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Abstract

As video understanding (VU) promises unprecedented
capabilities in the era of video data explosion, its efficient
computation plays a critical role in practicalizing the algo-
rithmic innovations. While VU models often rely on power-
ful foundational models such as CLIP to understand visual
concepts, the massive computational demand hinders their
scalable deployment over real-world video data silos. To
this end, this paper proposes LVS, a learned video storage
system that memoizes feature vectors for the already-seen
video clips and reuses them for future VU queries. The
key challenge is the video’s continuous nature that disal-
lows the naïve computation reuse among VU queries for
different video clips. To address this challenge, we identify
a unique property in which VU-generated feature vectors
form a monoid and leverage the monoid homomorphism us-
ing a multilayer perceptron (MLP) model to effectively fuse
the disjoint feature vectors. Our evaluation shows that LVS
achieves up to 1.59× speedup in VU query processing la-
tency, while experiencing no significant accuracy loss in the
UCF101 video classification task.

1. Introduction
As of today, video is the most common data type on the in-
ternet. A study reports that video accounts for more than
80% of the global internet traffic [16]. Video sharing plat-
forms such as YouTube [7], Tiktok [2], and Instagram [14]
are leading this era of video data explosion. Not only video
data is consumed for entertaining purposes, but also it has
become the primary information carrier, replacing the con-
ventional alternatives such as text and image.

Video understanding (VU) refers to a group of machine
learning algorithms in the field of computer vision that aim
to extract high-level insights from raw data and enable se-
mantic capabilities for end applications. While the algo-
rithmic innovations promise new possibilities, practicaliz-
ing them poses a wide range of system-level challenges,
which is the focus of this work.

Modern VU algorithms leverage foundational models

(FM), which are designed to serve various downstream
tasks, including but not limited to classification, temporal
and/or spatial localization, summarization, and captioning.
While there are many variations on how VU algorithms ex-
ploit the FMs, there is an algorithmic commonality that the
FMs take a video clip (i.e., a collection of video frames) as
the input and extract “features” from the clip. These fea-
tures then become the input for the task-specific “heads”
that produce the end application output.

However, the FM-driven feature extraction process re-
quires prohibitive computation power, impracticalizing the
use of VU algorithms over long video clips (e.g., minutes-
long), which are common in real-world application scenar-
ios. Thus, the common practice in the literature is to evalu-
ate their VU techniques only using a short video clip (e.g.,
16 frames). Apparently, this “performance wall” is limiting
the usefulness of VU algorithms, necessitating a solution
to bridge the gap between algorithmic advances and system
realities.

This paper sets out to solve this problem by designing a
video storage system customized for FM-based VU model
inferencing, namely Learned Video Storage (LVS), where
the computation results (i.e., features) from past VU queries
are memoized (or cached) and reused for future VU queries.
The key challenge to enabling this computation reuse tech-
nique is that video is continuous data in the time dimension,
and thus, a large number of clips can exist for a given video
file. This is because every VU query is associated with
an input video clip that has any starting and ending times-
tamps, engendering it nearly impossible to directly reuse
features produced by a query q1 for the feature computation
of another query q2.

To tackle this challenge, we propose a novel feature fu-
sion technique, identifying a property in which video clips
and VU-generated features form their respective monoids.
Inspired by this insight, we aim to make the FM a monoid
homomorphism by devising a multilayer perceptron (MLP)
model that is a monoid operation for the features. Our em-
pirical study demonstrates that the proposed MLP model
can serve as a monoid operation. In other words, the MLP
model is capable of effectively fusing the disjoint feature
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Figure 1. An overview of Learned Video Storage (LVS). When a VU query is given, rather than reading the requested clip and running
the foundational model, LVS selects appropriate clips of the target video that already has cached results for previous VU queries. LVS
collects the cached features and computes the feature for clips without caches. Then with the help of a lightweight multilayer perceptron
(MLP) model, LVS can compute an approximate but accurate feature for the requested clip in a fast and efficient manner by reducing the
foundational model usage.

vectors independently produced from different video clips
to generate a feature vector for their combined video clip.

Consider the following example. Suppose there are two
VU queries, q1 and q2, that take the input video clips v1
and v2, respectively. The VU system would produce two
feature vectors for the queries f1 and f2, which are memo-
rized (or cached) in the storage system. Suppose the system
receives another query q3 where its input video clip v3 is
the concatenation of v1 and v2. Then, exploiting the pro-
posed feature fusion technique, the proposed system would
be able to obtain the feature vector f3 by fusing the mem-
oized feature vectors, f1 and f2, through the learned MLP
model, instead of inferencing the FM model for the v3 en-
tirely from scratch.

We evaluate the effectiveness of LVS using four different
FMs used for various video understanding tasks. The evalu-
ation utilizes real-world datasets: UCF101, MSR-VTT, and
Charades. We implement LVS in Python, building upon
PyTorch and SQLite, augmented with the Z3 solver. Our
experimental results report that LVS achieves up to 1.59×
speedup on the VU query processing time, while not impos-
ing any accuracy loss on the end tasks. These compelling
advantages highlight that LVS effectively overcome the lim-
itations of existing systems and take an effective initial step
towards the practical use of foundational model based video
understanding models for real-world applications.

2. Background

2.1. Video Foundational Models

Foundational models (FMs). Modern video understand-
ing algorithms exploit FMs as their core module, the output
of which is subsequently utilized for downstream tasks [1].
As the well-annotated training data is often unavailable,
these FMs are usually trained in a self-supervised manner,
using multiple multimodal data concurrently. Intuitively,
video data is important for VU tasks, while its effective use
is relatively more challenging due to the massive scale. Ac-
cording to a recent study on the FMs used for VU mod-
els, there are largely two categories: (1) image-based FMs,
and (2) video-native FMs. Examples of image-based FMs
are CLIP [15] and FLAVA [18], while those of video-native
FMs are VideoMAE [21] and InternVideo [23]. While there
are discrepancies among these FMs, one algorithmic com-
monality is that they all rely on the attention mechanism,
inspired by Vision Transformer (ViT) [4].

Prohibitive computation cost of transformer-based
FMs. While transformer-based FMs show otherwise-
unachievable effectiveness in VU tasks, transformers have
quadratic time and memory capacity complexities with re-
spect to the number of input tokens. Such large cost com-
plexities become problematic especially for VU tasks, since
the number of tokens is ever-increasing. As a result, in-
ferencing FM-based VU models requires massive compute
power, producing long response time, even for short video
clips and datacenter-scale high-end GPUs. Although there



is various effort from machine learning community such as
reformers [11], linear transformers [10], and retentive net-
works [20], their effectiveness remains to be fully demon-
strated, indicating the need for further exploration and ex-
perimentation.

FM-produced features. Transformer-based FMs take a
video clip as input and return a feature map as output. The
feature map is a collection of vectors, each corresponding to
a patch of the input. Therefore a feature map F is a tensor
in Rl×c where l is the number of patches and c is the num-
ber of channels [25]. In addition, ViT-based FMs produce
one more vector corresponding to the class token [4, 15],
originating from the natural language processing context.
While the FMs are the shared components of VU mod-
els, they have task-specific heads for different downstream
tasks. While simpler tasks such as video classification re-
quire only one feature vector f ∈ Rc, complex tasks re-
quire the whole feature map F ∈ Rl×c. The feature vec-
tor f can be obtained in various ways. In ViT-based FMs,
the vector corresponding to the class token becomes f . In
other FMs, there exist various possible approaches such as
(1) the vector of the first token f = F [0], (2) the average
pooled feature map f = 1

l

∑l−1
i=0 F [i], and (3) an aggre-

gation with a learnable query token τ and cross attention
f = CROSSATTENTION(τ, F ) [25].

2.2. Monoids

Definition. A monoid is a structure in abstract alge-
bra [13], defined with a tuple (M, ∗) of a set M and a bi-
nary operation ∗. A monoid has three requirements. First,
the operation must be closed on M . Second, the oper-
ation must be associative so that for any x, y, z ∈ M ,
(x∗y)∗z = x∗ (y ∗z). Finally, there must exist an identity
element e such that for any x ∈ M , x ∗ e = e ∗ x = x.
A representative example of monoids are the set of finite
strings A∗ with the operation as string concatenation for
a given alphabet A. Between two monoids, a function
called monoid homomorphism preserves the structure of the
monoids. Formally, when h : M → M ′ is a monoid
homomorphism between (M, ∗) and (M ′, ∗′), it satisfies
∀x, y ∈ M.h(x ∗ y) = h(x) ∗′ h(y). This means the or-
der of applying the homomorphism does not matter to the
final result.

Videos and vectors as monoids. Videos and vectors in-
herently have a monoid structure. Videos can be seen as a
finite string where the “alphabet” is the set of frames. Zero
or more frames can be stacked to create a video. Video con-
catenation is the operation for this monoid, and the empty
video with zero images is the identity element. Vectors
can be considered as a monoid where vector addition is the
monoid operation and 0 is the identity element.
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Figure 2. Processing time of FMs on videos of different length.
The experiment was run on two Intel Xeon Gold 6326 CPUs and
an NVIDIA GeForce RTX 3090 GPU. The results show the aver-
age processing time of 5 individual runs.

3. Motivation
Example scenario for a video understanding applica-
tion. We describe an example application scenario that we
assume to support from the system we propose in this work.
Consider a video dataset that contains many long videos.
The user wants to run downstream tasks in video clips ex-
tracted from the long videos. For instance, suppose video-
serving platforms might want to classify scenes (video clas-
sification) or generate captions in various languages (video
captioning). In this scenario, the user must first issue a VU
query with the video file path along with start/end times-
tamps of the input video clip. Then, the system must trim
the input video clip from the source video file according to
the requested timeframe and run the foundational model to
compute the requested feature.

Performance characterization of FMs. As we noted in
Section 2, the computation cost for running the FM is high.
Figure 2 reports the inference execution time of four dif-
ferent FMs used in diverse VU applications. The results
demonstrate that the required processing time rapidly in-
creases as the video clip gets longer. Arithmetically, the
increased execution time originates from linear terms (from
image resizing and linear layers) and quadratic terms (from
attention mechanisms). The inference takes more than half
a second to process a 10-second video clip with 75 sampled
frames. Such a low performance is attributed to that FMs
have an enormous number of parameters and layers (e.g.,
VideoMAE [21] with 12 transformer layers for its encoder).
This high latency of the FM is suboptimal in terms of user
experience.

4. Design
Design principle. To address the performance challenge,
we design a novel video storage system customized for
FM-based VU model inferencing, namely Learned Video
Storage (LVS). In designing LVS, the core design principle
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foundational model usage must have been increased. The commutative diagram on the right shows that even though the evaluation paths
for LVS and the no caching case are different, they must return same results (approximately same in reality since MLPs are used).

is to minimize the number of frames that FMs must scan
through and use for the inferencing. This strategy is effec-
tive for both image-based and video-native FMs, since their
computational cost increases when the number of frames
increases. Building upon the principle, LVS caches the
already-computed features for partial video clips in the stor-
age system and reuses the features for future queries over
video clips that contain the seen video clips as subclips. In
this paper, we will refer to the memoized features as “sub-
features”. We develop a feature fusion technique to allow
computation reuse by combining the subfeatures with the
newly computed features for the unseen part of the queried
video clip.

Design challenge. The challege in devising LVS is that
computing the total feature from subfeatures is not trivial.
As transformers compute the self-attention between all to-
kens, there exist algorithmic dependencies among tokens
that are far away from each other, engendering it nontrivial
to apply simple fusion techniques concatenation or averag-
ing. Thus, there is a need for a novel feature fusion solution.
To this end, we seek an opportunity by employing a multi-
layer perceptron model as a monoid operation, inspired by
the insight that video data inherently have high internal re-
dundancy [21], and therefore, it is likely to be effectively
approximable from the subfeatures.

4.1. Feature Fusion Model

Leveraging commutative property. In this section, the
proposed feature fusion method is formalized by showing
the required property. Let the set of images be I so that
V = I∗ is the set of videos. Also, let the set of features be
F , either feature vectors Rc or feature maps (Rc)∗. Here,
(Rc)∗ is used instead of Rl×c to cover cases with different
l values. For the simplest case of a clip with two subclips,
the task of LVS could be recognized as a function read : V×
V → F . The naive way to implement this function is to first
concatenate the clips and then run the FM: read(v1, v2) =

FM(v1 ⊕ v2) where ⊕ denotes concatenation. On the other
hand, if there exists an appropriate feature fusion method ⋆ :
F ×F → F , we have read(v1, v2) = FM(v1) ⋆ FM(v2). To
compute accurate feature fusion results, it would desirable
for the two to be identical:

FM(v1 ⊕ v2) = FM(v1) ⋆ FM(v2). (1)

This means that FM should be a monoid homomorphism be-
tween the monoids (V,⊕) and (F , ⋆) so that the commuta-
tive diagram illustrated in Figure 3 commutes. Also, (F , ⋆)
being a monoid should naturally cover the case of multiple
subclips by associativity.

Vector space structure. Now, the remained research
question would be how actually to develop ⋆. ⋆ is a monoid
operation for F , so it is possible to search one from the
structure of F . First, the set of feature vectors Rc is a vector
space. Considering that vector space axioms for addition in-
clude the monoid axioms, Rc automatically satisfies the ax-
ioms of monoids with vector addition. Thus, f1⋆f2 = f1+f2
is a choice that satisfies the monoid axioms. On the other
hand, the set of feature maps (Rc)∗ consists of strings, so
concatenation is a choice: F1 ⋆ F2 = F1 ⊕ F2. However,
this simple approach does not work as mentioned. Empiri-
cally, just adding or concatenating the features is unable to
produce the feature for the query over the entire video.

Multilayer perceptron (MLP) as a monoid operation.
As an alternative, we propose using a MLP as the monoid
operation for feature vectors. Given a dataset of f1, f2 and
the total feature f , it is possible to train the MLP to learn
how to run feature fusion, considering the internal seman-
tics of f1 and f2. In this case, the FM can approximate a
monoid homomorphism between the video monoid and the
vector monoid with MLP as the operation, so that

FM(v1 ⊕ v2) ≃ MLP(FM(v1), FM(v2)). (2)



The MLP will internally concatenate the two vectors into
one and push it through a number of fully connected lay-
ers and activation functions. Table 1 provides the detailed
model specification and training hyperparameters we used
for the MLP model.

Activation function ReLU
Fully connected layer count 2, 3, 4
Dimension of hidden layer(s) 2048
Shape of input feature vectors (C), (C)
Shape of output feature vector (C)

Optimizer AdamW
Base learning rate 5e-5
Weight decay 0.0
Optimizer momentum β1 = 0.9, β2 = 0.999
Learning rate scheduler Linear decay
Warmup epochs 500
Total epochs 5000

Table 1. Model specification of the evaluated MLP. C is the num-
ber of the output channels of the FM.

Adding an average term. As v1 and v2 are already from
a consequent video source and neighboring each other, their
semantics are quite close in most cases. Therefore, the con-
catenated video v will have similar semantics as well. This
means f1 ≈ f ≈ f2, implying that averaging the input vec-
tors could be potentially helpful for MLP model to be ef-
fectively trained. This is because MLP models would be
able to focus on learning the additional semantic effects that
emerge from concatenation. The new model then becomes

MLPWITHAVERAGE(f1, f2) =
f1 + f2

2
+MLP(f1, f2). (3)

In this paper, we refer to this variation of the model as “MLP
+ average”.

Adaptation to feature maps. While this MLP-based ap-
proach can approximate feature “vectors”, approximating
feature “maps” requires additional steps since the feature
map has more than one vector, each corresponding to a
patch of the input video. A simple MLP-based approach to
this task first applies average pooling to each input feature
map to get

f1 =
1

l1

l1−1∑
i=0

F1[i], f2 =
1

l2

l2−1∑
i=0

F2[i]. (4)

Then, the pooled outputs are passed through the MLP with
each of the vectors in the subfeature maps to compute the

elements of the total feature map, while using concatenation
as a baseline. The resulting feature map becomes

F [i] =

{
F1[i] + MLP(F1[i], f2), if i < l1

F2[i− l1] + MLP(f1, F2[i− l1]), otherwise.
(5)

In this paper, we refer to this variation of the model as “MLP
with pooling”.

4.2. Design of Learned Video Storage

Exploiting the afore-described feature fusion method, we
build LVS, as depicted in Figure 3. Inspired from VSS [5],
LVS can serve read queries by using cached subclips. VU
queries can be processed quickly and efficiently by using
cached subfeatures. When a user application requests for
the feature of a timeframe, LVS processes the query and
searches for opportunities in which cached subfeatures can
be utilized to serve the feature approximately yet quickly.
When multiple possibly overlapping caches exists, it calls
an external optimizer to find out which cache it should use
for least expected processing time.

Storing features for reuse. When multiple features are
required to be fused together, LVS calls the feature fusion
method from left to right to reduce the number of features,
similar to the behavior of reduce in functional program-
ming languages. In this process, intermediate features are
created every time the feature fusion method is invoked.
Here, as LVS can only benefit from caches of the entirely
enclosed subclips, feature caching is more effective and ex-
pected to be used for shorter video clips. Therefore, LVS
only caches the features directly produced from the FM,
while not caching the intermediate feature created from the
feature fusion method. The intermediate features requires
storage usage quadratic to the number of features to cache
and are not frequently usable than the directly produced fea-
tures.

Cost estimation model. To call the external optimizer li-
brary, LVS requires an expecting function that maps the se-
lection of the caches to the expected processing time. The
function used by LVS for VU queries is

COST({c1, c2, · · · , cn}) = rn+

n∑
i=1

mili (6)

where ci is the i-th subclip being used,

mi =

{
1, if ci needs decoding and FM

0, if ci is already saved as feature,
(7)

li is the length, or the number of frames in the i-th subclip,
and r is a constant factor. This design of the cost func-
tion estimates how much frames should be decoded and



processed by the FM. The multiplier mi removes the cost
for cached subclips since LVS does not have to run the FM
on it. On the other hand, the constant factor r could be con-
sidered as the cost of one run of the feature fusion operator
in the units of the processed frame. As the feature fusion
operator reduces the number of features by one, the opera-
tor must be run for n − 1 times. Ignoring constants, the rn
term gives the total cost of the feature fusion operator. For
experiments, LVS uses r = 10.

5. Evaluation
5.1. Methodology

We implement LVS using Python, PyTorch, the SQLite
database, and the Z3 Solver.

Foundational models. We use CLIP [15], FLAVA [18],
VideoMAE [21], and InternVideo [23] as the foundational
model. We re-implement these existing FMs to adapt
to videos with various lengths, following the early-fusion
method of [25] for image-native FMs, which concatenates
tokens of all frames just after the projection layer.

Datasets and task. For the video dataset, we use
UCF101 [19], MSR-VTT [24], and Charades [17]. To
see the effect of LVS on real-world VU application, we
use a video classification task. This application classifies
UCF101 videos into 101 classes defined in the UCF101
dataset. We run benchmarks on the whole system with the
‘blueboy’ video from the Long Videos dataset [12].

System specification. The evaluated system is equipped
with two Intel Xeon Gold 6326 CPUs and one NVIDIA
Geforce RTX 3090 GPU.

5.2. Experimental Results

Our evaluation results are three-fold. (1) We first train and
test the feature fusion method (i.e., monoid operation) us-
ing the features obtained from the video dataset and the
FM. Each video in the dataset is split into clips with ran-
dom neighboring timeframes, and passed through the FM
to obtain a dataset of FM(v), FM(v1), and FM(v2). We train
the proposed MLP, MLP + Average, and MLP with pooling
models upon this feature dataset. We select cosine embed-
ding loss as the loss function for feature approximation, as
it is typically used as a loss function for training FMs. (2)
We test the train feature fusion method on real-life tasks.
In particular, we use a classification task on 101 classes of
UCF-101. We train a specialized task head with the whole
feature vector f, and compare the accuracies of using the
whole feature vector f to the approximated feature vector
f1 ⋆ f2. (3) We run the LVS system to find out how much per-
formance benefit it provides. To see the effects of the cache,

we test the performance of LVS using sequences of feature
read queries with different spatial locality.

Feature vector approximation. Figure 4 demonstrates
the result of the MLP-based feature fusion methods for fea-
ture vector approximation. The figure contrasts the cosine
embedding losses of three different approaches: average,
plain MLP, and MLP + average models. The bars show that
for the equivalent FM and dataset, the loss is lower in MLP
+ average models. However, the results also show that the
effect of more layers or parameters is insignificant. The loss
does not significantly improve and even suffer from overfit-
ting when we use more layers. In case of InternVideo and
MSR-VTT, merely using the average offers the lowest loss
value, while the MLP + average model’s loss is nearly iden-
tical to that of the average. In summary, the MLP + average
model provides the optimal approximation for the total fea-
ture vector in most cases, while demonstrating the limited
effect of larger MLP model size.

Feature map approximation. Figure 5 shows the train-
ing loss result of feature fusion methods for feature map
approximation. The results emphasize the disparities be-
tween the mean cosine embedding losses of two different
approaches: plain concatenation, and the MLP with pool-
ing model. The bars exhibit that the loss is the lowest when
using the MLP with pooling model with two layers. Similar
to feature vectors, while the MLP-based model outperforms
compared to the simple operations, the model does not gain
significant benefit from adding additional layers.

End task application. Figure 6 shows the accuracy when
the approximated feature vectors are used for real tasks. For
the UCF-101 classification task, the approximations from
the feature fusion methods offer comparable accuracy with
the total feature vectors. Especially, for image-based FMs
such as CLIP and FLAVA, the use of approximation models
provides even higher accuracy in comparison with the total
feature vector. As MLP-based models discriminate between
the first and second input vector by its position, the result-
ing feature approximation can possibly include additional
temporal context to the output to achieve better accuracy.

End-to-end system evaluation. Figure 7 shows real-
world benchmark results using LVS. We train the used fea-
ture fusion model using 2-layer MLP + average model from
the CLIP FM and the Charades dataset, because it experi-
ences the lowest loss value in the selected FM and dataset.
Using the ‘blueboy’ video re-encoded into 7,218 frames, the
simulated user application requests features for 150 frames
in random positions for 200 times. We sample the posi-
tion of the frames from a Gaussian distribution with a fixed
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Figure 4. Loss of approximation functions (lower is better) for feature vector approximation. Each bar graph indicates the cosine embedding
loss of different types of feature fusion methods that approximate the total feature x from the subfeatures x1 and x2. MLPs and MLP +
average models with 2 to 4 layers are tested. For comparison, the most left bar shows the cosine embedding loss when the average function
is used instead of a learned model. The graphs are organized with the used FMs and datasets.
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Figure 5. Loss of approximation functions (lower is better) for
feature map approximation. Due to the large size of feature maps,
we demonstrate the results only for the CLIP foundational model
and the Charades dataset. The bars indicate the mean cosine em-
bedding loss for MLP with pooling models with 2 to 4 layers that
approximate the total feature map X from the subfeature maps X1

and X2. For comparison, the most left bar presents the mean co-
sine embedding loss when plain concatenation is used instead of a
learned model.

σ value or a uniform distribution over the whole video.
Small σ values represent the cases with higher chance of
queries to nearby clips and high spatial locality. In con-
trast, large σ values or using the uniform distribution are
for the cases with reduced possibilities of such queries
and lower spatial locality. The results show that as more
caches are accumulated, LVS experience the reduced exe-
cution time required for decoding and FM. The average
speedup through 200 queries are 1.59×, 1.30×, 1.16× in
each experiment, demonstrating that the higher locality of-
fers the higher speedup. On the other hand, when there are
insufficient cache features, LVS see marginal speedup gains
in contrast to the case without any caches.

The results also exhibit the larger fluctuation of the pro-
cessing time data that suggest the high locality provides sig-

nificant speedup for certain queries that the cached subfea-
tures can entirely cover the query, while LVS never needs
to call the FM. We observe that such queries can achieve
speedup up to a maximum of 14×, whereas the average
speedup is only 1.59× for the case with high locality.

Although the execution time required for decoding and
FM keeps decreasing as the number of cached features in-
creases, the latency of the optimization process appears to
be increased. When the locality is high, the number of
cached features is high, producing the execution time for
the optimizer to be increased faster. As a result, the total
processing time of LVS can even exceed the processing time
of the no-caching case. We expect that limiting the number
of candidate features fed to the optimizer or implementing
LRU to drop old caches could help reduce the time spent
for the optimizer.

6. Related Work and Discussion
Systems for video understanding. As the size of video
data has grown exponentially, efficient processing has be-
come an important problem in terms of heat, power us-
age, and carbon emission. To reduce the required com-
putation for queries on massive size of video data, recent
studies have explored aspects of the video analytic systems.
NoScope [8] constructs an inference-optimized specialized
model to efficiently produce outputs when a priori knowl-
edge about the query is given. BlazeIt [9] focuses on ag-
gregation queries and cardinality-limited queries and uti-
lizes neural networks to compute an unbiased estimator of
the answer. CoVA [6] captures moving objects from the
compressed form of videos to run DNNs only for necessary
frames and overcome the decoding bottleneck. TVM [26]
splits videos into semantic tiles and constructs an index of
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Figure 6. Accuracy (higher is better) for the UCF-101 classification task for different feature fusion methods. Inside each graph, while the
leftmost "x" bar indicates the accuracy of using the original total feature vector, other bars show the results when approximation methods
are used similar to Fig. 4. The graphs are organized into a table to show which FM was used to produce the feature vectors.
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Figure 7. Benchmark result of a LVS usage scenario. Three experiments were run with query sequences with high, medium, and low
spatial locality. Each graph show the processing time of each query when LVS is continuously queried by a user application. The moving
average of maximum 10 preceding samples are used to hide the fluctuation of processing time from randomly generated queries. The total
processing time is the sum of the time spent on the external optimizer (LVS optimizer) and the time spend on decoding and FM (LVS
decode & FM). For comparison, the same queries were run for the case without any caching benefit from LVS and the processing time is
demonstrated together.

the tiles to reduce decoding and processing of large videos.
These recent works focus on a single query and either run
on a priori known types of queries or remove parts of the
video to reduce computation load. In contrast, LVS does not
require knowledge about the user application and does not
miss frames or tiles that can possibly have additional infor-
mation. Rather, as LVS focuses on scenarios where multiple
queries exist, the proposed technique is complementary to
the techniques proposed in prior work to achieve even fur-
ther acceleration.

Feature fusion. The concept of fusing different feature
vectors together is originated from the usage in multi-modal
models. Multi-modal models collect data from different
dimensions from the same object to achieve better perfor-
mance. As different data types require different models and
give different feature vectors, it is nontrivial to fuse the fea-
ture vectors from different sources. Weighted averages or
more complicated models [3, 22] can be used. However,
the fusion of features from various modalities does not take
advantage of the relationships between adjacent videos as
in LVS, necessitating the use of more complex models that
rely on attention or convolution mechanisms, rather than a
straightforward MLP.

7. Conclusion
This paper introduces LVS, a video storage system designed
to quickly and efficiently serve video features, using a
model that memorizes feature vectors from previous queries
for quicker calculations if cached features of the subclips
are available. Our experimental findings indicate that the
proposed model structure, which treats the feature space as
a monoid and uses lightweight multilayer perceptron mod-
els for semantics-preserving operations, produces precise
feature vectors without the need to run the foundational
model.
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