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Abstract—With growing demands on the acceleration of ma-
chine learning (ML) computation, processors for edge systems
have been integrating heterogeneous devices such as GPUs and
NPUs (Neural Processing Units) for ML computing. However, as
multiple ML models need to be processed simultaneously even in
edge systems, ML inference schedulers for such heterogeneous
devices must not only consider the efficiency of devices for
different ML models, but also consider the interference among
them carefully. Based on our analysis on the behaviors of
inter-device interference, the study first builds an interference
prediction scheme using a multilayer perceptron model. The
interference prediction model is trained with the data from
randomly generated ML models, and thus it can be prepared
without any prior knowledge of actual target ML workloads.
Using the highly accurate prediction model, this study proposes
a goal-independent scheduling framework, which allows any
scheduling objective set by users. The scheduling framework uses
a sampled simulation method to support such flexible scheduling
goals with a minimized latency. Our experimental results on
a commercial edge system show that our framework backed
by the interference prediction model can effectively improve
performance for diverse goals.

I. INTRODUCTION

The widening adoption of machine learning (ML) for many
critical computing problems has been accelerating the integra-
tion of GPU and NPUs (Neural Processing Units) in processors
targeted for mobile and edge platforms. In such heterogeneous
processors, scheduling jobs to different computing devices
poses new challenges. Recent studies proposed scheduling
techniques to optimize the mapping of ML tasks and hetero-
geneous computing devices for certain fixed goals [1], [2].

However, scheduling in edge systems with heterogeneous
processors must consider two important requirements. First,
the execution characteristic of an ML task is not only de-
termined by the computing device it is running on, but is
also highly affected by the co-running tasks in other devices.
Second, another important requirement for edge schedulers is
the configurability of scheduling policies. Users have diverse
scheduling objectives, and the scheduler design must be able
to support such flexibility.

To address the challenge, this paper first investigates the
intensity and characteristics of interference among co-located
ML tasks for heterogeneous edge processors. Our analysis
shows that the interference can often increase the latency of
an ML task significantly, disrupting the expectation assumed
by schedulers. Based on the analysis, this study proposes an
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Fig. 1: Interference model and runtime scheduling.

MLP (Multilayer Perceptron) model to predict interference.
By training the interference model with randomly generated
data, the interference model can be trained without any prior
knowledge of the target real ML models. Our results show that
the interference model has a high accuracy of 95.9%, when it
is validated with 14 real ML tasks.

Incorporating the interference model, we propose a goal-
independent scheduling framework based on sampled simula-
tion [3] to reduce simulation space. It simulates the results
of possible sampled scheduling options and chooses one
satisfying the given objective. Unlike the prior goal-specific
schedulers, the benefit of the approach is that it can support
any goal. During the simulation, the interference model is
used to accurately predict the execution latency of ML tasks
on GPU or NPU. Figure 1 shows the overall design of the
interference model construction and runtime scheduling. The
construction of the interference model is needed once for a
platform, since it is not tied to any specific ML tasks running
on the platform.

We implemented the scheduling framework with the new
interference prediction model on the NVIDIA Xavier plat-
form [4]. Our evaluation with 14 real world ML workloads
shows that compared to the baseline policy, it can improve
goodput (throughput satisfying the latency SLO) by 40%
and 99% SLO throughput by 36.1% on average. The results
show that the interference model is critical to meet the given
scheduling objective, and our goal-independent scheduling
framework can support diverse goals effectively.



II. BACKGROUND

A. DNN Scheduling on Heterogeneous Edge Processors

Recently, a series of works [1], [5] investigated the schedul-
ing problem for heterogeneous processors. Gavel proposes a
scheduling mechanism for DNN training on multigenerational
GPUs by formulating the scheduling as an optimization prob-
lem [5]. However, it targets batch-oriented training tasks, but
our work is for real-time inference scheduling which must
consider the latency of each individual inference request.
PSLO-MAEL proposes DNN inference scheduling algorithms
on heterogeneous processors in edge systems through esti-
mating expected latency and leveraging model slicing [1].
The prior works proposed profiling-based inference scheduling
mechanisms based on statically profiled execution statistics.
However, these profiling-based methods lack consideration of
the interference among the co-running inference tasks.

In contrary, this work focuses on the edge systems that have
heterogeneous processors and a unified memory shared by
the processors, and studies the interference implications. In
addition, our scheduling framework provides a customizable
objective function by using simulation-based scheduling.

B. Modeling Interference

Performance interference among co-running applications
has been causing unpredictable behaviors in multi-core sys-
tems. To investigate the interference effects of co-located
applications in multi-core systems, Bubble-Up profiled the
application-specific interference sensitivity [6]. Bubble-Up
produces stress to the memory subsystem, called bubble, while
incrementally enlarging the bubble to obtain the sensitivity
curve. Mage is an interference-aware runtime system, which
optimizes performance and efficiency for co-located applica-
tions in distributed and multi-core systems [7]. Gpulet devises
a novel scheduling framework for multi-GPU servers that in-
corporates both spatial and temporal sharing while considering
interference [8]. Other prior work introduced an interference
modeling approach, which predicts the performance degrada-
tion due to consolidation [9], [10] .

III. MOTIVATION

A. Contention on Shared Resource

This study identifies two primary types of shared resources,
which largely impact the inference latency: 1) memory band-
width, and 2) shared use of GPU execution resources.

1) Contention on Memory Bandwidth: CPU, GPU, and
NPU in an SoC compete over the memory controllers, pro-
ducing different demands of bandwidth usage. For instance,
since the NVIDIA Xavier system has a single shared external
memory controller, inference executions on DLAs could be
bottlenecked by the memory-intensive inference jobs on GPU.
Methodology: We pin a specific DNN model to a processor,
while running two other DNN models on the rest of the
processors. We run two experiments: 1) ShuffleNet pinned to
GPU, and 2) GoogLeNet pinned to DLA. For each experiment,
we populate all possible pairs of benchmark DNN models
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Fig. 2: Normalized execution time of ShuffleNet (GPU) and
GoogLeNet (DLA) when other two DNN models are co-
running on the rest of the processors.
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Fig. 3: Slowdown due to resource contention of ResNet-50
(GPU) when DNN model is co-running on DLA.

and place the pairs with the pinned model. Depending on
which combinations of models are co-running, their memory
bandwidth utilization varies so we use the model combinations
as a knob to navigate different memory bandwidth utilizations.
Implication of memory bandwidth contention: Figure 2
illustrates the inference execution time of ShuffleNet (GPU)
and GoogLeNet (DLA) normalized to their respective sole
execution baseline. We observe a trend that there is a cor-
relation between 1) memory bandwidth contention of co-
located tasks at the memory controller, and 2) the performance
degradation on the inference task. However, note that while the
trend is observable, the correlation is not always very strong,
which implies that there are other factors to interplay with the
bandwidth utilization to determine the interference effects.

2) Contention on GPU Execution Resource: GPU execu-
tion unites are considered as source of resource contention.
Contention on GPU execution resources: First, NPUs might
have insufficient capabilities to support diverse layers in DNN.
When NPUs does not support for a specific layer, they
often rely on GPUs for processing. Seconds, NPUs are often
equipped with insufficient on-chip memory resources. In such
cases, there may be a fallback to a GPU when a NPU lacks
enough on-chip memory space to hold the entire working set.
Methodology: We pin ResNet-50 on GPU, while running
one of the three DNN models, SqueezeNet, ShuffleNet, and
AlexNet, on the DLA. To exclusively quantify the interference
effect by execution resource contention, we measure the sum
of latencies of execution on the GPU with ResNet-50 in an
interfered environment and compare it with the end-to-end
latency. In this way, it allows us to calculate the isolated
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Fig. 4: Sensitivities to contention on memory bandwidth
utilization of three different DNN models running on DLA.

effect of execution resource contention, where the bandwidth
contention does not contribute to the latency measurement.
Quantification of contention: Figure 3 reports the normalized
execution time of ResNet-50, when interfered with one of
the three DNN models along with their corresponding GPU
execution unit utilizations. The results show that as the co-
running model changes, the performance degradation due
to resource contention varies significantly, ranged from 3%
(SqueezeNet) to 15% (AlexNet). As AlexNet consumes the
largest GPU utilization (24.2%), it incurs the greatest perfor-
mance degradation, while SqueezeNet with the least utilization
(3.8%) produces the smallest performance loss. The results
also show that the contention on execution units contributes
to a significant portion of total performance degradation.

B. Sensitivity on Interference

Another factor that impacts on the interference of hetero-
geneous processors is sensitivity on interference. This metric
is introduced in a prior work, Bubble-Up [6], which studied
the interference of multiple cores and proposed an inference
model. Different DNN models have different sensitivity to the
resource contentions and therefore experience different levels
of performance degradation when the contentions emerge.
Thus, this model-specific property is an important factor to
consider in the interference prediction model.

Methodology: We use a similar methodology as in Sec-
tion III-A with a few modification. We pin SqueezeNet,
GoogLeNet, and VGG-11 to DLA, while executing a synthetic
DNN model on GPU. This synthetic model consists of a single
convolution layer. We modify the number of output channels
of this layer to regulate its memory traffic. The synthetic model
works as bubble as in the prior CPU-based interference study,
Bubble-Up [6]. In this way, we precisely control the memory
bandwidth of synthetic model, which in turn facilitates the
interference analysis for the three DNN models.
Different interference sensitivities of different DNN mod-
els: Figure 4 shows the normalized inference execution latency
using each model’s solo execution latency as baseline. We
observe that VGG-11 is significantly more sensitive to the
availability of memory bandwidth since it requires not only
to read large weight parameters from off-chip memory, but
also to write large output tensor to the memory. In contrast,
SqueezeNet and GoogLeNet are lightweight models in terms

of weight parameters, which incur less pressure to the memory
controller, and therefore, they are less sensitive to the memory
bandwidth utilization.

IV. PREDICTION METHOD FOR INTERFERENCE

A. Learning to Predict Interference

In the previous section, we investigated two sources of in-
terference, (1) the memory bandwidth and (2) GPU execution
unit. By focusing on the two main sources, the interference
model is designed to predict the latency increase by co-
runners. Given that our target system contains one GPU and
two DLAs, the prediction model consists of four sub-models:

• Model 1 (GPU← DLA) predicts the latency degradation
of a GPU task, when a co-runner is running in a DLA.

• Model 2 (DLA← GPU) predicts the latency degradation
of a DLA task, when a co-runner is running in the GPU.

• Model 3 (GPU ← DLA0, DLA1) predicts the latency
degradation of a GPU task, when two co-runners are
running in the two DLAs.

• Model 4 (DLA0 ← DLA1, GPU) predicts the latency
degradation of a DLA task, when a co-runner runs in the
GPU, and the other co-runner runs in the other DLA.

We initially attempted to build an interference estimation
method by understanding how the architecture resources are
shared across different inference tasks. Such an empirical
heuristic, however, failed to provide sufficient results to be
used for diverse ML inference tasks at runtime. This is because
the interference effect is a consequence of complex inter-
actions between various ML tasks, making it impractical to
devise a unified model that precisely quantify the performance
interference.

To this end, inspired by prior works that leverage machine
learning (ML) to solve system problems [11], we employed
lightweight MLP models, noting their predictions were suffi-
ciently accurate.

B. Modeling Interference

The key design goal of our interference prediction scheme
is to create a workload-independent model. Each sub-model
employs a multilayer perceptron(MLP) architecture, and the
network architectures are shown in the last row of Table I.
The input features for the interference model include memory
bandwidth of all running tasks, the GPU utilization of DLA
tasks, the average layer execution time of GPU task, and sen-
sitivity values of the target task. Since the GPU utilizations of
most GPU tasks are almost same, we exclude GPU utilization
of GPU tasks as input features. For model 4, to improve
prediction accuracy, we used an additional sensitivity value.

Sensitivity refers to the latency degradation of a target task
when one or two co-running tasks are executed on the GPU or
DLA. The sensitivity is measured using the method discussed
in Section 3.3. When the target ML model runs onm the GPU
or DLA, a fixed synthetic model is executed on the other
device to generate interference pressures. Unlike Bubble in
the prior work [6], we use a single sensitivity value from a



Model 1 Model 2 Model 3 Model 4
Interfered Processor GPU DLA GPU DLA0

Co-running Processor DLA GPU DLA0, DLA1 GPU, DLA1

Input
Features

Memory Bandwidth Utilization G APP, D APP G APP, D APP G APP, D0 APP, D1 APP G APP, D0 APP, D1 APP
GPU Utilization D APP D APP D0 APP, D1 APP D0 APP, D1 APP

Average Layer Execution Time G APP G APP G APP G APP
Sensitivity for (GPU, DLA) G APP D APP - D0 APP

Sensitivity for (GPU, DLA0, DLA1) - - G APP D0 APP
Network Architecture 5-64-256-256-1 5-128-16-1 7-256-256-64-1 8-256-128-32-1

* G APP and D(0/1) APP denote whether the input feature is measured with the application in the GPU or DLA (0/1).

TABLE I: Input features of the interference model consisting of 4 sub-models

Configuration
Block Type Sequential, Add, Concat

Sequential Type
Conv+(BN)+ReLU,
FC+(BN)+ReLU,

Conv+(BN)+ReLU+Pool

Conv

Output Channels 3 - 1024
Kernel Size 1 - 11

Padding 0 - 11
Stride 1 - 11

FC Output Features 32 - 4096
Activation ReLU, SoftMax

Pool

Type MaxPool, AvgPool
Padding 0 - 2

Kernel Size 1 - 7
Stride 1 - 7

TABLE II: Random model generation: specification for ran-
dom models for training the interference model

fixed pressure. For our purpose, this simplification produce a
model that is sufficiently accurate.

For the workload-independent model, the training data for
each MLP are generated from randomly generated ML models,
and the features are collected from the layers of these models
by executing them on the target system. By using the collected
data from the random ML tasks, the interference model is
prepared without any prior knowledge of the actual target ML
workloads. This goal is necessary to support future additions
of new ML models, without retraining the interference model.

C. Training the Interference Model

Training the interference model is necessary only once for
a platform, unless there is a significant change in the hardware
configuration or software stack that impacts performance.
Once the prediction model is built, it does not need to be
retrained even if the platform needs to serve new ML models.
Random DNN generation: To allow building workload-
independent models, we generate random ML architectures
and profile the input features from the execution of the random
ML models. We use 155 random computational graphs of
DNN models, as used by the prior study [12]. Table II
shows the parameters for random DNN model generation. For
the semantically meaningful generation of DNNs, a random
computational graph is the connection of blocks. A block
reflects common topology in DNNs, and it can be a sequential
block, add block, or a concatenation block. The range of pa-
rameters for convolutional, fully-connected, and pooling layers
are also shown in the table. Once the random DNN models
are generated, they are mapped to the hardware platform, and
their input features and interfered latencies are measured. The
collected data are then used for model training.
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Fig. 5: Accuracy of the predicted time over the measured
(profiled) time

D. Interference Prediction

To predict interference using the trained model, each target
ML task is profiled by running it in a GPU and DLA. The
profiled input features of both the target and co-runner tasks
are fed into the interference model to predict the latency
degradation to the target ML task.
Interference prediction accuracy: The prediction model is
trained from the randomly generated models as discussed in
Section 4.2. We run 14 DNN models on both a GPU and DLAs
with all combinations, and validate the measured results match
the predicted ones. Table III shows the details of 14 DNN
models.

In figure 5 presents the execution time plots for the actual
runs and predicted ones. In figures 5 (a) and (b), one DNN
model runs on the GPU, while another DNN runs on one of
the DLAs. In figures 5 (c) and (d), one DNN runs on the GPU
and two DNN models run on two DLAs. The left two figures
(a) and (c) show the execution times for the DNN model on
the GPU, while the right two figures show execution times on
DLAs.

As shown in the figure, the prediction model demostrates a
very high accuracy. For (a) and (b), the average accuracies are
97.8% and 94.3% respectively. For (c) and (d), the average
accuracies are 97.4% and 94.0% respectively. These results
show that our prediction model can produce a highly accurate
estimation of interference for both GPU and DLA execution,
although it is trained with randomly generated ML models.
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V. SCHEDULING SYSTEM

A. Overview

This section presents our scheduling framework based on
sampled simulation. The runtime component of the scheduler
routes requests to different devices based on the priority score
for each device. The priority score of a request is determined
by how much each device is allocated for the ML model by
scheduling and how much credit it has already consumed in
the current scheduling cycle. To find the best allocation for
each ML model, we use a simulation method that simulates the
scheduling and execution of requests to estimates the outcome.
To reduce the search space of the priority score, candidate
allocation samples are randomly generated and evaluated with
the simulation method. If a sampled resource allocation passes
the scheduling objective, it is selected and used for actual
scheduling. Figure 6 illustrates the sampled simulation (a) and
runtime scheduling (b).
Configurable objective: One of the key features of our
scheduling mechanism is its support for configurable objec-
tives. To achieve this, the scheduling mechanism must be
flexible enough to accommodate various goals. The scheduling
policy is represented by an allocation matrix, which specifies
the ratios for using each device for current ML workloads.
To support a variable policy, we use a generic simulation-
based method. By evaluating possible options through fast
simulation, this method finds the right allocation matrix which
satisfies the policy.

B. Priority-based runtime mechanism

The runtime component of the scheduler routes each request
based on the priority score assigned to each device. When an
empty slot becomes available on one of the computing devices,
the runtime system selects the request with the highest priority
for that devices. The priority score of a request depends on
two factors, allocation ratio and consumed allocation. For
each request, the allocation ratio for a device represents the
proportion of device time the request is entitled to use during

a scheduling period. Allocation matrix contains the allocation
ratios for all workloads across the computing devices in the
system.

The best allocation matrix, produced by the sampled simu-
lation, contains the chosen allocation ratio for each device, as
shown in Figure 6 (b). Additionally, the scheduler maintains
allocation history table, which records the number of time
slots each ML model has consumed during the current period.
The allocation history table is reset periodically to replenish
the credit available for using the devices. The actual priority
is defined as follows:

Priority Score =
Allocation Ratio

Consumed Allocation

The priority is high when the initial allocation is large and
remains unused in the current scheduling cycle. The priority-
based mechanism is work-conserving. If a GPU or DLAs
becomes idle, the next request with the highest score is routed
to the idle device, even if the priority of the job for the device
is lower.

C. Goal-independent Simulation

To generate the best allocation matrix, we use a simulation-
based method to allow customizable goals. This method sim-
ulates the scheduling and execution of jobs based on their
request rates and a given allocation matrix. Figure 6 (a) shows
the simulation method. As shown in the figure, a random
sampler generates possible allocation matrices. The number
of random samples should be large enough to include at least
one good scheduling which satisfy the scheduling goals.

For each random allocation matrix, the simulator mimics
the scheduling and execution with the latency of each request
on GPU or DLA. Requests are generated with specified rates
and are mapped to virtual GPU and DLAs according to the
current allocation matrix. Execution times are estimated with
the profiled latency and interference prediction model. Virtual
GPU and DLAs times advance by the estimated execution
times, and the scheduler assigns new requests on them. After



Name #
Params

On GPU On DLA
Speedup4MEM

BW1
GPU
UTIL2

LAT3

(ms)
MEM
BW

GPU
UTIL

LAT
(ms)

AlexNet 61M 31.6% 96.7% 4.0 19.9% 24.2% 10.2 2.6x
ResNet-18 12M 31.5% 97.7% 5.8 18.5% 1.5% 24.3 4.2x
ResNet-34 22M 27.8% 98.0% 10.5 19.8% 0.9% 40.5 3.9x
ResNet-50 26M 45.8% 98.0% 15.0 21.7% 0.9% 52.9 3.5x

SqueezeNet 1.0 1.2M 41.1% 97.6% 6.3 14.7% 2.6% 19.7 3.1x
SqueezeNet 1.1 1.2M 46.1% 95.8% 3.1 14.5% 3.8% 13.3 4.3x

Inception v3 27M 66.3% 98.2% 21.3 32.7% 25.2% 51.5 2.4x
GoogLeNet 13M 81.3% 98.0% 13.5 33.2% 19.8% 35.8 2.7x

ShuffleNet V2 x1.0 2.3M 39.0% 91.9% 2.7 8.7% 11.1% 16.0 5.9x
ShuffleNet V2 x0.5 1.4M 46.9% 94.9% 4.5 13.6% 17.5% 19.0 4.2x

MobileNet V2 3.5M 57.7% 96.6% 5.7 14.8% 1.2% 42.6 7.5x
MNASNet 1.3 6.3M 45.5% 96.5% 4.7 8.8% 3.4% 28.6 6.1x
MNASNet 1.0 4.4M 42.3% 97.2% 6.9 14.7% 9.3% 33.4 4.8x
MNASNet 0.5 2.2M 33.0% 97.0% 4 21.0% 21.4% 10.1 2.6x

1 Memory Bandwidth Utilization
2 GPU Utilization
3 Latency
4 Runtime Speedup of GPU over DLA

TABLE III: 14 benchmark ML models

simulating all requests, the outcomes are evaluated. The ex-
pected result will vary based on the scheduling objective. Once
the simulation of all generated allocation matrices is complete,
the best allocation matrix is selected according to the specified
scheduling goal.

Simulation for scheduling is necessary only when the cur-
rent workload changes. If a new ML model is added or an
existing ML model is removed, the scheduling simulation is
initiated. Significant changes in requests rate can also trigger
a simulation to adjust scheduling, as demonstrated in prior
work [13].

D. Sampled Allocation Matrices

One downside of the simulation method is its extensive
search space. As the number of ML models increases, possible
allocation matrices increase exponentially. Although the sim-
ulation of one matrix takes a very short time in our platform,
the total simulation time required for an exhaustive evaluation
become impractical for scheduling.

To make the problem solvable, we adopt a sample-based
evaluation which is based on the findings in the prior work [3].
The prior statistical approach analyzed that a small number of
samples can include a scheduling that is within a certain bound
from the best one found through exhaustive evaluation. The
study showed that hundreds or even a thousand of samples
can provide a good scheduling with less than 1% performance
difference from the best one, even when the total number of
possible schedules is in the millions or 10s of millions. Using
the sampled approach, we generate 1000 random allocation
matrices to identify a good allocation candidate satisfying the
goal. Simulating these 1000 random allocation matrices takes
200 milliseconds on the CPU of the Xavier platform. Since the
simulation is needed infrequently due to changes in workloads
and request rates, and it consumes only CPU resources, the
simulation latency does not significantly impact the overall
performance.

VI. EVALUATION

A. Methodology

We implemented our scheduling framework with the inter-
ference prediction model on the NVIDIA Jetson AGX Xavier
system [4]. The processor has an 8-core CPU, one GPU, and
two DLAs for ML acceleration. Our framework is built on top
of the NVIDIA TensorRT [14]. Once scheduling decision is
made, the request is assigned to GPU or DLAs using TensorRT
APIs. For scheduling on the platform, there is a restriction for
context switching. For two DLAs, up to 4 active contexts are
supported, while the GPU does not have such a restriction.
Benchmark: We use 14 DNN models from the torchvision
for the evaluation [15]. Table III presents the characteristics
of the models when they are running on a GPU or DLA. The
last column of the table shows the speedup of running each
model on a GPU over a DLA, which ranges from 2.4x to 7.5x.
The GPU exhibits significantly lower latencies across the ML
tasks.

Using the 14 DNN models,we construct 40 application
scenarios (8 sets × 5 request ratios). Table IV presents the
DNN mixes and ratios. The 40 scenarios are divided into 8
sets. Each set uses five different request ratios for ML models
in that set. Sets 1-4 run three different DNN models and Sets
5-8 run six different DNN models. The last column shows the
range of interference observed in each set.
Baseline and comparison: For the baseline scheduling policy
(Base), we use an affinity-based scheduling that maximizes
the efficiency of GPU and DLA. Each ML task has a different
performance speedup of running on a GPU over a DLA.
Given a set of workloads, the scheduler assigns requests to
GPU and DLAs based on the speedups of requests on each
device. For example, if two ML tasks have GPU speedups over
the DLA of 2 and 1, respectively, the task with the higher
speedup is assigned to the GPU, as it can better utilize the
GPU’s capabilities. This affinity-based scheduling has been
extensively studied for asymmetric CPUs, such as big and
little cores [16]. For fairness, we introduce an additional
baseline (Base fair) that aims to allocate an equal amount
of device time to each ML job. However, due to the less
flexible preemption support compared to CPUs and the limited
number of DLA contexts, the baseline fair scheduler may not
achieve perfect fairness.

In addition to the baseline, we compare our scheme with a
version of the same scheduling framework that does not use
the interference prediction model. The second configuration,
w/o itf pred, uses our sampled simulation scheduling
but excludes the interference prediction model. In this setup,
the execution latency considered during the simulation is the
solo execution latency without considering the interference.
The third configuration, w/ itf pred, represent our full
scheduling framework with interference prediction. The final
one, perfect pred uses the actual profiled interference
overhead. Instead of relying on our prediction scheme, this
scheduling approach uses the measured interference when the
target ML tasks are running concurrently.



Set Models
% Requests Possible

Interference#1 #2 #3 #4 #5

1
MNASNet 0.5 78.0 3.5 5.0 28.0 67.0 min: 1.08

max: 1.30
avg: 1.16

MNASNet 1.3 21.5 60.0 50.0 41.5 8.0
SqueezeNet 1.1 0.5 36.5 45.0 30.5 25.0

2
AlexNet 18.5 52.0 13.5 45.5 43.0 min: 1.09

max: 1.75
avg: 1.33

MNASNet 1.0 33.5 29.5 70.0 46.0 50.5
ShuffleNet V2 x1.0 48.0 18.5 16.5 8.5 6.5

3
GoogLeNet 13.0 58.0 23.0 61.5 58.0 min: 1.12

max: 2.38
avg: 1.38

MobileNet V2 49.5 34.0 29.0 0.5 24.0
ShuffleNet V2 x1.0 37.5 8.0 48.0 38.0 18.0

4
GoogLeNet 24.5 67.0 36.5 41.0 25.5 min: 1.16

max: 2.69
avg: 1.56

Inception v3 25.5 12.0 21.5 49.5 0.5
ShuffleNet V2 x1.0 50.0 21.0 42.0 9.5 74.0

5

AlexNet 3.5 27.5 28.0 30.0 2.0

min: 1.02
max: 1.91
avg: 1.19

MNASNet 0.5 13.0 17.0 5.5 25.5 3.5
ResNet-18 2.0 10.5 11.0 3.0 15.0

ShuffleNet V2 x0.5 54.5 28.5 17.0 29.5 11.5
SqueezeNet 1.0 17.5 9.0 13.5 5.0 17.5
SqueezeNet 1.1 9.5 7.5 25.0 7.0 50.5

6

Inception v3 0.5 40.0 31.5 20.5 20.0

min: 1.05
max: 2.14
avg: 1.31

ResNet-18 6.5 10.5 2.0 1.0 3.0
ResNet-50 61.0 11.0 13.5 0.5 29.5

ShuffleNet V2 x0.5 4.0 7.5 12.5 23.5 2.5
ShuffleNet V2 x1.0 13.5 6.0 11.5 50.5 21.5

SqueezeNet 1.0 14.5 25.0 29.0 4.0 23.5

7

GoogLeNet 7.0 38.5 2.5 11.5 7.0

min: 1.07
max: 2.69
avg: 1.34

Inception v3 12.0 11.5 15.5 7.0 19.0
ResNet-18 16.0 10.0 8.5 55.0 20.5
ResNet-50 51.5 7.5 20.5 9.0 27.0

ShuffleNet V2 x1.0 8.5 16.0 26.5 7.0 11.5
SqueezeNet 1.1 5.0 16.5 26.5 10.5 15.0

8

AlexNet 5.5 3.0 0.5 11.0 27.0

min: 1.09
max: 2.69
avg: 1.46

GoogLeNet 38.5 6.5 32.0 13.0 16.5
Inception v3 32.0 55.0 41.5 6.5 30.5

MNASNet 1.3 8.0 12.5 10.0 28.0 14.5
ShuffleNet V2 x0.5 1.5 10.0 0.5 19.5 3.0
ShuffleNet V2 x1.0 14.5 13.0 15.5 22.0 8.5

TABLE IV: 40 scenarios: 8 sets with 5 different request ratios

B. Goodput

The first scheduling objective is to maximize goodput
with a given SLO for the execution latency of each ML task.
When the SLO for each ML task is specified, goodput refer
to the throughput of requests that meet the latency constraints
set by SLO. Requests that do not meet the SLO are excluded
from the goodput counting. This concept of goodput has been
used as a performance metric for SLO-constraint ML inference
tasks [17].

For each model, we define the SLO in its request latency,
which is set to multiples of the solo run latency on a GPU. As
shown in the last column of Table III, DLA latency is much
slower to execute the ML tasks over GPU in the evaluated
platform.

Figure 7 presents the goodputs satisfying the SLO for
each ML model. Each bar represent the averaged normalized
goodput for a set with 5 request ratio scenarios as shown
in Table IV. The SLO in the figure is set to 12x of GPU
latency. The figure shows that our scheduler improves upon the
baseline by 40% on average. The performance improvements
are high in mix 3, mix 4, and mix 6 with increases of
58.8%, 93.3%, and 91.4%, respectively.
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Fig. 7: Goodput normalized to Base. SLO is set to 12x of
GPU latency
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Fig. 8: Maximum throughput under 99% SLO guarantee
normalized to Base. SLO is 12x latency of GPU run

The figure also highlights the significance of interference
prediction. Without the prediction, the performance improve-
ment from Base is only 17.6%. Interference prediction sig-
nificantly enhance the performance. Compared to w/o itf
pred, the interference prediction offer an 18.1% improvement
in goodput. When Compared to the ideal perfect pred
configuration, w/ itf pred provides similar throughput,
demonstrating high latency of our interference model. For mix
2 and mix 4, perfect pred shows slightly lower per-
formance than w/ itf pred, since static perfect prediction
may not always be accurate during runtime, when mixes are
running dynamically on the platform.

C. 99% SLO Throughput

The second goal, 99% SLO throughput, aim to maxi-
mize throughput while ensuring that 99% of all requests meet
the SLO latency. During the experiments, request rates are
increased until 99% of the SLOs can no longer be supported
due to high injection rates. The result represents the maximum
throughput while still maintaining the 99% SLO compliance.
For these experiments, the SLO is set to 12x of the GPU
latency.

Figure 8 presents the results for 99% SLO throughput.
The figure shows that our scheduling improves the baseline
by 36.1% on average. Mix 5 and mix 6 exhibit significant
improvements of 65.6% and 76.7%, respectively. Compared to
w/o itf pred, our prediction method achieves substantial
enhancements, highlighting the importance of interference
prediction. On average, interference prediction improves the
non-prediction scheme (w/o itf pref) by 33%. For Set 8,
the improvement is notably high at 66.7%. Accurate prediction
of interference is critical for meeting the SLO requirements.
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Fig. 9: Fairness normalized to Base

Incorrect latency estimations often lead to unpredictable in-
creases in latency, which can significantly impact performance,
especially for the 99% SLO goal, where performance is highly
sensitive to latency variations.

D. Fairness

The final goal, fairness, aims to maximizes the fairness
of each DNN model compared to the throughput achieved in an
ideal fair run [5]. An ideal fair run represents the performance
of the model when it receives equal shares of all device types.
The fairness goal is expressed as follows:

MaximizeX min
m

throughput(m,X)

throughput
(
m,Xequal

m

)
Xequal

m is the allocation given to job m assuming it receives
an equal share of time on each device in the system. The
goal is to find a scheduling that maximizes the minimum
normalized performance among jobs.

Figure 9 presents the result with the fairness goal. The
figure includes an additional baseline (Base fair). w/o
itf pred often shows worse fairness compared to Base
fair, as shown in Set 3, 6, and 7, due to the effect of
interference. However, the interference-aware scheduling (w/
itf pred) can provide better fairness compared to both
Base fair and w/o itf pred. Our scheduling frame-
work improves fairness over Base fair due to limitations
in the current resource allocation mechanism. Base fair
attempts to assign equal shares of GPU and DLA time to
each task. However, due to coarse-grained context switching
support, Base fair often fails to provide equal shares of
each device to the tasks. In contrast, the simulation-based
approach by our scheduler leads to a better fairness support,
as the limitation is included in its allocation decision.

VII. CONCLUSION

This study showed that the interference among heteroge-
neous processors causes significant performance degradation.
It provided a highly accurate prediction model trained from
randomly generated machine learning workloads. Using the
interference prediction model, the study proposed a goal-
independent scheduling framework based on a sampled simu-
lation method.
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