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Abstract—The explosive arrival of OpenAI’s ChatGPT has fueled the globalization of
large language model (LLM), which consists of billions of pretrained parameters that
embodies the aspects of syntax and semantics. HyperAccel introduces latency pro-
cessing unit (LPU), a latency-optimized and highly scalable processor architecture
for the acceleration of LLM inference. LPU perfectly balances the memory bandwidth
and compute logic with streamlined dataflow to maximize performance and effi-
ciency. LPU is equipped with expandable synchronization link (ESL) that hides data
synchronization latency between multiple LPUs. HyperDex complements LPU as an
intuitive software framework to run LLM applications. LPU achieves 1.25 ms/token
and 20.9 ms/token for 1.3B and 66B model, respectively, which is 2.09× and 1.37×
faster than the GPU. LPU, synthesized using Samsung 4nm process, has total area
of 0.824 mm2 and power consumption of 284.31 mW. LPU-based servers achieve
1.33× and 1.32× energy efficiency over NVIDIA H100 and L4 servers, respectively.

T he fundamental goal of AI is to create human-
like intelligence. Conventional AI has reached
a level of human ability to enable data anal-

ysis, decision-making, and personalization. It is now
advancing at a remarkable pace, even in domains once
thought to be uniquely human, such as creativity, but
it was yet to replicate the creativity of humans. Gen-
erative AI, or GenAI, has made a recent breakthrough
with the transformer models (e.g., GPT and LLaMA)
that are capable of creating original textual and image
contents with high sophistication. Specifically, GenAI
software platforms based on the large language mod-
els (LLM) with multi-billion parameters, such as Ope-
nAI ChatGPT and Google Bard, are in the forefront of
revolutionizing the usage of AI. The growing efforts to
commercialize the LLM models and effectively support
these advanced AI platforms highlight the critical need
for the development of specialized inference hardware
in datacenters.

Introduced by Vaswani et al., LLM model inference
is based on the transformer decoder, in which the
inputs have limited batching capabilities and require

This is the author preprint version of the work. The authorita-
tive version will be published in IEEE Micro.

sequential processing1. Since relatively small inputs
need to be inferred with large model parameters,
the inference incurs memory bottleneck and requires
efficient processing of the system’s memory band-
width. Moreover, scalability becomes significant as the
ever-increasing compute and memory requirements of
LLMs demand multiple devices and communication
between them. At the application level, each user
makes individual requests and expects the generated
output with minimal wait time, making it crucial to have
a hardware platform that reduces inference latency.
The predominant hardware for inference, GPU, under-
performs for GenAI workloads because it undergoes
low hardware utilization for small-batch inputs and
high communication overhead during synchronization.
Therefore, a new class of processor is required that
targets the memory-intensive GenAI workloads.

In addition to performance, efficiency and usabil-
ity are important factors in evaluating an inference
hardware. Maintaining efficiency across every GenAI
application is difficult because each application re-
quires different sizes of LLM. Although larger LLM may
generate superior response for a given user context,
the power and cost overhead of running such model
may not be suitable. For instance, the service-level
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agreement (SLA) is less strict for LLM applications
used for light interaction with the user (e.g., chatbot),
in which smaller LLMs may be adequate, whereas an
application that conducts a search or analysis from a
broad context may require larger LLMs as discussed by
Chowdhery et al2. However, hardware that considers
the acceleration of larger models likely undergoes in-
efficiencies for smaller models. Therefore, an architec-
ture that fully leverages the memory bandwidth to yield
maximum performance regardless of the model size
would be the most efficient. The hardware must also be
accompanied by a comprehensive software framework
for fast speed-to-market of these various LLMs. A
compiler that is both model-and-hardware-aware and
automated to output the prerequisite data, such as
memory mapping and instructions, is necessary. The
runtime software also must adhere to the available API,
such as HuggingFace, so that a hardware solution can
be easily integrated to run LLM applications.

In this paper, we propose HyperAccel’s latency
processing unit (LPU), a latency-optimized and highly
scalable architecture that accelerates large language
model inference for GenAI. The key contributions of
the LPU are as follows:

• LPU introduces streamlined hardware that max-
imizes the effective memory bandwidth usage
during end-to-end inference regardless of the
model size to achieve up to 90% bandwidth
utilization for high-speed text generation. It also
consists of expandable synchronization link
(ESL) that hides bulk of the data synchronization
latency in a multi-device system to achieve near-
perfect scalability, or 1.75× speedup for doubling
the number of devices.

• We propose HyperDex, a software framework
that enables automated compilation of prereq-
uisite data based on LLM specifications. It also
provides a runtime environment based on widely
used HuggingFace API for seamless execution
of GenAI applications on LPU hardware.

• LPU achieves 1.25 ms/token for OPT 1.3B, and
two LPUs achieve 20.9 ms/token for OPT 66B,
which is 2.09× and 1.37× faster than GPUs
with equal device count. The LPU-based ASIC
implemented using 4nm process consumes only
0.824 mm2 in area and 284.31 mW in power.

• We showcase HyperAccel Orion, an LPU-
equipped server system that is ready to run
GenAI application in cloud and edge datacen-
ters. Orion achieves 1.33× and 1.32× energy
efficiency over the state-of-the-art NVIDIA H100
and L4 GPU server solutions, respectively.
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FIGURE 1. Structure of large language model.

Background and Motivation

Structure of Large Language Model
Large language model inference is largely divided
into summarization and generation stage as shown by
Wang, Zhang, and Han3. Figure 1 shows the overview
of the LLM inference. LLM inference begins with the
summarization stage, in which the input to the decoder
layer is a matrix that represents the token embed-
ding of the user context (e.g., statement or question).
The matrix is inputted to a series of decoder layers,
which is based on the transformer decoder. The final
decoder layer outputs the captured features from the
input context. The result of the final decoder layer
enters the language modelling head, or LM head. LM
head converts the features into logits that score the
candidate tokens from the dictionary based on their
likelihood of being appropriate in the given context.
With a single execution of the summarization stage,
the first output token (i = 0) is produced. The first
output token then enters the generation stage. Only
Keys and Values from the masked multi-head attention
are transferred to the next stage as activations that
hold contextual information about the previous token.
In the generation stage, the input to the decoder layer
is guaranteed to be a single embedding vector. The
processes are repeated to autoregressively output the
next output token (i = i + 1). The generation stage
iterates until the end of sequence token is reached.

Out of all the processes, the most computationally
dominant process is the decoder layer. Furthermore,
masked multi-head attention and feed-forward network
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operations within the decoder layer account for 90.7%
of the total inference time for LLM with 7 billion pa-
rameters (e.g., Llama 7B). Both operations require the
input to be multiplied by a weight matrix, and the input
is a matrix in the summarization stage and a vector
in the generation stage. Since more iterations are
required in the generation stage, an architecture that is
optimized for vector-matrix multiplication is necessary
for achieving maximum performance.

Sequential characteristic of LLM inference requires
a constant access to new parameters with minimal
reuse, which indicates that LLM inference undergoes
significant memory bottleneck. To resolve the memory
bottleneck, sufficiently fast memory is required (i.e.,
high bandwidth memory or HBM), but more impor-
tantly, the efficient use of the given bandwidth is directly
proportional to performance.

Diversity of Large Language Model
The size of large language model is diverging. The de-
mand for increasingly flexible and accurate LLMs has
initiated a competitive push towards larger LLMs, some
boasting up to a trillion parameters, whereas the de-
mand for more manageable models have reduced the
model size to single-digit billion parameters with opti-
mization efforts in prompt engineering, domain-specific
training, and various quantization methods. Depending
on the environment, device with different hardware
specifications, especially memory bandwidth, may be
adopted due to different SLA and price considerations.
For instance, a device with lower memory bandwidth
may satisfy if SLA is less strict or budget is limited.

In order to meet the requirements of both diverse-
sized large language models and scalable hardware,
a software framework that effectively bridges them is
essential. Wolf et al. identifies that models are typi-
cally defined and deployed to the acceleration hard-
ware using software frameworks such as HuggingFace
Transformers, PyTorch, and TensorFlow in the LLM
ecosystem4. The software framework performs opti-
mization by considering several system-wide configu-
rations such as model size, budget, SLA, and hard-
ware specifications, to meet the requirements. These
frameworks hide complex details of the underlying ac-
celeration hardware, enabling AI model architects and
application developers to leverage software framework
to describe their models and integrate applications into
the hardware, respectively.

Inefficiency in Conventional Hardware
Bandwidth. Although modern GPU features substan-
tial memory bandwidth and computation power, uti-
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FIGURE 2. GPU analysis when running LLM inference.

lizing the full bandwidth of a GPU for LLM inference
can be challenging due to the way GPU is designed.
For instance, the architecture of a NVIDIA GPUs are
optimized for parallel processing, where many threads
execute simultaneously across multiple cores. Espe-
cially in the generation stage, GPU cannot effectively
route the incoming bandwidth to a single core that
requires computation with a single vector at a time,
which causes underutilization of both compute cores
and memory bandwidth as mentioned by Hong et al.5

This innate problem is more pronounced in smaller
models due to even smaller operands (i.e., input and
activations). According to Neubig et al. and Kitaev et
al., a myriad of software techniques, such as in-flight
batching, Key-Value caching, and other algorithmic op-
timizations have been proposed to raise the efficiency
of GPUs6, 7. Despite these efforts, the utilization when
processing real inference workloads is bounded by the
physical limitations, which leads to inefficiencies when
deploying GPUs in practice. On average, NVIDIA H100
GPU achieves as low as 28.5% bandwidth utilization
for the smaller OPT 1.3B model but up to 69.9% for
the larger OPT 30B model. Figure 2(a) shows the
bandwidth utilization of running LLM of various sizes.

Power. The high memory bandwidth and compute
power of GPU comes with high power consumption.

September/October 2024 IEEE Micro (Preprint) 3
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Since LLM inference is a memory-intensive workload,
the power consumed during data transfer from memory
translates to performance. However, the high operating
frequency and the number of unused compute cores
result in unnecessary power consumption along with
other power-hungry peripherals. For running OPT 66B
model, two NVIDIA H100 GPUs consume an average
of 1101 W. Figure 2(b) shows the power consumption
of running LLM of various sizes.

Scalability. The growing size of LLMs have led to
the requirement of multiple devices. Since the data
precision of standard LLM models are half-precision
floating-point (FP16), the memory requirement of LLM
is approximately number of model parameter multiplied
by two bytes. For instance, 66B model requires 132
GB and additional 5 GB for storing Key-Value. Since
137 GB exceeds the HBM capacity of NVIDIA H100
GPU with 80 GB, two H100s are required. There-
fore, an effective communication between devices is
essential for efficient LLM inference of large mod-
els. NVIDIA GPUs support NVLink, a flagship direct
GPU-to-GPU interconnect that transfers data up to
900 GB/s. Despite this high-speed interconnect, the
data synchronization overhead in tensor parallelism is
significant because the computation is stalled during
the communication. Figure 2(c) shows the scalability
of NVIDIA DGX A100 with third generation NVLink
(600 GB/s) running GPT3 20B inference. DGX A100
achieves only an average of 1.38× speedup when
doubling the number of devices. The scalability result
is based on the released benchmark result of the
NVIDIA FasterTransformer (FT) library. For the most
efficient processing, domain-specific architecture for
LLM inference with high bandwidth and core utilization,
low power overhead, and high scalability is required.

Latency Processing Unit
The latency processing unit (LPU) architecture con-
sists of streamlined hardware, custom instruction set,
and LLM-specific dataflow for high-speed LLM infer-
ence. The LPU architecture is shown in Figure 3(a).

Hardware Architecture
Streamlined Memory Access (SMA) is a specialized
DMA that connects all HBM channels to the execution
engines to transfer FP16 data at maximum band-
width. It preloaded with memory instructions that sends
continuous read requests for weights and occasional
write requests for Key-Value write. Our hardware-
aware memory mapping removes the need for any data
reshaping or switching in the SMA. Matrix transpose
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FIGURE 3. LPU hardware architecture and its dataflow.

is required in the attention mechanism, but SMA uti-
lizes the strobe signal with an algorithmic approach
that writes to specific memory location so that the
data is naturally transposed when read without adding
latency overhead. Since a number of compute units
are placed to exactly match the total HBM bandwidth,
SMA streams the data received at maximum burst
size to the execution engines with minimum stalling.
The streamed data are parameters for vector-matrix
execution (e.g., weight, bias) and other vector-related
operations (e.g., gamma/beta, embedding).

Operand Issue Unit (OIU) arbitrates the streamed
data (i.e., first operand) from the SMA and the input
(i.e., second operand) from the on-chip register file
before issuing them to the execution engines. Based
on the compute instructions, the OIU generates mi-
crocodes that configure the execution engines and
decide the destination engine for the operands. Ap-
propriate operands are prefetched, ready to be issued
to the execution engines immediately.

Streamlined Execution Engine (SXE) is LPU’s
main computing hardware with custom low-latency
multiply-accumulate (MAC) trees, which are primarily
designed to execute vector-matrix multiplication for
multi-head attention and feed-forward network oper-
ations. Each MAC tree consists of the following fea-
tures: 1) The preprocessing of the operands based

4 IEEE Micro (Preprint) September/October 2024
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on the exponent and mantissa of the larger floating-
point operand enables the fixed-point multiplication and
accumulation to reduce the logic area. 2) The fixed-
point adder tree for mantissa utilizes a Wallace tree for
high-speed addition via parallelization. The SXE has l
number of MAC trees, each operating on a set of v
vector elements. To fully utilize the memory bandwidth,
the incoming bandwidth and the bandwidth of the MAC
tree (i.e., l × v × 2 B × freq) must be equal. Note that
freq refers to the operating frequency of the hardware.
Assuming the target frequency is predetermined, num-
ber of MAC trees is chosen to match the memory
speed. Moreover, SXE is superpipelined to constantly
receive operands, which increases the throughput and
thus lowers the overall latency. It also supports model-
specific operations such as rotary positional embed-
ding and nonlinear activation functions.

Vector Execution Engine (VXE) executes vector
operations, such as token embedding, softmax, nor-
malization, and residual, with custom low-latency ALU.
VXE also contains a sampler that sorts logits and
selects an output token based on temperature, top-p,
and top-k values. Since these vector operations occur
less frequently, we reduce the fan-in from the OIU
to this path to decrease the hardware resource with
negligible performance loss.

Instruction Control Processor (ICP) is a RISC
processor that controls the overall execution flow of
the LPU. The ICP primarily fetches LPU instructions
from the instruction buffer and dispatches them. It also
executes basic RISC-type instructions, such as branch
and jump, based on the control registers (e.g., token
and layer number) for iterative and conditional logic.
The dispatcher in the ICP is entirely independent of
other LPU modules, so the instructions are continu-
ously prefetched in the other modules for minimum
control interference. Moreover, the internal scheduler
supports the out-of-order execution of SXE and VXE
for improved latency and hardware utilization, and a
scoreboard is designed to handle data hazards.

Local Memory Unit (LMU) is a multi-bank reg-
ister file with scalar-vector segregation for fast high-
bandwidth access to one of the operands. It is also
multi-port to support simultaneous read to the OIU and
write from the writeback of the execution engines.

LPU Dataflow
The LPU adopts the output stationary dataflow, in
which the activation vector is reused, and weights
are streamed to execute vector-matrix multiplication.
Rectangular tiles with the length equal to the vector
dimension and the width equal to the number of MAC

TABLE 1. LPU instruction set architecture.
Category Instruction Type

Read Embedding V HBM V LMU

Read Key/Value V HBM V SMA

Read Parameters V HBM V SMA

Read from Host V Host V LMU

Write Key/Value V SMA V HBM

Write to Host V LMU V Host

Matrix Computation V/S LMU/SMA V/S LMU/SMA

Vector Computation V/S LMU V/S LMU

Vector Fusion Computation V/S LMU V/S LMU

Sampling with Sort V/S LMU V/S LMU

Transmit V LMU V P2P

Receive V P2P V LMU

Scalar Computation S ICP/LMU S ICP/LMU

Branch S ICP S ICP

Jump S ICP S ICP

CTRL

Destination

MEM

COMP

NET

Source

trees are loaded from memory each cycle. The tiles
are accessed in the vertical direction, which reduces
the number of partial sum buffers and simplifies the
control compared to other directions (e.g., horizontal
and zigzag) because a set of dot products is guaran-
teed to be finished before the next set begins.The tile
is memory mapped so that the data requested from
the SMA can be directly wired as inputs to the MAC
trees to fully utilize the SXE during the time vector-
matrix multiplication is being executed. The parame-
ters are also mapped to stream to VXE for vector-
vector operations. Figure 3(b) shows an example of
the LPU dataflow when executing multi-head attention.
The memory mapped Key stored in the HBM is read
to the SMA based on the tiling. The Key and the
corresponding portion of the Query stored in the LMU
are multiplied in SXE using the custom MAC trees to
generate a Score. The Score is then sent to VXE to
execute the softmax operation while the remaining tile
of Key enters the SXE. During the parallel execution
of SXE and VXE, the SMA continuously reads the
remaining Key from the HBM, and the ICP concurrently
calculates the new addresses for the next memory
read/write.

Instruction Set Architecture
The LPU operates based on a custom instruction set
architecture (ISA). Table 1 shows a shortlist of the
ISA of LPU. The ISA is largely divided into direct
memory access (MEM), compute (COMP), network
(NET), and basic RISC-type instructions (CTRL). MEM
accommodate memory read/write of different parame-
ters (e.g., weight, Key, Value, embedding and normal-
ization data) for data transfer. COMP handles simple
vector arithmetic along with more complex fusion oper-
ations for computation. NET handles transmit/receive
of partial results for synchronization. CTRL moves and
calculates the program counter and addresses based
on scalar register data for controlling the processor.
The processes of reading the weight, executing the

September/October 2024 IEEE Micro (Preprint) 5
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calculation, and writing the activation are executed
concurrently for independent instruction sets and in
a streamlined manner for dependent instruction sets,
to fully utilize the bandwidth, which translates to en-
hanced performance.

Expandable Synchronization Link
With the increase in model size, running LLM on a
single device is becoming challenging. The intra-layer
model parallelism, which distributes both the model
parameters and computational load across multiple
devices to execute partial vector-matrix multiplications,
has become the standard approach. Since the en-
tire resulting vector is required before a subsequent
multiplication begins, the compute units are stalled
until the synchronization of data is completed, which
causes a significant overhead. A larger model re-
quires even more data and devices to communicate
with per synchronization, which would further increase
the overhead. To address this issue, we develop ex-
pandable synchronization link (ESL), a peer-to-peer
(P2P) communication technology that performs data
synchronization with latency hiding. ESL also supports
reconfiguration to enable optimal network configuration
for the given workload.

Expandable Network
ESL primarily focuses on fostering high scalability that
ensures linear performance improvement with the ex-
pansion of the number of LPU devices. We devise a
custom ESL protocol that effectively overlaps vector-
matrix multiplication with synchronization, thereby hid-
ing the communication latency. In a typical processor
that adopts model parallelism (e.g., tensor parallelism),
the communication follows after the computation, and
vice versa, leading to the inclusion of the entire
communication latency in the overall latency. In ESL,
vector-matrix multiplication is first divided into smaller
column-based tasks, in which the result matches the
bitwidth of the P2P interface. The destination of the
partial products from SXE is assigned to be a tempo-
rary buffer instead of the register file. From the buffer,
the supporting ESL dataflow enables the immediate
transmission of the partial products to the peer devices
while the next operation is ongoing. The dataflow also
includes the runtime arbitration between the partial
products received from the peer devices and written
back from its own SXE. Since computing, transmit-
ting, and receiving can all be done concurrently, new
computation and the communication pertaining to the
previous computation always overlap. This overlap
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FIGURE 4. Dataflow and timeline of data synchronization in
LPU with expandable synchronization link.

hides all of the communication latency except for a
small tail latency. Figure 4(a) shows the ESL dataflow
and the operation timeline. For cases in which two
vector-matrix multiplications happen sequentially (e.g.,
fully connected layer (FC) 1 followed by FC layer 2
in the feed-forward network), even the tail latency of
the synchronization is hidden. Since latency hiding is
effective in any type of network topology, we choose
the ring topology. A ring minimizes the tail latency by
simplifying the packet processing on the routers that
would otherwise be substantial in a more complex net-
work. In ESL architecture, each device is equipped with
two quad small form-factor pluggable (QSFP) ports,
supporting full-duplex communication for simultaneous
transmission and reception.

Reconfigurable Network
The necessity of a reconfigurable network in ESL
arises from the requirement to efficiently support LLMs
across various sizes and use cases. Even in an 8-
device configuration, there are scenarios where oper-
ating with only 2 or 4 devices is more efficient. For
instance, running two different models on a single
server can be achieved by switching the model once
inference is finished with one of the model on the 8-
device configuration. However, the performance and
efficiency loss occurs due to the switching overhead
(e.g, model loading). Therefore, operating two models
with two sets of 4 devices is more effective. To accom-
modate diverse model requirements, we implement a
reconfigurable network in ESL to support 2, 4, and 8-
device configuration as shown in Figure 4(b). In an
8-device configuration, a full ring is utilized, whereas
in a 4-device configuration, it is split into two inde-
pendent 4-lines. Similarly, a 2-device setup employs
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four 2-lines. The router determines the number and
direction of hops based on the device ID to formulate
a packet header that guarantees the most efficient
communication path for synchronization. This design
effectively maximizes the network resource without
having to rewire or reload the model. Since each ring
is guaranteed not to intersect with a different ring,
each configuration can run independently to maximize
the network resource within its own ring and thus the
overall system. In all the configurations, the communi-
cation overhead is still the minimal tail latency, thereby
achieving high scalability.

HyperDex Framework
We develop HyperDex, a software framework that
consists of compilation layer and runtime layer, shown
in Figure 5(a), designed to deploy user applications
and GenAI models to the LPU. HyperDex’s compilation
layer and runtime layer are exposed as API to AI model
architects and users, respectively. These layers serve
as a bridge, enabling both model architects and users
to seamlessly integrate GenAI models and applications
into LPU-equipped systems without requiring in-depth
details about the underlying hardware.

Compilation Layer
The compilation layer within HyperDex framework
hides the details of hardware and provides an ab-
stracted interface of LPU to model architects, simplify-
ing the deployment of GenAI models on LPU-equipped
systems with requiring minimal effort. We design the
compilation layer to enable developers to import exist-
ing Huggingface models, and perform memory map-
ping, instruction generation, and compilation to gen-
erate binary program for the LPU hardware. Moreover,
model architects can customize, program, and compile
their own models with API provided by HyperDex’s
compilation layer.

HyperDex Model and Memory Mapper analyzes
the given model architecture and parameters, deter-
mining the most optimal memory allocation and align-
ment of each model parameter for maximum burst and
streamlined processing within LPU. HyperDex mapper
considers system setups, such as number of devices
and topology of the network, to partition the model
parameters across multiple devices based on the intra-
layer model parallelism, a type of model parallelism
that divides the model parameters of parallelizable
operations into multiple devices. Since ESL innately
complements model parallelism, its dataflow can stay
transparent to HyperDex mapper. Therefore, the map-
per does not require further consideration to support
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(b) Example use of HyerDex Framework
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FIGURE 5. HyperDex software stack for the LPU.

ESL. HyperDex model and memory mapper also takes
into account memory (e.g., number of HBM channels
and burst size) and compute (e.g., number of compute
units) configurations to determine optimal memory
mapping, tiling and padding size. The mapper divides
the multi-head attention weights with head-wise tiles
and the feed-forward network weights with column-
wise tiles, in which their dimensions are dependent
to the hardware specifications. The result is memory
mapping of the tiled weights that perfectly matches the
memory channel bitwidth and the order of operation
to enable maximum utilization of memory bandwidth.
The mapped parameters are fed to the instruction
generator and loaded to LPU via HyperDex runtime
layer.

HyperDex Instruction Generator creates a series
of instructions for the LPU describing the GenAI model
architecture based on the memory mapping informa-
tion generated by HyperDex model and memory map-
per. HyperDex instruction generator provides a front-
end that converts the Open Neural Network Exchange
(ONNX) format into Python API calls of predefined in-
struction blocks for popular LLM models such as GPT,
OPT, and Llama. For instance, Figure 5(b) demon-
strates the model architecture code for the Llama
model converted into Python with HyperDex instruction
generator. In this code snippet, the model architecture
of Llama is defined through the following code blocks:
1) input_load loads input user context via DMA and
stores it in the designated variable, 2) token_embed,
decoder, and lmhead are predefined blocks encap-
sulating the core logic of the model, 3) output_store
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returns the inferred output tokens via DMA, and 4)
hlt marks the termination of the program. Subse-
quently, this model architecture code is compiled with
do_compile function and is converted into a binary
program through fwrite function. For communicating
between devices, sync block, composed of transmit
and receive instructions, is utilized. As it is the role
of the P2P interface to leverage ESL directly, the
instruction generator operates independently of ESL.

For foundational models, the generation of the in-
struction blocks are automated, in which the param-
eters (e.g., source, destination, and their sizes) are
parsed from the ONNX model. For custom models,
HyperDex provides API for model architects to program
their own custom model architecture and correspond-
ing operators using the instruction blocks. Since LPU
consists of a RISC-type processor and programmable
engines, custom instruction blocks can be programmed
and inserted to accommodate future operations and
model architectures. All of these blocks are translated
into list of LPU instructions (i.e., machine codes).

HyperDex Compiler then compiles the instructions
generated by HyperDex instruction generator into a
binary program for the LPU hardware with several
optimizations. Register allocator of the compiler tracks
the lifetime of all variables and automatically allocates
and releases the hardware registers at the compiler
level. It eliminates the necessity for the instruction
generator and GenAI model architects to manually
manage registers, offering them an abstracted view
of the register file. Instruction chaining strategically di-
vides the operations into a series of dependent instruc-
tions that can be executed back-to-back without any
control overhead after initialization. Our optimization
for instruction chaining further separates instructions
utilizing independent hardware modules into distinct
groups (e.g., MEM, COMP, NET, CTRL) of instruction
chains. The compiler organizes a set of instructions
performing specific functions from the distinct groups
and interleave them so that the execution of each
instruction can be overlapped. It enables parallel ex-
ecution of instruction chains across these groups, ef-
fectively minimizing the control overhead and latency.

Runtime Layer
Once the Information about the weights and archi-
tecture of the Llama model is loaded into the LPU,
HyperDex runtime layer initializes the system. This
initialization process occurs offline, and upon com-
pletion, other users can proceed to conduct model
inference with the LPU-equipped system. HyperDex’s
runtime layer provides a collection of API for user

applications so that users can seamlessly integrate
their GenAI applications with the LPU-based hardware.
The runtime layer provides API that align with the
interfaces found in HuggingFace, including text gener-
ation, sampling, and streaming, allowing existing user
applications to be integrated with LPU hardware with
minimal code modification. Figure 5(b) demonstrates
an example text generation application implemented
using the API. Note that our design approach for the
runtime API aligns with the interfaces of Huggingface.
In this example code, tokenizer and model have
the same interface as Huggingface’s AutoTokenizer
and AutoModelForCausalLM, respectively

HyperDex’s runtime layer incorporates a device
driver beneath the runtime API to perform low-level
operations and hide complex hardware details from the
developers. This device driver extracts user-specified
per-request and per-core arguments (e.g., core num-
ber, input and output token length, sampling parame-
ters) via the runtime API and transferring this data to
the control registers of LPU. Whenever users send the
requests through the runtime API, LPU receives these
requests with user-specified arguments via the device
driver, performs GenAI model inference, and returns
the inference result. Furthermore, HyperDex’s runtime
layer offers monitoring tools that provide hardware-
level statistics such as power consumption, LPU utiliza-
tion, and HBM usage, obtained from the device driver.
These tools are crucial in managing LPU-equipped
systems at the datacenter level.

Experimental Setup

ASIC Implementation
We develop RTL implementation of LPU using Sys-
temVerilog and synthesize the proposed LPU archi-
tecture at a Samsung 4nm library and Synopsys De-
sign Compiler. To demonstrate the scalability of our
architecture, we synthesize the LPU with three different
HBM configurations: 819 GB/s (24 GB), 1.64 TB/s (48
GB), and 3.28 TB/s (96 GB). The vector dimension
to fixed to 64 because the embedding dimension of
most LLMs are multiples of 64, thus the number of
MAC trees is set to 8, 16, and 32 to exactly match
the memory bandwidths given the operating frequency
of 1 GHz. An alternative is to scale down the vector
dimension and proportionally scale up the number of
MAC trees, but this configuration would halve the area
of VXE at the cost of doubling its latency. We place and
route using Synopsys IC Compiler II and measure the
power and area through Synopsys PrimePower and
Design Compiler tool, respectively. Figure 6(a) shows
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(a) LPU ASIC Chip Layout & Specification
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(b) Orion, LPU-based Datacenter Server & FPGA Layout

Orion-cloud

Orion-edge FPGA layout

QSFP Transceiver 
100 Gbit/s

LPU-equipped Cards
(Xilinx Alveo U55C)

Intel Xeon
12-core 2.1 GHz

PCIe Switch

DDR4 32GB

Cooling System

Quad-port 1GbE NIC

QSFP Transceiver 
100 Gbit/s

LPU-equipped Cards
(Xilinx Alveo U55C)

2 x Intel Xeon
16-core 2.9 GHz

PCIe Switch

DDR4 512 GB

NVMe SSD 2 TB

Cooling System

PCIe Interface
Gen3 x16

Vector 
Execution Engine

Streamlined 
Execution Engine

Streamlined 
Memory Access

Local Memory 
Unit

Instruction 
Control 

Processor

P2P Interface
100 Gbit/s

Operand Issue 
Unit

16 GB HBM2
460 GB/s

Orion-cloud

Orion-edge FPGA layout

QSFP Transceiver 
100 Gbit/s

LPU-equipped Cards
(Xilinx Alveo U55C)

Intel Xeon
12-core 2.1 GHz

PCIe Switch

DDR4 32GB

Cooling System

Quad-port 1GbE NIC

QSFP Transceiver 
100 Gbit/s

LPU-equipped Cards
(Xilinx Alveo U55C)

2 x Intel Xeon
16-core 2.9 GHz

PCIe Switch

DDR4 512 GB

NVMe SSD 2 TB

Cooling System

PCIe Interface
Gen3 x16

Vector 
Execution Engine

Streamlined 
Execution Engine

Streamlined 
Memory Access

Local Memory 
Unit

Instruction 
Control 

Processor

P2P Interface
100 Gbit/s

Operand Issue 
Unit

16 GB HBM2
460 GB/s

(b) Orion, LPU-based Datacenter Server & FPGA Layout

Orion-cloud

Orion-edge FPGA layout

QSFP Transceiver 
100 Gbit/s

LPU-equipped Cards
(Xilinx Alveo U55C)

Intel Xeon
12-core 2.1 GHz

PCIe Switch

DDR4 32GB

Cooling System

Quad-port 1GbE NIC

QSFP Transceiver 
100 Gbit/s

LPU-equipped Cards
(Xilinx Alveo U55C)

2 x Intel Xeon
16-core 2.9 GHz

PCIe Switch

DDR4 512 GB

NVMe SSD 2 TB

Cooling System

PCIe Interface
Gen3 x16

Vector 
Execution Engine

Streamlined 
Execution Engine

Streamlined 
Memory Access

Local Memory 
Unit

Instruction 
Control 

Processor

P2P Interface
100 Gbit/s

Operand Issue 
Unit

16 GB HBM2
460 GB/s

FIGURE 6. LPU implementation and specification.

the overall LPU chip layout.
ASIC simulator. For performance evaluation, we

implement in-house cycle-accurate simulator, written
in C++, to measure the latency of LPU. It also sim-
ulates ESL to support any number of desired devices.
We integrate ramulator with our simulator in order to
simulate Samsung HBM3 Icebolt8. We configure a
single stack of HBM3 to have a speed of 819 GB/s
and a capacity of 24 GB. In the evaluation, one, two,
and four stacks of HBM3 are used for each HBM
configuration. Also with the simulator, we observe that
LPU occurs no accuracy loss on popular datasets (e.g.,
LAMBADA and Winograd Schema Challenge) with the
open-source Megatron-LM GPT2, as the LPU supports
the standard FP16 data precision.

FPGA Implementation
Before completing the fabrication of the LPU ASIC,
we implement the LPU architecture on Xilinx Alveo
U55C FPGA accelerator cards, where each device
consists of HBM2 with 460 GB/s memory bandwidth
and 16 GB capacity. Our FPGA implementation utilizes

46.4% of LUT, 39.0% of FF, 57.0% of BRAM, 36.9% of
URAM, and 27.5% of DSP, running at 220MHz kernel
operating frequency. To match the memory bandwidth,
LPU is configured with 16 MAC trees, which have total
bandwidth of 16 × 64 × 2 B × 220 MHz ≈ 460 GB/s.

Server-scale integration. For initial commercial-
ization, we productize HyperAccel Orion, a datacenter
rack server based on the FPGA implementation, in two
configurations: 1) Orion-cloud with eight LPU-equipped
acceleration cards in a 2U server chassis with 128
GB and 3.3 TB/s HBM and 2) Orion-edge with two
LPU-equipped acceleration cards in a edge server
chassis with 32 GB and 960 GB/s HBM. For P2P
communication, the devices are connected via ESL,
a ring network connected by dual QSFP28 cables
capable of 2×100 Gbit/s. The software stack of Orion
consists of the Xilinx Vitis 2022.2 platform and Hyper-
Dex framework with HuggingFace-like API for running
multi-billion parameter LLMs. Figure 6(b) shows the
implementation and server details.

Methodology
LPU performance. We measure the latency per output
token of LPU with 3.28 TB/s HBM configuration. Since
publicly available models on HuggingFace mostly con-
sist of up to 70 billion parameters, we scale out to
two LPUs to provide a total of 6.56 TB/s and 192
GB. For the model, we run widely-benchmarked OPT
1.3B, 6.7B, 30B, and 66B. Note that LPU supports
other LLMs such as GPT, Llama, and their variants,
but the latency is largely affected by the model size
and not the type. For a fair performance comparison,
we compare HyperAccel LPU with the state-of-the-art
NVIDIA H100 GPU, which has comparable memory
bandwidth of 3.35TB/s. We run LLM inference with the
focus on generative tasks (e.g., article, code, and other
text generation), in which we fix the number of input
and output tokens to 32 and 2016, respectively. Note
that the number of input tokens would barely affect the
latency of GPU as it can process inputs in parallel.

Server efficiency. The efficiency of Orion is based
on a real-system performance achieved while running
an end-to-end text generation application. The number
of tokens generated in one second per kilowatt of
power consumption for each server is measured. We
compare Orion-cloud and GPU server equipped with
two NVIDIA H100s running OPT 1.3B to 66B and com-
pare Orion-edge and GPU server equipped with two
NVIDIA L4s running OPT 1.3B and 6.7B. The chosen
models are variations of LLMs that fit into the given
system. Note that memory space is labeled in decimal
prefix (GB) but has physical capacity based on the
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binary prefix (GiB), so 66B model can fit into the 128
GB Orion-cloud system (e.g., 1.074 GB = 1 GiB). The
compared systems have similar memory bandwidth
specification and thermal design power (TDP).

Scalability. We compare the scalability of LPU and
GPU in a multi-device setting. The GPU results are
based on the open benchmark numbers of NVIDIA
DGX A100 mentioned. DGX A100 is a server sys-
tem that supports eight NVIDIA A100 GPUs on a
6U server chassis and third generation NVLink with
GPU-to-GPU bandwidth of 600 GB/s. The scalability
of LPU is validated with Orion-cloud with expandable
synchronization link.

Evaluation
Chip area and power analysis. Figure 6(a) shows the
area and power estimation breakdown of LPU in three
different configurations. We specifically focus on the
LPU with 32 MAC trees and 3.28 TB/s HBM, which has
comparable memory bandwidth to the baseline NVIDIA
H100 GPU with 3.35 TB/s HBM. The area and power
consumption of the LPU chip is 0.824 mm2 and 284.31
mW, respectively. SXE dominates the area and power
consumption of the LPU for housing majority of the
compute logic, followed by SMA and LMU with mostly
SRAMs for buffering and storing data. Including four
HBM3 stacks, the total power consumption of the LPU
system is 86 W. Compared to the H100 GPU, the LPU
system requires only 15.2% of the power consumption
when running OPT 30B. The areas are not compared
since GPU is a general-purpose processor and LPU is
a domain-specific processor.

LPU Performance
Latency. Figure 7(a) shows the simulated latency of
LPU. Notably, LPU achieves 1.25 ms/token with 1.3B
model and 4.62 ms/token with 6.7B model. For bigger
OPT 66B model, two LPUs generate 1 token in just
22.2 ms. When compared with the equal number of
H100, one LPU achieves 2.09× speedup on the 1.3B
model, and two LPUs achieve 1.37× speedup on
the 66B model. The streamlined architecture of LPU
effectively uses the given memory bandwidth during
the end-to-end inference compared to the GPU. On
OPT 30B and 66B models, one LPU and two LPUs
use up to 90.2% and 90.6% of the memory bandwidth,
respectively, whereas one GPU and two GPUs use
up to 70.8% and 64.9%, respectively. The advantage
is more drastic for the smaller OPT 1.3B model, in
which one LPU achieves 63.3% memory bandwidth
utilization, whereas one GPU achieves only 28.9%.
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FIGURE 7. Performance of LPU compared to GPU.

Server Efficiency
Figure 7(b) shows the efficiency analysis between
HyperAccel Orion and GPU servers with comparable
hardware specifications. For the cloud server, Hyper-
Accel Orion-cloud with eight LPUs achieves 1.33×
energy efficiency over the GPU server with 2× NVIDIA
H100 when running OPT 66B model. Orion-cloud con-
sumes 608 W, whereas H100 consumes 1100 W. For
the edge server, Orion-edge with two LPUs achieves
1.32 × energy efficiency over the GPU server with
2× NVIDIA L4 when running OPT 6.7B model. Note
that the efficiency advantage of device with LPU-based
ASIC over the GPU would be significantly greater.
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Scalability
LPU is specifically optimized to fully utilize its stream-
lined core for the small-batch computing required by
LLM inference, whereas GPU suffers from severe un-
derutilization for such workload. However, GPU still
requires multiple devices for the best performance
because 1) memory bandwidth is the bottleneck, and
2) additional memory capacity is required to support
the larger models. The GPU undertuilization is accen-
tuated with additional devices. Moreover, LPU devise a
custom protocol to hide majority of the synchronization
latency, while GPU undergoes significant overhead, as
shown in the strong scaling of the two corresponding
processors in Figure 7(c). We analyze the scaling
efficiency of up to 8 devices when running GPT3-
20B. LPU achieves 5.43× speedup for the output token
generation compared to a single device, which is sig-
nificantly better than the 2.65× speedup of DGX A100.
LPU achieves 1.75× speedup on average for doubling
the number of devices due to the high scalability of the
ESL technology, whereas GPU achieves only 1.38×
speedup when the number of devices doubles due
to the inability to hide the designated synchronization
latency after the matrix multiplication. The scalability of
LPU is verified with the Orion-cloud product.

Related Work
Recently, there has been a surge in the development
of AI processors that accelerate LLM inference with
competitive performance. Intel Habana Gaudi2 is a
specialized accelerator designed for deep learning
training and inference9. It excels in handling small
tensor operations, which facilitates simultaneous com-
putation and network communication among diverse
components. This capability also helps in reducing the
bandwidth demands on its memory subsystem.

Groq Language Processing Unit is based on the
tensor streaming processor with optimizations to sup-
port LLM inference10. It integrates 16 chip-to-chip in-
terconnects and 230MB of SRAM, offering versatile
options for embedded applications. However, the ab-
sence of external memory, such as HBM, requires
Groq to integrate hundreds of cores to effectively ac-
celerate practical LLMs with tens of billions of param-
eters (e.g., 512 chips for Llama2-70B), which incurs
substantial communication overhead.

While these processors consist of architectures
tailored for general AI computing to effectively handle
LLM, HyperAccel LPU boasts an LLM-specific stream-
lined dataflow with high memory bandwidth and com-
pute utilization to achieve unprecedented efficiency for
LLM inference. Moreover, LPU features an efficient

interconnect system that overlaps computation and
communication between processors, which is benefi-
cial for current LLMs that require systems ranging from
node scale to rack scale.

Conclusion
We present a new class of processing unit, LPU,
a latency-optimized and highly scalable architecture
that accelerates large language model inference for
generative AI. It introduces the streamlined processor
and expandable synchronization link that maximize the
bandwidth usage for agile processing and hide the
synchronization overhead in peer-to-peer computing,
respectively. HyperDex software framework assists the
LPU to provide an optimized end-to-end solution.

LPU-based ASIC achieves token generation la-
tency of 1.25 ms/token for 1.3B model, and two LPUs
achieve 20.9 ms/token for 66B model, while having a
total area of 0.824 mm2 and power consumption of
284.31 mW. In addition, we implement LPU on cloud
and edge FPGA servers to achieve 1.33× and 1.32×
higher energy efficiency over NVIDIA H100 and L4
GPU server solutions, respectively.

Increasing the number of reused parameters would
alleviate the memory bottleneck and proportionally
increase the performance. Therefore, our future work
includes developing an architecture that exploits the
use of identical weights for different input contexts and
batches, under the assumption that the operations are
synchronized by layer. With additional sets of SXE and
VXE, LPU can support two modes for parameter reuse.
First, the multi-token mode that supports simultaneous
execution of multiple input tokens would speedup the
initial summarization stage. This mode can reduce the
latency significantly for user requests with long input
tokens. Second, batch mode that supports different
user requests simultaneously would greatly improve
the throughput, which is essential in high-traffic dat-
acenters. The two modes would further increase the
LPU performance while maintaining its outstanding
efficiency and scalability.

In addition, we also consider a hybrid system
composed of both GPU and LPU to cover a broader
workload scope. Since GPU excels in other compute-
intensive AI workloads (e.g., image processing) and
LPU specializes in the sequential generation of textual
content, combining the two systems should effectively
handle multi-modal workloads, such as text-to-image
generation. By overcoming the communication latency
between GPU and LPU with dataflow optimizations, we
expect that LPU and its area of application can expand
to more diverse domains.
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