serial execution of a batch inevitably leads to under-
utilization of heterogeneous accelerators. To overcome this
limitation, LLMServingSim scheduler performs batch partition-
ing in Line 2 of Algorithm 1. LLMServingSim scheduler splits
request batch into independent sub-batches to exploit overlap-
ping between sub-batches across heterogeneous accelerators



while satisfying criteria such as fairness of computation load
or memory accesses. Subsequently, each sub-batch undergoes
the operator mapping.

After operator mapping, each execution engine compiles
and simulates mapped operators, and creates output trace.
These output traces include mapping and simulation informa-
tion for each operator and for each hardware. Operator sched-
uler of execution engine stack performs operator scheduling
within a given batch by utilizing this information. In Line 14
of Algorithm 1, operator scheduling decides the execution
order of operators using a greedy heuristic by considering
dependencies between operators and the availability of het-
erogeneous accelerators. It maximizes hardware utilization of
heterogeneous accelerators by allowing overlapping between
operators and sub-batches.

C. Techniques for Fast Simulation

LLM typically necessitates lengthy compile and hardware
simulation time. To solve the problem, we introduce result-
reusing techniques, which reduce computation redundancy.
Model redundancy reuse. First, we achieve significant time
savings by exploiting the redundancy of common LLM archi-
tecture. As described in Figure 1, decoder-based LLM archi-
tecture consists of an embedding layer followed by repeated
transformer blocks. LLMServingSim compiles one transformer
block and replicates it, largely reducing the overall compile
time required. Another optimization to reduce simulation time
involves separating attention layers from non-attention layers.
The initiation phase and the generation phase differ only in
attention layers, depending on the presence or absence of
KV cache. Therefore, LLMServingSim compiles and simulates
the time-consuming non-attention layers just once, and subse-
quently, it simply swaps out the less time-intensive attention
layers, cutting down on the total processing time.
Computation reuse. Given the dynamic nature of input and
output lengths in LLM inference, models typically need to be
continuously compiled and simulated. LLMServingSim adopts
a strategy of reusing previously simulated results through
caching. For effective caching, it manages the non-attention
and attention layers differently. Non-attention layers take
longer than other layers to be processed but can be reused
frequently. However, attention layers require more frequent
compilation and simulation but take less time. We conduct
an evaluation to evaluate the impact of this caching strategy
and demonstrate that our optimization technique is effective
in reducing the overall simulation time.

V. DISCUSSION

A. Usability of LLMServingSim

Pluggability to 3rd-party accelerators. LLMServingSim’s
infrastructure allows for high configurability in system config-
uration and simulators of various hardware can be seamlessly
attached via interfaces to the LLMServingSim scheduler and
graph converter. Therefore, integration with hardware sim-
ulators for various third-party accelerators other than NPU

or PIM devices introduced in this paper is also possible.
Beyond acceleration hardware, it is possible to extend memory
features, for instance, by adding storage capabilities like HDDs
and SSDs, or incorporating computational storage nodes such
as SmartSSDs. This flexibility makes LLMServingSim a highly
versatile tool for simulation and development.
Compatibility with existing machine learning frameworks.
LLMServingSim takes the ONNX [42] model format as an
input, enabling interoperability with various machine learn-
ing frameworks. It allows users to seamlessly integrate and
simulate widely-used open-source ONNX models written for
frameworks such as PyTorch [50] and TensorFlow [1]. These
models can be converted into ONNX format for use within
LLMServingSim, facilitating a broad range of model experi-
mentation and deployment scenarios.

B. Limitations and Future Works

With the rapid advancement in the fields of machine learn-
ing and large language models, new variant architectures of
LLM such as multi-modal [7], [13], [37], [53], [54], [70],
[76], [87], mixture of experts (MoE) [9], [11], [77], and
retrieval augmented generation (RAG) [6], [30], [35], [55],
[61], [79] have been developed to address limitations of
the original architecture. Additionally, lightweight techniques
such as quantization [12], [16], [39], [78], [80] and prun-
ing [15], [40], [66], and fine tuning [25], [26] techniques,
offer traditional but effective solutions for optimizing LLMs.
LLMs using these architectures or technologies have different
mathematical and computational characteristics compared to
traditional decoder-based architectures, and ongoing studies
are exploring accelerator architectures and inference systems
to support these new models [3], [36], [41], [52].

Although LLMServingSim currently focuses on traditional
decoder-based LLM architectures, it can support new model
variants with slight modification or even without any modifica-
tion. This is due to its inherent flexibility at the system level
and its use ONNX models, which allow for flexible model
construction. For example, LLMServingSim can support MoE
models by assigning each expert to one node and configuring
the network topology to route to one of the expert nodes based
on the inference results of the gating network. In addition, for
RAG models, it is possible to configure the system such that
vector storage is simulated in a storage node, and the results
retrieved from this storage are used for further inference. Novel
systems supporting these models may adopt new scheduling
strategies as suggested in existing solutions [14], [46], [75],
but we believe they can be accommodated within LLMServ-
ingSim’s simulation infrastructure.

VI. EVALUATION

A. Methodology

System baselines. We use a homogeneous system consisting
of only NPU and a heterogeneous system consisting of NPU
and PIM for the validation and evaluation of LLMServingSim.
Throughout our evaluation, we use a GPU system equipped
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Fig. 6. Comparison of throughput over time between vLLM with GPUs and LLMServingSim using request pattern following a Poisson distribution.

TABLE I
LLMServingSim HARDWARE SPECIFICATION.

Systolic Array 128x128 Banks / Bankgroup 4
Vector Unit 128x1 Banks / Channel 32
Frequency 1GHz Frequency 1GHz

Memory Capacity 24GB Memory Capacity 32GB
Internal Bandwidth 936GB/s Internal Bandwidth 1TB/s

NPU Configuration PIM Configuration

Bandwidth
Latency

64GB/s
100ns

Inter-device Link Configuration

with 4 NVIDIA RTX 3090 GPUs with 24GB VRAM and Intel
Xeon Gold 6326 CPU as the actual inference serving system
baseline. We use vLLM [33] framework as LLM inference
serving system software. This GPU system corresponds to a
homogeneous system composed of multiple NPU devices, and
in simulations using LLMServingSim, the performance of NPU
device is set to be similar to that of the GPU. Additionally, we
use NeuPIMs [22], an NPU-PIM heterogeneous LLM infer-
ence acceleration system, as one of the evaluation baselines.

LLMServingSim configuration. For running LLMServingSim,
we use a CPU system equipped with an Intel Xeon Gold
6226R CPU with 96GB DRAM. NPU and PIM are integrated
into LLMServingSim as simulator plug-ins to the execution
engine stack. For NPU, we use PolyMath compiler [32] and
GeneSys simulator [18], and for PIM, we use an in-house
PIM simulator. Table I lists the specifications of NPU and
PIM hardware used throughout the evaluation. We configure
the hardware architecture of the NPU in LLMServingSim as
a 128x128 systolic array with a clock speed of 1GHz to
achieve similar performance to the GPU baseline, NVIDIA
RTX 3090 GPU. We set inter-device link bandwidth and
latency is set to be equivalent to PCIe 4.0 ×16 bandwidth
at 64GB/s and latency of 100ns, respectively. In evaluation

using NPU-PIM heterogeneous system, we use the same PIM
hardware specification as used in NeuPIMs.
Simulator baselines. We also compare the simulation time of
LLMServingSim with other hardware simulators that support
LLM inference. We use mNPUsim [27] and GeneSys [18]
for NPU simulation, and NeuPIMs [22] for NPU-PIM het-
erogeneous accelerator simulation. As these baselines lack
features for LLM inference serving, the simulation time for
one iteration is used for comparison.

B. Simulator Validation

We evaluate the simulation accuracy of LLMServingSim
against the real LLM serving systems with homogeneous or
heterogeneous accelerators.
NPU homogeneous system. Figure 6 shows the fluctuation in
throughput using a dynamic request pattern for GPT-3 [5] and
LLaMA [71] models, with parameter size 7B and 30B. We
synthesize request arrival patterns using Poisson distribution
by sampling them from ShareGPT [62]. We set the tensor
parallelism degree as 1 and 4 depending on the model size.

In the throughput trend of initiation phase, as shown in the
upper row of Figure 6, we observe a high degree of similarity
in the prompt throughput trends between LLMServingSim
and GPU-based vLLM system. Specifically, throughput of
initiation phase is influenced not only by the scheduling
decision to form a request batch but also by the system’s
capability to accommodate the incoming requests’ KV cache
in memory. Therefore, these trend results demonstrate that
the iteration-level prompt scheduling and detailed memory
modeling of LLMServingSim closely mirrors the behavior
observed in homogeneous GPU-based system.

The lower row of Figure 6 depicts the throughput trend
in generation phase. We observe that LLMServingSim also
follows the generation throughput trend of the vLLM baseline
system. However, unlike the trend observed in the intitiation
phase, there are some performance discrepancies, which can be
attributed to several factors. First, it is challenging to configure
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Fig. 7. Throughput comparison of LLMServingSim and NeuPIMs.

NPU architecture to precisely match the performance of the
GPU. Additionally, the degree of kernel operation optimization
varies between GPU-based system and LLMServingSim. While
GPU systems often employ kernel optimization techniques
such as FlashAttention [10], the absence of such kernel
optimization in LLMServingSim leads to throughput differ-
ences, especially under request-intensive conditions. Despite
the deviations, the overall throughput trend of LLMServingSim
resembles that of the GPU-based vLLM, confirming that LLM-
ServingSim can effectively simulate LLM serving systems.
NPU-PIM heterogeneous system. Figure 7 shows the
throughput comparison results between LLMServingSim and
NPU-PIM heterogeneous accelerator, NeuPIMs [22]. For the
workload, we sample requests from Alpaca [69] and use
256 requests for each experiment. We attach in-house PIM
simulator to LLMServingSim in order to configure a hetero-
geneous NPU-PIM system. We set the number of NPU and
PIM devices depending on the model size, and use various
parallelization schemes. Overall, LLMServingSim shows lower
throughput than NeuPIMs, since LLMServingSim focuses on
implementing detailed systems features such as inter-device
link and synchronization at the system level. However, despite
these features, the performance trend shown by LLMServ-
ingSim is similar to that of the NPU-PIM heterogeneous
accelerator system. Comparing using various models and par-
allelism schemes, both LLMServingSim and NeuPIMs demon-
strate similar throughput, with error margins below 20% and
a geometric mean error rate of 8.88%. This indicates that
LLMServingSim can effectively simulate LLM serving system
with heterogeneous accelerator under varying configurations.

C. Simulation Time Speedup

Figure 8 compares the simulation time of various LLM
simulators including mNPUsim [27], GeneSys [18], Ne-
uPIMs [22], and our simulator LLMServingSim. We measure
the simulation time for one iteration of processing inputs with
a batch size of 32 and a sequence length of 512 across all
simulator baselines and LLMServingSim. Also, we use GPT3
model with parameter sizes ranging from 7B to 30B.

Throughout this experiment, mNPUsim shows the longest
simulation time compared to the baseline simulators and LLM-
ServingSim. Following mNPUsim, NeuPIMs, and GeneSys,
LLMServingSim shows the fastest simulation times. LLMServ-
ingSim show an average speedup of 490.98× over mNPUsim,
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34.71× over GeneSys, and 44.97× over NeuPIMs. Note that,
in this experiment, we assume that the initial requests have
just arrived, removing the opportunities for computation reuse
optimization. Exploiting model redundancy reuse optimization
has significantly boosted our simulator by skipping repeated
transformer blocks. These results illustrate LLMServingSim’s
superior efficiency and capability in handling large-size LLMs.

D. Simulation Time Reduction

Figure 9 shows the simulation time and its breakdown
to each component of LLMServingSim with various system
configurations. In this measurement, we use GPT-3 30B model
and measure the simulation time to complete one iteration
with batch size of 64 and sequence length of 1024 input. As
depicted in the graph, the running time of LLMServingSim
varies significantly depending on whether reuse optimization
was utilized or not. Without reuse, running time ranges from
198.0 to 215.7 seconds, but when the optimization is en-
abled, it ranges from 16.3 to 33.6 seconds, demonstrating
a substantial speedup of 6.4× to 12.2×. Computation reuse
optimization eliminates the need to rerun the compilers and
simulators in execution engine stack for each iteration. This
highlights the significant performance benefits of computation
reuse optimization applied to LLMServingSim.

Figure 9 also compares the total simulator running time
using five parallelism strategies. Execution time of ASTRA-
sim for system-level simulation is the longest when using
tensor parallelism solely, as it requires more synchronization
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operations than other parallelism strategies. As the number
of tensor parallel nodes decreases, the total simulation time
also decreases, and the shortest simulation time is achieved
when only pipeline parallelism strategy is used. While there
is a variance in simulation time among LLMServingSim’s
parallelism strategies, the difference is minimal. This allows
for the simulation of various system configurations within a
feasible time, facilitating hardware and software exploration
for LLM inference serving system.

E. Simulation Time Scalability

Figure 10 depicts simulation times as we sweep the number
of NPUs, ranging from 8 to 2048, with the system configured
to use tensor parallelism. Additionally, we compare the simu-
lation time using various GPT-3 models with parameter sizes
including 7B, 30B, and 175B. We use inputs with a batch size
of 64 and a sequence length of 1024, and measure simulation
time of one iteration. To isolate the effect of model size
and system configuration on simulation time for scalability
analysis, we do not use computation reuse optimization by
assuming there is no cached results for the input.

Figure 10 shows that the trend of simulation time tends to
be proportional to the number of NPUs. As the system is con-
figured to use only tensor parallelism, all nodes use the same
compilation and simulation results. However, as the number
of NPUs increases, system becomes more complex, requiring
LLMServingSim longer time to coordinate and simulate each
component. Thus, the increased execution time is primarily
due to system-level coordination and simulation of ASTRA-
Sim and graph converter. Even when scaling up the system
to a vast extent using GPT-3 175B and 2048 NPUs, LLM-
ServingSim takes 4.13 hours to simulate, outperforming other
LLM simulators. This result demonstrates the scalability of
our simulator in effectively managing extensive computational
loads, even at scale.

VII. RELATED WORK

NPU simulators. Several simulators have been proposed to
accurately model NPU behavior for ML workloads. These
simulators can either focus on a single core [58], [60] or
model interactions between cores in a multi-core NPU [17],
[19], [27]. However, current simulators only consider the

behavior of individual NPU chips and don’t model systems
with multiple interconnected NPU chips.
Non-NPU simulators. With the emergence of research [20],
[21], [67], [73], [82] on accelerating Attention operations in
Transformer [72] and PNM (Processing near Memory) / PIM
(Processing in Memory) research [22], [28], [31], [48], [49],
[59] on accelerating memory-bound operations in LLMs, there
is a lot of research on measuring performance with simulation.
However, these studies have only modeled the performance of
a single accelerator and lack simulations of the system.
ML system simulators. In the realm of distributed system
simulators, tools have been developed to cater to a range of
needs from general-purpose workload simulators [43], [57],
[68] to those specifically designed for neural networks [56],
[63], [74]. Recently, a specialized simulator tailored for LLM
training [4] has emerged.
LLM inference serving simulators. Recently, reflecting the
growing interest in LLM inference, a variety of simulators
have been introduced [2], [51], [85]. However, these simulators
are GPU-based and perform approximate simulation through
methods like ML prediction, mathematical modeling, and
using latency database instead of cycle-accurate simulations.

To overcome the limitations of these existing studies,
we propose LLMServingSim. Any hardware simulator that
supports LLM operators can be integrated into our system
simulator as an execution engine to perform system simulation.
LLMServingSim is system simulator that supports multi-device
and heterogeneous system configurations, rather than simu-
lating a single hardware device. In addition, LLMServingSim
successfully tackles them by exploiting techniques including
iteration-level scheduling [81], KV cache paging [33], and
the interaction between hardware and system simulators.

VIII. CONCLUSION

The absence of system simulator for LLM inference serving
presents challenges for researchers in system or hardware
architecture exploration. In this paper, we address these chal-
lenges by introducing LLMServingSim, a fast and accurate
hardware-software co-simulation infrastructure for LLM infer-
ence serving systems, leveraging unique algorithmic charac-
teristics of LLM serving. We believe that simulation tools for
scale-out and heterogeneous LLM serving systems are crucial
for accelerating research progress in this field, and LLMServ-
ingSim successfully makes a significant initial contribution
towards meeting these needs.
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APPENDIX

A. Abstract

LLMServingSim is a fast and accurate hardware-software
co-simulation infrastructure for LLM inference serving sys-
tems written with C++ and Python. LLMServingSim receives
several system configurations and request traces from the user,
calculates the cycles and throughput of the system composed
of various accelerators, and measures the inference latency for
each request.

B. Artifact Check-list (Meta-information)
• Compilation: g++ v7.5.0
• Run-time environment: Ubuntu 18.04 Kernel v4.15.0
• Hardware: x86-64
• Output: standard output, TSV files
• How much disk space required (approximately)?: Artifact

evaluation requires up to 30GB of disk space, but depending
on the models and datasets, it may require 1GB ∼ 400GB of
disk space.

• How much time is needed to prepare workflow (approxi-
mately)?: 5 minutes

• How much time is needed to complete experiments (approxi-
mately)?: Artifact evaluation takes approximately 12 hours, but
depending on the models and datasets, it may take 30 seconds
∼ 24 hours.

• Publicly available?: Yes
• Code licenses (if publicly available)?: Creative Commons

Attribution 4.0 International, MIT License
• Workflow framework used?: No
• Archived (provide DOI)?: Yes (10.5281/zenodo.12803583)

C. Description

1) How to access:
• Zenodo: LLMServingSim is published on Zenodo:

https://doi.org/10.5281/zenodo.12803583
• GitHub: LLMServingSim is available on GitHub:

https://github.com/casys-kaist/llmservingsim
2) Hardware dependencies: LLMServingSim requires an

x86-64 architecture, and the simulation time may be affected
by hardware differences. For similar simulation time results,
we recommend using the hardware specified in Section VI-A.

3) Software dependencies: LLMServingSim has been tested
on Ubuntu 18.04 with Python 3.9 and requires gcc and
g++ versions 7.5.0 or higher. Additionally, it requires the
software prerequisites of ASTRA-Sim [74], Chakra [65], and
Polymath [32]. To meet these software prerequisites, we use
the latest version of Conda. We provide the instructions
for Conda installation in Appendix D and README file.
Also, it can be downloaded individually from the following
link: https://repo.anaconda.com/archive/.

4) Data sets: We use ShareGPT [62] and Alpaca [69]
datasets to generate arbitrary request trace.

5) Models: We use GPT3 [5] and LLaMA [71] with model
size of 7B to 175B for our evaluation. Their model architecture
follows the decoder-based transformer model.

D. Installation

• Clone the LLMServingSim repository.

$ git clone --recurse-submodules https://
github.com/casys-kaist/LLMServingSim.
git

$ cd LLMServingSim

• Conda install (optional).
$ curl -O https://repo.anaconda.com/

archive/Anaconda3-2024.06-1-Linux-
x86_64.sh

$ bash Anaconda3-2024.06-1-Linux-x86_64.sh

• Install dependencies.
$ conda env create -p ./env -f ./

environment.yml
$ conda activate ./env

• Build submodules.
$ cd astra-sim
$ ./build/astra_analytical/build.sh
$ cd extern/graph_frontend/chakra
$ pip install .
$ cd ../../../../execution_engine/polymath
$ pip install .
$ cd ../..

E. Experiment Workflow

The workflow of LLMServingSim is well illustrated in
Section IV-A, particularly in Figure 4. To explain this in
detail, the simulator first receives the system configuration
and request trace from the user. Then, the scheduler selects
requests that can be batched in each iteration using the KV
cache information and creates a simulation plan that maps
operators to each execution engine. Each engine simulates
the operators using this simulation plan, and the results are
combined into a single trace through operator scheduling. This
trace goes through a graph converter to become an execution
graph [65], which is then simulated at the system level by
ASTRA-Sim [74]. Finally, the execution results are returned
to the scheduler, which uses them to proceed to the next
iteration. In this process, the simulator calculates the system’s
throughput and latency.

F. Evaluation and Expected Results

The evaluation conducted in this paper can be categorized
into five parts, as described in Section VI. To facilitate the
execution of these five evaluations, we have created five
separate scripts, stored in the evaluation folder, each for
running an individual experiment. We also provide a script
(evaluation all.sh) to run all of them at once.

• Move to evaluation folder.
$ cd evaluation

• Run each evaluation one by one.
$ ./evaluation1.sh
$ ./evaluation2.sh
...
$ ./evaluation5.sh

• Run all evaluation at once.
$ ./evaluation_all.sh

The results of each script are stored in their respective
evaluation folders. Each command within a script generates
three files, including (1) text file containing the redirected
standard output and (2) two TSV files storing throughput and
simulation time.

https://doi.org/10.5281/zenodo.12803583
https://github.com/casys-kaist/llmservingsim
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LLMServingSim

evaluation

evaluation1

gpt7b.txt

gpt7b-throughput.tsv

gpt7b-simulation-time.tsv
...

...

evaluation1.sh
...

evaluation_all.sh

evaluation.xlsx

README.md
...

README.md

Fig. 11. Directory tree of LLMServingSim.

To facilitate verification of the results used in the paper, we
provide an Excel file (evaluation.xlsx) in the evaluation folder.
The Excel file contains the numbers and figures from the paper,
along with instructions to manipulate the raw data. For more
information, please refer to Section VI and the README
files in each folder. Figure 11 illustrates the directory tree
of LLMServingSim with the evaluation scripts, their outputs,
Excel file, and README files.

G. Experiment Customization
1) Input configurations: LLMServingSim takes configura-

tion files for hardware and network as input.
• NPU config: a json file that contains configurations of

the NPU. It is located at execution engine/codelets src/
codelets/examples/genesys/configs/ folder.

• network config: a json file that contains configurations
of the system network topology. It is located at astra-
sim/inputs/network/analytical/ folder.

2) Input dataset: LLMServingSim takes LLM inference
request datasets with various request patterns as input.

• dataset: a TSV file that contains the input token length,
output token length, and arrival time. It is located at astra-
sim/dataset/ folder.

3) Input parameters: LLMServingSim has a total of 16
parameters for various simulation configurations. README
file provides usage instructions and examples.

• model name: Name of the LLM model. Default value is
‘gpt2’.

• npu num: Number of NPUs in the system. Default value
is 16.

• max batch: Maximum batch size. Default value is 0,
which indicates no limit.

• batch delay: Delay of batching. Default value is 0.
• scheduling: The method of scheduling. Default value

is ‘orca’, which refers to the iteration-level scheduling
technique proposed in Orca [81].

• parallel: The method of parallelism. There are three
methods: ‘pipeline’, ‘tensor’, and ‘hybrid’. Default value
is ‘hybrid’.

• npu group: Number of NPU groups used in hybrid par-
allelism. Default value is 1.

• npu mem: Local memory size of the NPU in GB. Default
value is 40.

• kv manage: The method of KV cache management. De-
fault value is ‘vllm’, which refers to the paged attention
technique proposed in vLLM [33].

• pim type: The method of using PIM. There are three
methods: ‘none’, ‘local’, and ‘pool’. Default value is
‘none’, which indicates no use of PIM.

• sub batch: The method of scheduling when using PIM.
It is a flag that turns on for the sub-batch interleaving
technique proposed in NeuPIMs [22].

• dataset: The path of the dataset.
• network: The path of the network configuration file.
• output: The path of the output TSV files.
• gen: The flag that indicates the initiation phase should be

skipped when enabled.
• fast run: The flag that turns on the model compilation

bypassing that facilitates the fast reproduction of evalua-
tion 1 (simulation time: 32 hours → 20 minutes).

4) Result files: LLMServingSim provides three outputs.
• standard output: It shows which requests are being pro-

cessed in each iteration of the simulator and displays the
measured throughput at regular intervals. Additionally, it
provides a summary of throughput and simulation time
at the end.

• {output filename}-throughput.tsv: The file stores prompt
and generation throughput at regular intervals.

• {output filename}-simulation-time.tsv: The file stores
each simulation component’s simulation time in millisec-
onds.

H. Notes

More information can be found in the README file of each
directory.
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