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Abstract
With the ever increasing prevalence of neural networks and
the upheaval from the language models, it is time to rethink
neural acceleration. Up to this point, the broader research
community, including ourselves, has disproportionately fo-
cused on GEneral Matrix Multiplication (GEMM) operations.
The supporting argument was that the large majority of the
neural operations are GEMM. This argument guided the re-
search in Neural Processing Units (NPUs) for the last decade.
However, scant attention was paid to non-GEMM operations
and they are rather overlooked. As deep learning evolved
and progressed, these operations have grown in diversity
and also large variety of structural patterns have emerged
that interweave them with the GEMM operations. However,
conventional NPU designs have taken rather simplistic ap-
proaches by supporting these operations through either a
number of dedicated blocks or fall back to general-purpose
processors.

This work sets out to challenge the conventional wisdom
in neural accelerator design and explore the architecture
of an on-chip companion, dubbed Tandem Processor, that
complements the rather optimized GEMM unit in neural ac-
celerators. This processor needs to be specialized to keep up
with the GEMM unit; and yet needs to be programmable to
address the (1) structural and (2) operational variations. To
strike a balance between specialization and programmability,
on the one hand, we specialize its memory access logic with
a novel ISA/microarchitecture that alleviates the register file
and its associated load/store operations. On the other hand,
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the calculations of the non-GEMM layers are only supported
through primitive arithmetic/logic vector operations. There-
fore, programmability is offered at the mathematical level.
The enhancements due to the specialization of the memory
access logic in the Tandem Processor and its tight integra-
tion with the GEMM unit sustain the throughput and the
utilization of the neural accelerator. Comprehensive eval-
uations of the proposed design based on the end-to-end
execution of seven diverse DNNs including emerging lan-
guage models show significant performance improvements
and energy reduction enabled by leveraging the Tandem
Processor. We provide the RTL code that is synthesizable
both for FPGA and ASIC implementations in addition to
the associated compiler as part of the open-source GeneSys
project (https://actlab-genesys.github.io/). We also present
the chip floorplan and post-layout analysis. This work is the
result of 10 years of effort in building real NPUs that support
end-to-end neural network execution.

CCS Concepts: • Hardware → Hardware accelerators;
Application specific processors; •Computer systems or-
ganization → Single instruction, multiple data; • Com-
puting methodologies → Neural networks.
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Figure 1. Neural operators in representative DNNs over the years.

1 Introduction
Deep Neural Networks (DNNs) have taken the IT industry and
almost every computing research community by storm. Their com-
pute intensity has heralded an era of neural accelerators or neural
processing units [8–11, 13, 16–19, 22, 27, 28, 31, 33, 35, 36, 38, 39,
42, 43, 45–47, 50, 51, 53, 56, 57, 61–63, 65, 72, 78, 79, 82, 86, 90–
95, 99, 101, 108, 117–120]. These designs that include some of our
own prior work [38, 39, 60, 95] have disproportionately focused
on convolutions, then later on more broadly on GEneral Matrix
Multiplication (GEMM) operations. The rationale was that more
than 99% of operations of neural networks are of this type [16,
35, 95]. Researchers have focused on optimizing the design for
these GEMM operations from various aspects including but not
limited to sparsification [8, 10, 17, 42, 43, 57, 60, 78, 82, 108, 120],
bit-level flexibility [9, 22, 40, 51, 86, 92, 93, 95], use of resistive tech-
nologies [11, 19, 90, 98, 117], analog computations [39, 61, 101],
in/near memory computation [28, 35, 47, 53], data flow optimiza-
tions [16, 18, 33, 35, 36, 45, 46, 50, 56, 62, 91, 94], to name a few.
These inspiring innovations have been effective in optimizing the
runtime and energy efficiency of GEMM-based operations. However,
neural networks are not and were not just a series of matrix multi-
plications. Yet, scant attention has been paid to the non-GEMM
layers and neural networks have been treated as simply a sequence
of GEMM operations even in commonly used neural accelerator
simulators [38, 88, 95].

The scale has already shifted as new neural models have emerged.
Given the rising prevalence of neural networks and the trans-
formative impact of language models in generative AI applica-
tions [7, 24, 41, 67–69, 77], it is timely to rethink neural accelerator
design. As illustrated in Figure 1, non-GEMM operations have in-
creased significantly in number, variety, and the structure of con-
nectivity. For instance, VGG-16 [97], as the first generation of DNNs,
includes non-GEMM operations from only three types. Whereas the
types of non-GEMM operations have increased to ten for language
models (e.g., BERT [26], GPT-2 [83]), as the current generation of
DNNs.

The non-GEMM operations are traditionally delegated to a few
dedicated blocks (e.g., the ReLu/MaxPool units) [3, 8, 11, 13, 18,
19, 27, 28, 33, 39, 43, 46, 51, 56, 57, 61, 62, 72, 78, 90, 91, 94, 95, 99].
However, this approach is not sustainable as the variety of the
non-GEMM operations and their structural connectivity to other
layers increase. Clearly, there is a need for a rather significant
degree of programmability. As such, alternative to or in addition
to these blocks, an off-chip general-purpose processor [9, 10, 16,
17, 22, 35, 36, 45, 65, 79, 82, 92, 100, 113, 118, 119] or an on-chip
one [37, 49, 50, 76, 102, 105, 107] is designated to handle non-GEMM
operations. Through our evaluations, we observe that runtime effects

of the non-GEMM operations grow in dominance and they are not a
rather small and limitedminority. Their runtime effects are amplified
as the GEMM unit has been polished and optimized over the past
decade. Due to these optimizations, Amdahl’s bottleneck is shifting
towards these non-GEMM operations. Moreover, the non-GEMM
counterpart needs to keep up with this optimized GEMM unit to
sustain both of their utilization levels.

To address these challenges, this paper proposes a third alter-
native: a specialized, yet programmable processor, which acts as a
companion to the GEMM unit. This specialized processor, named
the Tandem Processor, not only handles the execution of the non-
GEMM layers, but also orchestrates the end-to-end DNN execution
and operand delivery between units. To strike a balance between
specialization and programmability, on one hand, we specialize its
ISA and memory semantics and alleviate the register file and its
associated load/store operations. These specializations are derived
from the common patterns of accesses in non-GEMM layers that
rearrange and process data elements in a nested-loop fashion. On
the other hand, the calculations of the non-GEMM layers are only
supported through primitive arithmetic/logic vector operations to
offer programmability at the mathematical level.

The design of the Tandem Processor and the following contributions
are the results of a decade-long endeavor to develop real NPUs capable
of executing neural networks end-to-end.
Contributions:
(1) The paper explores the uncharted and rather ignored non-
GEMM layers and their challenging structural and computational
effects on the end-to-end DNN acceleration through a comprehen-
sive analysis and characterization.
(2)We leverage the unique characteristics of non-GEMM layers and
propose a new instruction execution semantic and architecture that
does not adhere to the conventional Register-File-centric designs.
This design enables a unique specialized data access semantic for
the Tandem Processor.
(3) We exploit the common data manipulation patterns in non-
GEMM DNN layers and offer a pipeline front-end that leverages
microarchitectural mechanisms to keep track of strided iterators.
This innovation minimizes the overhead of loop execution, address
calculations, and memory accesses.
(4)We provide the RTL that is synthesizable on FPGA and ASIC im-
plementation and the associated compiler as part of the open-source
GeneSys project (https://actlab-genesys.github.io/) and present the
floorplan and post-layout analysis.

We evaluate the Tandem Processor with respect to end-to-end
execution of seven diverse models, ranging from rather classical
DNNs to the emerging language models, when the Tandem Proces-
sor or the alternative design points augment the same GEMM unit.
The results show that a balanced design offers significant advan-
tages (2.7× speedup and 20.6× energy reduction) over the common
practices of using dedicated blocks that may also require help from
the off-chip host processor. In an iso-resource setting, we compare
the Tandem Processor to Gemmini [37], a recent inspiring academic
project [37], which uses an on-chip RISC-V processor in addition to
the dedicated blocks. Utilizing the Tandem Processor outperforms
the use of on-chip multi-core RISC-V processors by 5.9×. Compared
to a TPU-like [49, 50] design that augments the GEMM unit with an
on-chip general-purpose vector unit, leveraging the Tandem Pro-
cessor offers 2.6× end-to-end speedup and 1.4× energy reduction.

https://actlab-genesys.github.io/
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Table 1. Non-GEMM operators and their representative DNNs.

Non-GEMM Operator Classes Operator Examples Representative DNNs

Element-wise mathematical operators Add, Sub, Mul, Exp, Sqrt, Floor, Ceil, Greater,
Equal, Less, Pow, Reciprocal ResNet [44], Yolov3 [85], MobileNetv2 [89], EfficientNet [104], BERT [26], GPT-2 [83]

Element-wise activation function Relu, LeakyRelu, Clip, Tanh, Sigmoid, GeLU VGG-16 [97], ResNet [44], Yolov3 [85], MobileNetv2 [89], EfficientNet [104], BERT [26], GPT-2 [83]

Reduction-based operators Depth-wise Conv, MaxPool, GlobalAveragePool,
ReduceMean, Softmax VGG-16 [97], ResNet [44], MobileNetv2 [89], EfficientNet [104], BERT [26], GPT-2 [83]

Data layout transformation Transpose, Reshape, Concat Yolov3 [85], BERT [26], GPT-2 [83]
Type conversion Cast, BitShift Any Inference

Comparison with NVIDIA’s Jetson Xavier NX GPU that leverages
NVDLA accelerator [3] shows 4.8× improvements in performance-
per-Watt with ∼12× less resources. Finally, in an iso-TOPs setting,
comparison to NVIDIA A100 GPU with TensorRT execution shows
that the proposed design matches A100 performance, while the
Tandem Processor provides 3.4× acceleration only for non-GEMM
operations.

2 A Deep Dive into Non-GEMM Operations
2.1 Characteristics of Non-GEMM Operations

Non-GEMM operations are significantly diverse. Table 1 sum-
marizes the non-GEMM operators used for inference across a set
of diverse DNN models. We extract these operations from their
corresponding ONNX implementations [70]. These layers can be
categorized into five classes: (1) element-wise mathematical oper-
ations, (2) element-wise activation functions, (3) reduction-based
operations, (4) data layout transformation operations, and (5) data
type conversion operations. Non-GEMM operators fundamentally
differ from GEMM ones. They exhibit a wide diversity in terms of
compute operations ranging from simple mathematical operations
(e.g. Add, Mul, etc.) to complex ones (e.g. GeLU, Exp, etc.) as op-
posed to the commonly used multiply-accumulate in GEMM layers.
Moreover, they require various patterns of mapping between input
and output tensors, from one-to-one in element-wise operations to
many-to-one in reduction-based ones.
Usage frequency of non-GEMM operations is continuously
growing. Figure 2 shows the usage frequency of the GEMM and
non-GEMM operators across the studied benchmarks. We extract
this data from the ONNX graph representation of each model and
categorize them with respect to the classification in Table 1. The
y-axis shows the cumulative usage of these operators as additional
models are taken into account. The last group of bars show the total
cumulative usage of operators across all benchmarks. As shown in
Figure 2, as additional models are covered, the cumulative number
of non-GEMM operations noticeably surges. Additionally, taking
the entire benchmarks into account (last bar), merely 15% of total
DNN operator nodes are GEMMs.
Non-GEMM operations impose non-trivial runtime over-
heads in newer DNNs. Figure 3 shows the runtime breakdown of
benchmark DNNs for three design choices: (1) a GEMM unit with
an off-chip CPU (Baseline (1) in Figure 3), (2) a GEMM unit coupled
with a set of dedicated units and the same off-chip CPU (Baseline
(2) in Figure 3), and NVIDIA A100 GPU that leverages tensor cores
and INT8 execution mode. Section 7 describes the experimental
methodology to obtain these results. Figure 3 reports the runtime
breakdown across the time spent on GEMM layers, non-GEMM
layers, and PCIe communications (for the case of Baselines (1) and
(2)). As the non-GEMM layers become more diverse and complex
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Figure 2. Cumulative number of GEMM and non-GEMM operations across
benchmarks. Last bar covers the frequency of usage across all the models.
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Figure 3. Runtime breakdown of benchmark DNNs across various plat-
forms.

in newer models such as EfficientNet, BERT, and GPT-2 they also
become the main source of the execution bottleneck. For instance,
the execution of non-GEMM layers take up 73% of the runtime for
EfficientNet for the GPU.
Non-GEMM operations are interspersed amongst GEMM op-
erations. Figure 4 depicts the core and frequently used subgraphs
of three representative DNNs. As shown, the non-GEMM operators
are interspersed amongst the GEMM ones (e.g. Conv) with various
forms of connectivity. This structure demands back-and-forth data
exchange between GEMM and non-GEMM units through off-chip
or on-chip memory. On top of this data exchange, tensor reformat-
ting such as datatype casting and tensor layout transformations
may be required. For instance the GEMM unit may operate with
INT-8/16 mode, while the non-GEMM unit operates in FP32 mode.
The majority of non-GEMM operations are memory-bound.
The majority of non-GEMM layers are element-wise operations
(>80%). Moreover, the ones that are not element-wise exhibit low
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compute intensity and data reuse. Figure 5 shows a roofline [111]
analysis for a set of prevalent non-GEMM operators. As shown,
most of the analyzed operators (other than Softmax and GeLU) fall
within the memory-bound region of the roofline. This is in contrast
to Conv/GEMM operations that are generally compute-bound [112].
This distinction necessitates architecture design considerations.

2.2 Requirements for Executing Non-GEMM Operations
Inspired by the above characteristics, below we list three key re-
quirements to efficiently execute non-GEMM operations.
R1: In-tandem execution of GEMM and non-GEMM oper-
ations. To reduce the data exchange among consecutive layers
(GEMM and/or non-GEMMs) through off-chip memory, prior work
suggests layer fusion [6, 15, 75, 80]. Layer fusion preserves the in-
termediate activation values stationary on the chip for subsequent
DNN operations. To leverage this technique, the intermediate acti-
vations ought to be communicated between GEMMand non-GEMM
units via on-chip memory subsystem for a sequence of fused layers.
However, this data communication at the granularity of entire layer
outputs is neither trivial nor efficient, due to the limited on-chip
memory of the accelerators and reduced utilization of GEMM and
non-GEMM units (Figure 8 shows the impact on utilization). In
essence, the data transfer ought to be performed at a finer granu-
larity of a chunk of output tensor, a.k.a tile. This fine granularity
of coordination requires the non-GEMM unit to seamlessly work in
tandem with the GEMM unit, while retaining minimal data transfer
and reformatting overhead.
R2: Balanced efficiency and programmability for the non-
GEMM unit. The diversity of the non-GEMM operators calls for

Table 2. Comparison of prior approaches for supporting non-GEMM oper-
ators with this work. † indicates that these aspects are supported partially.

Design classes Working in tandem
with GEMM Unit Specialization Programmability Execution

Control

Offchip CPU fallback % % " "
Dedicated on-chip
hardware units " " % %

Onchip RISC-V core
(+ dedicated units) %† %† " "

General purpose
vector unit " %† " %

This work (Tandem Processor) " " " "

a degree of programmability in the hardware. Nonetheless, this
should not emerge at the cost of noticeable efficiency reductions.
This is important because the inefficiency of the non-GEMM unit
can potentially make it the performance bottleneck and result in
stalling the GEMM unit. Therefore, striking a balance between
programmability and specialization is crucial.
R3:Orchestrating the execution across non-GEMMandGEMM
units. Having both GEMM and non-GEMM acceleration units in
one coherent system requires adequate support for execution or-
chestration. In particular, (1) DNN nodes need to be effectively
dispatched to their pertinent processing units, (2) GEMM and non-
GEMMunits need to diligently synchronize and handshake together
at the right time to realize in tandem execution and back-and-forth
interactions.

2.3 Existing Approaches for Executing Non-GEMM Layers
Table 2 compares prior methods with respect to the aforementioned
requirements. Below, we discuss them in details.
Class (1): Off-chip CPU fallback. This approach presumed by a
large number of prior work [9, 10, 16, 17, 22, 35, 36, 45, 65, 79, 82, 92,
100, 113, 118, 119] provides ultimate programmability and handles
the end-to-end execution orchestration. However, it impedes the
performance due to the lack of specialized execution and in tandem
execution with the GEMM unit, which the latter is caused by the
nontrivial back-and-forth data transfer between the GEMM unit
and CPU over PCIe and required data conversions (e.g. integer to
float and vice versa).
Class (2): Dedicated on-chip hardware units. An alternative
strategy [3, 8, 11, 13, 18, 19, 27, 28, 33, 39, 43, 46, 51, 56, 57, 61, 62, 72,
78, 90, 91, 94, 95, 99] is to equip the GEMM unit with a set of dedi-
cated units customized for specific non-GEMM operations. These
dedicated units can often be tightly integrated with the GEMM unit
(work in tandem), but do not offer execution orchestration. Another
drawback is, it is not scalable to augment neural accelerators with
dedicated units for each single type of non-GEMM operation. This
also prohibits the accelerator to support emerging non-GEMM op-
erations as a result of evolving DNNs. In the case of unsupported
operations these acceleratorsmust still fall back to an off-chip CPU.
Class (3): On-chip RISC-V core. The on-chip core in these de-
signs [37, 102] executes the non-GEMM operators and controls
on-chip resources. Gemmini [37] extends the RISC-V ISA with a set
of dedicated units/instructions for a limited set of non-GEMM lay-
ers. Although this approach obviates off-chip CPU communication,
but still the overheads of datatype casting and layout conversion
remain, blocking in tandem execution. More importantly, the on-
chip core that has a single ALU lacks in terms of compute power
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and efficiency to process the non-GEMM layers and can become
the execution bottleneck.
Class (4): On-chip general-purpose vector unit. Nvidia Stream-
ing Multiprocessor (SM) units [76] that consist of tensor cores
(GEMM units) and CUDA cores (general-purpose vector units) be-
long to this design class. Another notable example is the Vector
Processing Unit (VPU) in Google’s TPU [49, 50, 58] and other indus-
trial designs [33, 105, 107]. Vectorized execution leverages the in-
herent parallelism in non-GEMM layers for increased performance
improvement. Additionally, these vector units often work in tan-
dem with the GEMM units. However, these units do not handle the
execution control [50, 76] and fall short in terms of specialization.
Other related industry designs include SiFive x280 [96] and Meta
MTIA v1 [32]. SiFive x260 is a multi-core vector processor with
RISC-V vector extensions for deep learning workloads. The design
does not include a GEMM unit but provides a set of communication
protocols that can be leveraged to integrate this multi-core vector
processor with a GEMM unit. Another design point is Meta’s MTIA
v1. This design comprises a grid of Processing Elements (PEs). Each
PE comprises a GEMM unit and three other units to support non-
GMEM operations: (1) a SIMD array of dedicated units to support
activation functions and typecast operations, (2) a general-purpose
core with RISC-V vector extensions to provide further programma-
bility for more complex non-GEMM operations, and (3) a memory
layout unit that support transpose/reshape types of operations. In a
sense, this design follows both Class (2) and Class (4) of accelerators
and includes both dedicated units and general-purpose vector cores.

2.4 Our Approach
In this paper we offer the Tandem Processor as a specialized com-
panion SIMD processor that operates in tandem with the GEMM
unit, while striking a balance between customization and pro-
grammability. In addition, it orchestrates the end-to-end execution,
eliminating the need for an additional CPU.

3 Design Considerations for the Tandem
Processor

3.1 Memory Subsystem Design
The low computational intensity and the sizable tensor operands for
non-GEMM operators prompt the memory subsystem to repeatedly
stream data from off-chip memory. Thus, a locality-oriented hierar-
chical memory sub-system (i.e., vector register file and cache(s)) and
conventional load/store data communication, necessitate an exces-
sive number of memory instructions to deliver off-chip data to/from
vector register files, funneling through the memory hierarchy. To
address this, we use the following insight: Non-GEMM layers most
often operate on statically-structured tensor operands with a-priori
known dimensions in a streaming fashion. The Tandem Proces-
sor replaces the entire vector register file and cache hierarchy with
a collection of single-level software-managed on-chip scratchpads.
This design innovation is in contrast to all prior SIMD designs that
rely on register file execution and memory semantics (e.g. Google’s
VPU [58]). As shown in Figure 6a, these load/store operations to vec-
tor register files on average impose 41% and 27% runtime overhead
for non-GEMM operations and end-to-end execution, respectively.
To manage data movements between off-chip/on-chip memories,

we design a Data Access Engine. This unit can be configured and in-
voked by few explicit load/store instructions per tile to fetch entire
tensors. Such data movement merely appears at the boundary of a
tile, blocking any further intervention from the off-chip memory.

3.2 Specialized On-Chip Data Access Mechanism
Using large on-chip scratchpads submits a new challenge as fitting
the scratchpad addresses in an Instruction Word as opposed to IDs
of registers would require significant increase in instruction length.
In addition, on-chip address calculations require excessive number
of arithmetic instructions. For instance, per two-operand arith-
metic/logic instruction, three extra instructions would be required
solely for address calculation. As Figure 6b shows, this address
calculation would impose runtime overheads: On average, 59% of
the runtime for non-GEMM layers and 40% of end-to-end DNN
runtime. To tackle this challenge, we devise a dedicated pipeline
stage for address calculation at the front-end, relieving the burden
of address calculation from compute units.

We regulate walking over each dimension of tensor operands by
a tuple of ⟨Offset, Stride⟩. Hence, if these tuples can be embedded
in a single instruction along with compute operations, upon being
inferred at the decode stage, the scratchpad addresses can be cal-
culated in parallel with compute operations. Yet, providing three
such tuples for a non-GEMM layer would still require significant
increase in instruction length. Instead, we forge scratchpad accesses
through indirect strided address calculations. Figure 7 illustrates
this feature. We formulate these strided accesses using ⟨Scratchpad
ID, Iterator Index⟩ format. The Scratchpad ID is used to select
the corresponding scratchpad iterator table and the Iterator Index
points to an entry in the Iterator Table. Each entry in the Itera-
tor Table stores a tuple of ⟨Offset, Stride⟩ for each operand. This
design optimization realizes the embedding of strided addresses
and compute operations into a single 32-bit instruction word (See
Section 5). With this mechanism the Tandem Processor supports ad-
dress calculation as well as compute operation on the same pipeline
path with shared control and no extra runtime overhead. This is
in contrast to prior work [81, 103, 115] which leverage decoupled
access/execute engines with register files/FIFOs for data access and
address generation.

3.3 Specialized Loop Execution
Non-GEMM layers are formed of nested loops of primitive oper-
ations with pre-determined iteration counts. As Figure 6c shows,
using conventional loop logic (i.e. conditional branch) incurs on
average 70% and 47% runtime overhead for non-GEMM layers and
end-to-end DNN execution, respectively. To alleviate this, we devise
specialized loop execution semantics, while removing the branch
prediction logic.

To that end, the Tandem Processor uses software-managed tables
in the fetch pipeline stage to orchestrate the execution of nested
loop constructs in hardware. Prior to execution, these tables are con-
figured once with the iteration counts and corresponding number
of nested loop levels. Once configured, these specialized tables are
used repeatedly in conjunction with the iterator tables to execute
the loop body. This is crucial, since appropriate ⟨Offset, Stride⟩
tuples need to be employed at each level of loop nest to correctly
calculate the scratchpad addresses. This specialized loop execu-
tion is unique to the Tandem Processor, as prior work [20, 103]
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(a) LD/ST to/from register files.
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Figure 6. Analyzing the overheads of non-GEMM execution eliminated by design considerations in the Tandem Processor, individually. "N-G" and "E2E"
denote the runtime for Non-GEMM and End-to-End execution. These experiments are performed on the Tandem Processor + GEMM unit with Table 3
configurations with all hardware specializations and compiler optimizations, except the ones under evaluations.
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leveraged hardware-managed loop logic with register-file based
designs and did not offer mechanisms to combine it with address
calculation.

3.4 Arithmetic Logic Units Design

ALU operations. To support a diverse set of non-GEMM layers,
one approach would be to use dedicated specialized instruction
for each layer. However, this would lead to a design similar to
the second class in Section 2.3. We instead leverage the feasibility
of implementing complex non-GEMM layers with a set of simple
primitive operations [5, 54]. For instance, GeLU operator can be
implemented using five multiplications, three additions, a sign, an
absolute, and a minimum operations. We consider a union set of
these primitives that is comprehensive enough to support non-
GEMM layers shown in Table 1. Hence, the Tandem Processor
offers better hardware resource utilization and reuse across a larger
set of operations.
ALU precision and datatype. Prior works show that integer-only
arithmetic can be used for inference execution of CNNs [48, 114]
and transformers [54] with virtually no repercussions on accu-
racy. Also, while GEMM and few non-GEMM layers (e.g., Relu) are
amenable for low-precision INT8 implementation [48], some non-
GEMM layers such as ResAdd and Softmax require INT32 [54, 114].
To provide sufficient precision for all non-GEMM operators, we
use INT32 for the Tandem Processor ALUs. As a complementary
benefit, additional data casting from GEMM to non-GEMM unit
is not needed, since GEMM units typically accumulate the partial
results in INT32 precision [16, 35, 49, 50, 54, 95]. To support lower
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precision for GEMM, a datatype casting instruction is required
when activations move from non-GEMM to GEMM unit.

3.5 Integration with the GEMM Unit

Coordination granularity.We use tile (sub-tensor) granularity
for software pipelining to facilitate execution overlap between
GEMM and non-GEMM units, improve resource utilization, and
better conform with limited on-chip memory capacity. As Figure 8
shows, the in tandem coordination of the GEMM unit and the
TandemProcessor at tile granularity increases the compute resource
utilization by 20% and 13% for the GEMM unit and the Tandem
Processor, respectively. Note that an operand-level granularity is
less efficient. This is because some non-GEMM operators, such
as depthwise convolution, require arbitrary accesses to GEMM
outputs for consecutive operations. This access pattern results in
frequent stalls, curtailing the overall performance.
Communication mechanism. To enable tile-based coordination,
one probable approach is to directly move/copy tiled data from
the GEMM unit’s Output BUF to the Tandem Processor’s private
scratchpads. However, this design decision incurs communication
overhead at the boundary of each accelerator units, requiring com-
plex coordination mechanism. Alternatively, we enable a fluid own-
ership of the GEMM unit’s Output BUF for the Tandem Processor,
obviating redundant data communications. After the GEMM unit
completes storing the intermediate data in the Output BUF, the
Tandem Processor takes the ownership of the buffer and directly
executes its computations on the stored data.
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Figure 9. The Tandem Processor pipeline microarchitecture. The ALU and
scratchpad reads/write stages are interleaved to improve frequency.

Synchronization mechanism. To enable this fluid ownership
while simplifying hardware, we leverage the compiler to weave a
set of synchronization instructions (See Section 5) between GEMM
and non-GEMM instructions those realize the following: (1) They
identify the code regions for GEMM unit and the Tandem Processor,
facilitating the instruction dispatch. (2) They define the flow of
execution between GEMM and non-GEMM units. (3) They govern
the handshaking mechanism between the acceleration units. For
instance, enforcing the release of ownership of the Output BUF
after the Tandem Processor completes the execution.

4 Microarchitecture Design for the Tandem
Processor

4.1 Pipeline Design
In this section, we discuss the major aspects of the Tandem Proces-
sor’s pipeline microarchitecture, illustrated in Figure 9.
On-chip memory organization. We refer to the Tandem Proces-
sor scratchpads as Namespaces, which are shown with gray colour
in Figure 9. Interim BUF 1&2 namespaces represent the central
Tandem Processor’s on-chip scratchpads that operate as a storage
medium for tensor operands as well as their intermediate results.
These scratchpads, which bridge the off-chip memory and the Tan-
dem Processor, are populated/drained by a Data Access Engine
at a tile granularity. The Tandem Processor compiler configures
the Data Access Engine by setting the base address of the off-chip
source along with a series of stride values. Note that, the tiled data
may be even dispersed across non-contiguous regions of memory
lines, yet statically arranged in strided patterns. IMM BUF names-
pace serves as a small 32-slot scratchpad for immediate values in
non-GEMM operations. This buffer is programmed with a series of
customized instructions at the onset of non-GEMM layer execution.
The last namespace is Output BUF, which serves as the GEMM
Unit’s buffer for output values.
Specialized on-chip data access.We place the Iterator Tables that
are used to store the offset and stride information for scratchpad
accesses at the decode stage of the Tandem Processor pipeline (see
Figure 9). There is a dedicated Iterator Table for each namespaces
of the Tandem Processor. Upon decoding one arithmetic/logic in-
struction, the ⟨Namespace ID, Iterator Index⟩ retrieves the address

calculation information from the corresponding Iterator Table. The
resulting outputs of accessing the Iterator Tables is a triplet ad-
dress, two for source operands and one for destination operand.
Each element of the triplet is a tuple of ⟨offset, stride⟩, indicating
that target data resides in Scratchpad[offset + stride]. The triplet
address is passed down to the subsequent pipeline stage (Strided
Address Calculation) that repetitively assembles a series of scratch-
pad addresses, each as the result of offset + stride computation.
The scratchpad indices propagate down the multi-staged execution
pipeline to fetch the tiled operands, perform the non-GEMM oper-
ations, and write back the resulting data to the pipeline back-end.
Nested loop support. The Code Repeater module (see Figure 9)
uses three tables: A table stores the compiler-defined iteration
counts. Each entry of this table maintains the configuration of
one of the loop nesting levels, ordered from outermost loop to the
innermost one. At the Decode pipeline stage, Code Repeater stores
the number of iterations in each table entry, which is indexed using
a pointer that keeps track of the number of nested loops. Once the
Code Repeater is configured, it uses the second table with similar
structure of entries to keep track of the current iteration of the
loops. Whenever, the Code Repeater exhausts the iterations of a
loop level, it decrements the pointer to update the iterations of the
ensuing outer loop. Finally, the Code Repeater uses a collection of
identical tables that store the information about what Iterator IDs
need to be exercised for each operand at a certain loop level.

4.2 Overall Execution Flow and the
GEMM-Unit-Tandem-Processor Synchronization Logic

Figure 10 illustrates the overall execution for a DNN subgraph on
the NPU-Tandem. As shown, at a high level, the NPU-Tandem
encompasses (1) a GEMM unit (including weight/input buffers), (2)
Output Buf, which serves as a medium for communicating data
from GEMM unit to the Tandem Processor, (3) an execution con-
troller that orchestrates the overall execution and faciliates the
synchronization between units, and (4) an instruction buffer that
holds the instructions of the block. To execute DNNs, the compiler
breaks the DNN graph into a set of execution blocks or subgraphs
(step 0 in Figure 10). A block can be one of the followings: (1) a
single GEMM layer, (2) a group of bundled non-GEMM layers, (3)
a GEMM layer followed by a group of bundled non-GEMM layers
(shown in this example). To realize the in tandem execution, a uni-
form tiling scheme is required across the inputs/outputs of fused
layers in one block. Figure 10 shows four tiles of execution for fused
GEMM (shown with square) and non-GEMM layers (shown with
circles). As Section 5 discusses, the synchronization instructions
mark the boundaries of GEMM and non-GEMM instructions (see
the instruction block format in Step 0 of Figure 10). Figure 11 illus-
trates the high level view of the execution controller logic for the
Tandem Processor. Below, we discuss the overall execution on the
NPU-Tandem.
Instruction load and dispatch (Step 1 in Figure 10). First, the
Tandem Processor loads the instructions of a block from off-chip
memory into its Inst. BUF. Then, the FSM of the execution controller
switches from Block Start to Inst. Dispatch state (see Figure 11).
At this state, the Tandem Processor’s Inst. Dispatch unit drives
the Program Counter to walk over all the instructions of a block.
Note that this is a lightweight decode state and does not invoke
any execution on the GEMM unit or Tandem Processor. The Inst.
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Dispatch unit decodes the synchronization instructions to identify
the topology of the block (GEMM only, non-GEMM only, or GEMM
followed by non-GEMM). It then decodes the GEMM instructions
and configures the GEMM unit, while writes back the non-GEMM
instructions to the Inst. BUF. Note that GEMM units typically op-
erate at macro operations level (e.g. Conv/Matmul instructions),
when first a set of instructions are decoded to configure the GEMM
unit. Based on the configuration, this unit then operates in a repeti-
tive mode to fully execute the GEMM layers [37, 50, 95]. In contrast,
the Tandem Processor is similar to von Neumann machines, where
each instruction is decoded and executed through the processor
pipeline. As such, at the end of this state, only non-GEMM instruc-
tions exist on Inst. Buf to be decoded and executed by the Tandem
Processor. After the dispatch is done, based on the structure of
the program block, the execution FSM switches to either of these
three states: the GEMM state, the Tandem Processor state, and the
GEMM-Tandem Processor state (see Figure 11). Below, we first
discuss GEMM-Tandem Processor case as shown in the example of
Figure 10 and then discuss the Tandem Processor only case.
GEMM-non-GEMM execution (Step 2 to Step 6 in Figure 10).
If a GEMM layer is followed by a series of non-GEMM layers, the
FSM transitions to the GEMM-Tandem Processor state after the
instruction dispatch. GEMM unit first starts with executing the first
tile (Step 2 in Figure 10). Whenever the GEMM unit finishes the
tile, it sends a handshaking signal to the execution controller. If the
Tandem Processor is idle, the execution controller invokes Tandem
Inst. Fetch unit to start the execution of non-GEMM tile (see (FSM
= Tandem | FSM = GEMM-Tandem) & GEMM_tile_done signal in
Figure 11.). Utilizing a double-buffering scheme, the GEMM unit
proceeds to the next tile, while the Tandem Processor takes the
outputs of the GEMM-completed tile and performs the non-GEMM
operations (Step 3 in Figure 10). To avoid stalls in the GEMM unit
caused by theOutput BUF being occupied by the Tandem Processor,

opcode func X group	ID X
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func ns	id iter	idx Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func dst	ns dst	iter	idx
4 bits 4 bits 3 bits 5 bits

src1	ns src1	iter	idx src2	ns src2	iter	idx
3 bits 5 bits 3 bits 5 bits

opcode func loop	id X Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func src/dst dim	idx Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

opcode func1 func2 loop	idx Immediate
4 bits 4 bits 3 bits 5 bits 16 bits

Synchronization
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Data 
Transformation
Off-chip Data 
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Figure 12. The Tandem Processor instruction formats.

the compiler inserts a synchronization instruction (see Section 5)
right after the instructions consuming the data on the Output BUF.
At this time, the Tandem Inst. Fetch sends a handshaking signal to
the GEMM unit and Tandem Processor releases the Output BUF
(OBUF_done -> GEMM Unit in Figure 11). the Tandem Processor
may continue the computation using its private Interim BUFs. Once
the Tandem Processor finishes a tile, it uses the synchronization
instruction that marks the end of the non-GEMM program to alert
the execution FSM (Tandem_done -> Exec. FSM in Figure 11). The
execution FSM puts the Tandem Processor in the idle state until
it receives the next tile from GEMM unit. After finishing the all
tiles (Step 2 to 6 in Figure 10), the execution FSM transitions to the
Block Done state (see Figure 11).
Non-GEMM only execution. The execution FSM transitions from
Inst. Dispatch to Tandem state and triggers the Tandem Inst. Fetch
to fetch the non-GEMM instructions and forward them to Tandem
Processor pipeline. Once Tandem Processor completes executing all
the instructions, the Tandem Inst. Fetch unit sends a handshaking
signal to the execution FSM logic. The execution FSM loops back
to this state if there are remaining tiles. To ensure the off-chip
memory access instructions are updated for different tiles, the first
tile is used to initialize configurations for the Data Access Engine.
For rest of the tiles, the Data Access Engine reuses the initialized
configurations and incrementally updates them.

5 ISA Design for the Tandem Processor
Figure 12 summarizes the instruction formats for the Tandem Pro-
cessor. Below we discuss its instruction classes.
Synchronization instructions. In this class, the func bits are de-
fined as ⟨GEMM/SIMD, START/END, EXEC/BUF, X⟩. The START
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and the END bits along with EXEC bit mark the regions of in-
structions that belong to the Tandem Processor and GEMM Unit
(identified with GEMM/SIMD bit accordingly), which helps dis-
patch instructions to the appropriate unit. Also, this instruction can
be used with EXEC bit to notify the GEMM Unit that the execution
of non-GEMM operations of the running tile is completed, or with
BUF bit to notify theGEMMUnit that theOUTPUT BUF is released
and ready for the subsequent tile.
Configuration instructions. This class includes two opcodes. The
ITERATOR_CONFIG opcode is usedwith three functions (func bits):
(1) BASE_ADDR to fill the Iterator Tables with the base addresses
for the scratchpads and (2) STRIDE to fill the Iterator Tables with
strides for the scratchpad address calculation, and (3) IMM BUF
to fill the immediate buffer with the immediate values needed for
non-GEMM operations. The ns id and iter idx fields identify the
target namespace and the index to its corresponding Iterator Table.
Also, this instruction is used to set the immediate values in IMM
BUF. Another opcode is DATATYPE_CONFIG, which is used for
datatype casting.
Compute instructions. Opcode ALU is defined with various func
bits to support Add, Sub, Mul, MACC, Div, Max, Min, Shift, Not,
AND, OR operations on src1 and/or src2 operands. Additionally,
this opcode supportsMOVE/COND_MOVE instructions for scat-
ter/gather operations. In case of COND_MOVE , the first source
operand (src1) is moved predicated upon true/false flags identi-
fied by the second operand (src2). Opcode CALCULUS consists
of mathematical operations such as absolute value and sign. Op-
code COMPARISON supports logical comparisons. The operands
(src1/src2/dst) for each instruction are specified by using a 3-bit
ns id to locate the buffer, and a 5-bit iter idx corresponding to the
stride and offset.
Loop instructions. This class is used with the LOOP opcode to
configure the Code Repeater. This opcode is used with SET_ITER
function bits to specify the iterations for each loop identified by loop
id. The SET_NUM_INST function is used to identify the number
of instructions in the loop body. To cope with the customized on-
chip memory accesses for each loop dimension, the SET_INDEX
function is used, while the rest of the instruction bits are used to
set the associated ⟨ns ID, iter idx⟩ for the three operands (similar
to compute instructions). The loop instructions are designed to
support arbitrary levels of nesting (up to eight, each of which is
identified by loop id field) needed by non-GEMM operators.
Data transformation instructions. This class is used with two
opcodes: (1) PERMUTE for permutingmulti-dimensional tensors us-
ing the Permute Engine shown in Figure 9 and (2)DATATYPE_CAST
for datatype casting. For PERMUTE opcode, SET_BASE_ADDR,
SET_LOOP_ITER, and SET_LOOP_STRIDE functions configure the
base addresses, shapes, and strides, respectively, for both the source
and destination’s tensor dimensions (identified by dim idx). Then,
with the START function, the iterators start generating the address
for the source and destination according to the desired permutation.
Additionally, the LSB bit of the Immediate field while using the
START function identifies if this permutation operation requires
shuffling the data across the SIMD lanes/scratchpad banks or not.
DATATYPE_CAST opcode is used to cast tensor elements to various
fixed-point representations such as FXP32, FXP16, FXP8, and FXP4
needed by the GEMM unit.
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Figure 13. Compilation workflow.

Off-chip data movement instructions. TILE_LD_ST opcode de-
scribes the data tile transfer between off-chip memory and on-
chip memory of the Tandem Processor, Interim BUFs. The func1
field includes various functions: The LD/ST_CONFIG_BASE_ADDR
function is used to generate the base addresses of each tile. To
configure the corresponding shapes and strides for each tile, the
LD/ST_CONFIG_BASE_LOOP_ITER/STRIDE function is used. Also,
LD/ST_CONFIG_TILE_LOOP_ITER/STRIDE functions are used to
configure the Data Access Engine to generate the addresses re-
quired for each tile. Finally, LD/ST_START function triggers the
Data Access Engine to start populating/draining the intermediate
buffers. The func2 field is used to identify the target buffer between
Interim BUF 1&2.

6 Compilation for the Tandem Processor
Tiling optimization. Compiler realizes software-pipelining by
choosing the optimized tiling strategy. To improve the Tandem
Processor’s utilization, the compiler does not tile the reduction
dimensions in GEMM operations. otherwise, the GEMM Unit pro-
duces partial results that would be insufficient for the Tandem
Processor to perform its operations, causing it to stall. Additionally,
the compiler finds the optimal sizes for tiles that are big enough to
encompass all the adjacent elements of an input tensor for the non-
GEMM operation, while small enough to fit on the limited on-chip
scratchpads. For instance, to perform Depth-wise Conv operation
with a kernel size 5×5, it would require the Tandem Processor to
have access to all the elements in the 5×5 patch or it is inevitable
to stall.
Dependency relaxation. The Tandem Processor leverages the
regularity in the non-GEMM operations and eliminates the de-
pendency check in the hardware, while shifting the burden to the
compiler. The Tandem Processor compiler leverages loop fission [12]
to remove dependencies among series of instructions. Additionally,
some non-GEMM operations such asMaxPool has a long sequence
of dependencies among instructions. For such cases, the compiler
leverages loop interchange [12] to relax the dependencies.
Compilationworkflow. Figure 13 describes the compilation work-
flow for the Tandem Processor. The compiler uses the ONNX format
of DNNs and the architecture configuration of the Tandem Proces-
sor (e.g. number of lanes, Interim BUF) as its inputs. The compiler
maps the ONNX node to pre-defined operation templates. How-
ever, as discussed in Section 3.4, not all non-GEMM operators are
directly supported by the Tandem Processor. Therefore, for such
complex operations (e.g., Softmax, Sqrt, Gelu) the compiler trans-
lates them to an integer-based counterpart [5, 54]. After mapping
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to the templates, the parameters of the operation templates are
replaced with real values according to the ONNX layers. The com-
piler then performs the aforementioned optimizations. Finally, the
compiler iterates the statements in the template and lowers them
into instructions based on the Tandem Processor ISA.

LOAD and STORE statements are lowered to TILE_LD_ST with
BASE_LOOP_ITER/STRIDE functions for each LOOP variables, to
set the number of iterations and strides in DRAM (a summarized
version is shown in Figure 13). Then, the tile transfer instructions
(LD/ST_CONFIG_TILE_LOOP_ITER/STRIDE) are generated using
the tile shape in the LOAD and STORE statements. Compute oper-
ations are lowered to a set of inner LOOP instructions along with
the pertinent compute instruction. For compute operations reading
from Output BUF, the compiler generates additional synchroniza-
tion instructions.

7 Evaluation Methodology
Benchmarks. To evaluate the efficacy of the Tandem Processor,
we form our benchmark suite from domains of image classifica-
tion (VGG-16 [97], ResNet-50 [44], MobileNetv2 [89], Efficient-
Net [104]), object detection (Yolov3 [85]), and emerging language
models (BERT [26], GPT-2 [83]) with batch size 1 that is used for
real-time AI [33], single-stream, and offline scenarios [84]. These
DNN benchmarks constitute a diverse set of layers with various
dimensions and types of operations (e.g. Relu/LeakyRelu/Clip, Max-
pool/GlobalAveragePool, Depth-wise convolution, Residual Add,
ReduceMean, Exp, Transpose, etc.)
Hardware implementation and synthesis.We implement the
Tandem Processor in Verilog and synthesize it using Synopsys De-
sign Compiler R-2020.09-SP4 with Global Foundries 65 nm library.
We also perform place and route using Synopsys IC Compiler L-
2016.03-SP1. Additionally, we synthesize the Tandem Processor
with FreePDK 15nm open cell library and meet the 1 Ghz target
frequency. To obtain power of the design, we use the synthesis
results in FreePDK 15 nm for logic cells and model the on-chip
memory energy using CACTI-P [59].
Simulation infrastructure. We develop a cycle-accurate simu-
lator for the Tandem Processor that uses compiler generated in-
structions and provides cycle counts and energy statistics. We val-
idate the functionality of the simulator and RTL implementation
by comparing the simulator/RTL-generated outputs with ground
truth software implementation. These validations also show the
closeness of the number of cycles by error margin of ≤ 5%. For
end-to-end results, following the methodologies of [37, 87, 88, 95],
we develop a cycle accurate simulator for a systolic array based
GEMMUnit and integrate it with the Tandem Processor simulation
infrastructure following the insights in Section 3.5.
Comparison to off-chip CPU fallback and dedicated units
(Class (1) and (2) in Section 2.3)We compare the NPU-Tandem
with the configurations listed in Table 3 to (1) a PCIe-attached (third
generation with eight lanes) GEMM unit and an off-chip Intel Core
i9-9980XE Extreme Edition CPU to support non-GEMM layers, (2)
a GEMM unit augmented with a number of dedicated hardware
blocks that support Relu, Clip, Residual Add, MaxPool, and scale &
shift, similar to the design in [37]. This baseline still falls back to
the CPU for unsupported layers. We measured the GEMM unit and
dedicated units runtime using our aforementioned simulator and
the CPU time using ONNX Runtime [25]. Finally, we measure the

Table 3. Microarchitectural configurations for the NPU-Tandem.

Configs/Units Systolic Array Tandem Processor

Dimensions 32×32 32 Lane
Scratchpads 384 KB 128 KB (Interim BUF 1&2)
Accumulators 128 KB N/A
Datatypes INT8 (Mult) and INT32 (Acc) INT32
Frequency 1 GHz 1 GHz

PCIe communication for all required data transfers in benchmarks
using a Xilinx Alveo u280 FPGA connected to host CPU via PCIe.
All baselines use the same frequency, number of PEs, and on-chip
memories as in Table 3. For energy comparisons, we estimate the
power of the GEMM unit using energy reports provided by prior
works [30, 49], andmodel the energy of PCIe transactions according
to [14].
Comparison to Gemmini [37] (Class (3) in Section 2.3). We
compare the NPU-Tandem with Gemmini [37] that integrates a
systolic array, a set of peripheral dedicated units (similar to those
mentioned above), and a single RISC-V CPU core. We use ONNX
Runtime [25] and cycle-accurate Firesim [52] simulator to obtain
performance numbers for Gemmini. For a fair comparison, we
exclude all the runtime/OS-related overheads. Additionally, for
an iso-resource comparison, we use a scaled up Gemmini that
integrates the same number of cores as the number of ALU lanes in
the Tandem Processor. To obtain the performance, we optimistically
scale down the CPU runtime for Gemmini with the number of cores.
Comparison to Google’s VPU (Class (4) in Section 2.3). To
eliminate the bias in comparisons due to the differences in the ac-
celerators size, technology nodes, and the GEMMunit design and its
optimizations, we model the behavior of Google’s VPU within our
simulation infrastructure according to Google’s patent on VPU [58].
Concretely, we model the overheads of data communication (load/-
store instructions) between the scratchpads and vector register files
in addition to nested loop execution due to the lack of specialized
support for them on VPU. We modeled the benefits of using special
functions in VPU for computing operations such as square root
and exponential. TPU overlaps the execution of GEMM unit and
VPU by forwarding the GEMM outputs through FIFOs to the VPU’s
scratchpads. We modeled this overhead.
Comparisons toGPUs (Class (4) in Section 2.3).WeuseNVIDIA’s
Jetson Xavier NX as a mobile GPU baseline and NVIDIA’s RTX
2080 TI as a high-performance GPU baseline. We run all DNNs on
GPU baselines using TensorRT v7.2.3. We also compare the perfor-
mance of the NPU-Tandem to NVIDIA A100 GPU in an iso-TOPs
(iso-resource) setting. We scale up both the GEMM (MAC units
of GEMM unit) and non-GEMM (ALUs in the Tandem Processor)
resources of the NPU-Tandem by 216× to match the TOPs of A100
for both GEMM and non-GEMM operations. As such, in this setting,
both designs use the same amount of resources for GEMM and non-
GEMM operations. We measure the runtime for A100 in two ways:
(1) We use the TensorRT to obtain optimized end-to-end numbers
for A100. However, TensorRT environment does not allow layer-
wise DNN execution profiling to get the statistics on the breakdown
of runtime across GEMM and non-GEMM operations. As such, (2)
we also use ONNX Runtime with CUDA Execution Provider for
runtime measurement and layer-wise profiling. We compare the
NPU-Tandem end-to-end runtime to both measurements and use
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the CUDA-based results to further analyze the runtime based on
its breakdown across GEMM and non-GEMM operations.

8 Experimental Results
Comparisons to offchip CPU fallback and dedicated units.
Figure 14 compares performance of the NPU-Tandem with base-
lines (1) using offchip CPU fallback and (2) using dedicated units.
The results are normalized to the baseline (1). On average, the NPU-
Tandem provides 3.5× and 2.7× speedup compared to baseline (1)
and baseline (2), respectively. The Tandem Processor not only elim-
inates the overheads of communication with offchip over PCIe and
improving resource utilization, it also minimizes the overheads of
instruction orchestration and data access compared to the general
purpose CPU. The improvements provided by the Tandem Proces-
sor are more pronounced forMobileNet-v2 (5.9× over baseline (1)
and 5.4× over baseline (2)) and BERT (5.4× over baseline (1) and
4.5× over baseline (2)) due to the use of more complex non-GEMM
operations in their structure (depth-wise convolution inMobileNet-
v2 and large number of mathematical and transpose operations in
BERT) that significantly affect the total runtime. Figure 15 compares
the energy reduction benefits of Tandem Processor. On average, the
NPU-Tandem reduces the total energy consumption by 39.2× and
20.6× compared to baseline (1) and baseline (2), respectively. These
large improvements are due to the significant time that baselines
(1) and (2) spend on the power-hungry off-chip CPU (as shown
in Figure 3) with a TDP of 165 Watts as opposed to 2.7 Watts in
the Tandem Processor. The results show that generally as DNNs
evolve and use more complex structures and non-GEMM operations,
the benefits of the Tandem Processor grow.
Comparison to Gemmini. As Figure 16 shows, on average, the
NPU-Tandem provides 47.8× performance improvements. Figure 16
also evaluates the improvements over an extended version of Gem-
mini that integrates the same number of RISC-V cores as the number
of SIMD lanes in the Tandem Processor. On average, using multiple
cores improves the performance of Gemmini by 8.0×. Compared
to this design point, the NPU-Tandem provides 5.9× speedup, on
average (with maximum of 35.3× for MobileNet-v2 and minimum
of 0.9× for VGG-16).

To understand the sources of improvements, Figure 17 shows the
runtime breakdown of Gemmini (default setting of one RISC-V core)
across its three main components of GEMM unit, dedicated units,
and RISC-V core. For MobileNet-v2 and EfficientNet, Gemmini
spends a large amount of time ( 90% of runtime) on its im2col
dedicated unit to convert the depth-wise convolutions to a series of
GEMM operations. This not only requires a time-consuming im2col
operation, but also results in additional GEMM operations with
low resource utilization. On the other hand, the Tandem Processor
executes these operations natively and more efficiently without
any need for im2col and overlaps them with other convolutions, as
well. For YoloV3, BERT, and GPT-2 RISC-V core is the bottleneck.
These DNNs require a significant number of complex mathematical
operations such as Leaky ReLU in YoloV3 and GeLu, ReduceMean,
Sqrt, Softmax, etc, in BERT and GPT-2, not supported by dedicated
units. Note that, Gemmini uses one single RISC-V core (with 40%
more area than the 32-lane Tandem Processor), which has one ALU
to process all these operations on large tensors. For ResNet-50,
still RISC-V core is the bottleneck, because of the last AveragePool
layer (this layer takes the average of 7×7 feature maps for 2048

channels). In contrast, the Tandem Processor minimizes the cost of
these operations and seeks to overlap them with GEMM ones. These
results show that for DNNs with more complex non-GEMM layers,
paying the cost of PCIe and using a high-performance offchip CPU
(and dedicated units) provides better performance than an on-chip
CPU in Gemmini.
Performance comparison to Google’s TPU. Figure 18 compares
the end-to-end performance of the NPU-Tandem to a TPU-like de-
sign that leverages the general-purpose VPU for non-GEMM layers.
According to the Google’s patent on VPU [58], we considered the
following specializations for TPU: 1) strided address generation
for LD/ST between DRAM and scratchpad, 2) strided address gen-
eration for LD/ST between scratchpad and vector register file, 3)
software-pipelining of GEMM and non-GEMM through FIFOs, and
4) supporting specialized instructions for mathematical functions
such as exp, sqrt, clip, etc.. As such, the benefits of Tandem Proces-
sor over VPU stem from 1) removing the vector register file and its
LD/ST overheads, 2) supporting specialized nested loop execution,
and 3) software-pipelining through reading from OBUF directly as
opposed to FIFOs. On the other hand, supporting special functions
in VPU can boost its performance over the NPU-Tandem. Figure18
analyzes the impacts of these four design decisions individually.
For each benchmark four bars are reported. The first bar shows the
speedup achieved only by removing RegFile and its LD/ST over-
heads, the second shows the impact of specialized loop execution
on top of the RegFile LD/ST, the third shows speedup when the
benefits of OBUF data movement is also considered on top of two
previous decisions, and finally the last bar includes the slowdown
impact of not supporting specialized functions as well. In another
word, the last bar includes the impacts of the four design decisions
and is the final end-to-end speedup. On average, the NPU-Tandem
offers 2.6× speedup. Among the four design decisions, supporting
specialized loop execution in the Tandem Processor provides the
maximum speedup, 2.1× on average. The benefits due to this design
decision are more pronounced forMobileNet-v2 and EfficientNet
with depth-wise convolution layers, an operation with five nested
loops. The second most effective technique is eliminating the reg-
ister file and its associated LD/ST operations from/to scratchpad,
providing 1.4× speedup on average. GPT-2 enjoys the maximum
benefits from this specialization with 2.9× speedup. Direct data
access through OBUF in the Tandem Processor as opposed to mov-
ing data through FIFOs across GEMM unit and VPU, provides 1.1×
speedup on average, while not having hardware support for special
functions causes 0.8× slowdown on average. Having the hardware
support and dedicated instructions for special functions provides
maximum benefits for VPU for BERT and GPT-2, since complex
mathematical operations such as sqrt and exp (for softmax) are
heavily used in their structure. Note that this speedup comes at the
cost of extra area and design complexity for VPU which its quantifi-
cation would require access to the exact hardware implementation
that is not publicly available. Overall considering the impact of four
design decisions, MobileNet-v2, EfficientNet, and GPT-2 show the
most benefits for NPU-Tandem, while VGG-16 showing the least.
Energy comparison toGoogle’s TPU. Figure 19 shows the end-to-
end energy reduction achieved by theNPU-Tandem over TPU+VPU
while analyzing the impact of the aforementioned design decisions
individually. On average, theNPU-Tandem provides 1.4× energy re-
duction. Among the benchmarks the benefits are more pronounced
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EfficientNet 1.063113205 4.3

Yolov3-DarkNet 1 3.5
BERT 1.186776017 5.4
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Figure 14. Performance comparison to offchip CPU
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Energy Breakdown
Pla$orm GEMM dedicate
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TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

TE
TR

IS

Bi
Hi

w
e

Bi
Hi

w
e

MemN2N

Bi
Hi

w
e

BERT-B-G BERT-L-S

Bi
Hi

w
e

Bi
Hi

w
e

Bi
Hi

w
e

Ru
nt

im
e 

Br
ea

kd
ow

n

Baseline

LeOPArd 


(pruning only)

LeOPArd 


(pruning +


 bit-serial)

Baseline

LeOPArd 


(pruning only)

LeOPArd 


(pruning +


 bit-serial)

1.
3x

1.
3x

BERT-B-S BERT-L-G

Baseline

LeOPArd -P

LeOPArd

ALBERT GPT-2-L

ResNet-50

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

LeOPArd

Baseline

LeOPArd -P

0%

20%

40%

60%

80%

100%

gemmini VGG-16 gemmini ResNet-50 gemmini MoileNet gemmini EfficientNet

GEMM Dedicated RISC-V 

G
EM

M
N

on
-G

EM
M

C
om

m

MobileNet-v2

EfficientNet

Yolov3

BERT
VGG-16

GPT-2

Figure 17. Gemmini time breakdown.

Accumulated Improvement over TPU+VPU
LD/ST 
RegFile

+Loop +OBUF +Special 
Func

VGG-16 1 1.2 1.32 1.32
ResNet-50 1.2 1.9 2.1 2.112

MobileNet-v2 1.6 6.1 6.08 4.864
EfficientNet 1.6 5.9 5.92 5.328

Yolov3-DarkNet 1 1.2 1.44 1.44
BERT 1.4 4.1 4.5 2.7
GPT-2 2.9 5.5 6.1 3.0

Geomean 1.434048673583783.00762582750123.259780632499542.61884828471967
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Figure 18. Performance comparison to TPU+VPU and analyzing the con-
tribution of each Tandem Processor’s specialization.

Accumulated Improvement over TPU+VPU
LD/ST 
RegFile

+Loop +OBUF +Special 
Func
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Figure 19. Energy reduction over TPU+VPU and analyzing the contribution
of each Tandem Processor’s specialization.

for MobileNet-v2, EfficientNet, and GPT-2 (2.0×, 1.8×, and 1.7×,
respectively), while VGG-16 and Yolov3 observes the minimum
benefits (1.1×). Eliminating the RegFile and its LD/ST overheads
provides the maximum energy reduction with the average of 1.2×.
Specialized support for nested loop is the second most effective
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Figure 20. Comparisons to Jetson Xavier and RTX 2080-TI GPUs.

technique. Although specialized loop management provides sig-
nificant speedups, its energy benefits are less pronounced due to
their amortization across the SIMD lanes of the VPU. Support for
specialized functions in VPU realizes 7% lower energy for TPU, on
average, by replacing several primitive operations with a single yet
more complex instruction.
Comparison to Jetson Xavier and RTX 2080 TI GPUs. Fig-
ure 20 compares the performance-per-Watt benefits with Jetson
Xavier NX and RTX 2080 TI GPUs, where the results are normalized
to Jetson Xavier. RTX 2080 TI is less energy-efficient compared to
mobile Jetson Xavier ( 20% lower on average). However, the NPU-
Tandem provides 4.8× improvements, compared to Jetson Xavier.
The trends in the results remain almost similar to the previous
analyses withMobileNet-v2 exhibiting the maximum benefits. RTX
2080 TI is more efficient than Jetson Xavier forMobileNet-v2 and
EfficientNet, because it can better parallelize the depth-wise con-
volutions across its abundant threads, compared to Jetson Xavier
that employs relatively less number of threads.
Comparison to the A100 GPU. Figure 21 compares the end-to-
end speedup of the NPU-Tandem to the A100 GPU with TensorRT
and CUDA execution in an iso-TOPs setting. On average, the NPU-
Tandem offers similar performance to A100 GPU with TensorRT
execution (2.5% improvements) and 4.0× speedup compared to the
A100 with CUDA execution. The NPU-Tandem outperforms A100
with TensorRT for ResNet-50, MobileNet, EfficientNet, BERT, and
GPT-2, while A100 providing better performance for VGG-16 and
Yolov3 that are mainly composed of heavy GEMM operations. Com-
pared to A100 with CUDA execution, the NPU-Tandem provides
maximum benefits for MobileNet-v2 and BERT.

Figure 22 shows the runtime breakdown across GEMM and non-
GEMM operations for the NPU-Tandem and A100 GPU with CUDA
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Energy Breakdown
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Figure 22. Runtime breakdown analysis for the
scaled-up Tandem Processor and A100 GPU with
CUDA execution in iso-TOPs setting.

Table 1

non-GEMM 
Speedup/A100-
CUDA

VGG-16 2.9596

ResNet-50 5.232492061

MobileNet-v2 4.481851482

EfficientNet 3.023673134

Yolov3 1.255299599

BERT 8.525722797

GPT-2 2.235196053

Geomean 3.37812289910393
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Figure 23. NPU-Tandem speedup for non-
GEMM operations over A100 in iso-TOPs setting.

execution. The NPU-Tandem accelerates both GEMM and non-
GEMM operations compared to A100 with CUDA execution. How-
ever, for DNNs that have larger portion of non-GEMM runtime
on A100 (e.g., MobileNet, EfficientNet, BERT, and GPT-2), NPU-
Tandem provides larger end-to-end speedups, demystifying the
impact of accelerating the non-GEMM operations using the Tan-
dem Processor. This trend in speedups still holds while comparing
to TensorRT as well, since the benchmarks mentioned above are
those with the largest speedups by the NPU-Tandem with respect
to this mode of execution (see Figure 21).

Figure 23 compares the performance of the Tandem Processor to
A100 CUDACores for performing only non-GEMMoperations in an
iso-TOPs/resources setting. The Tandem Processor accelerates the
non-GEMM operations for all benchmarks and on average provides
3.4× speedup compared to A100 CUDACores. The benefits aremore
pronounced for BERT (8.0×), ResNet-50 (5.2×), andMobileNet-v2
(4.5×). Although GPT-2 comprise a large portion of non-GEMMs
similar to BERT, the performance of scaled-up Tandem Processor
is mainly bounded by the memory bandwidth for this DNN and
hence showing relatively lower speedup compared to BERT.
Runtime breakdown analysis for the Tandem Processor. Fig-
ure 24 shows the runtime breakdown of the NPU-Tandem across
GEMM and various non-GEMM layers. As the result show, non-
GEMM layers are very diverse in terms of execution runtime. The
proposed specializations in the Tandem Processor significantly re-
duce the overhead of non-GEMM layers in DNNs such as VGG-16,
ResNet-50, and Yolov3. On the other hand, some DNN layers such
as depthwise convolution in MobileNet-v2 and EfficientNet, GELU
and transpose in BERT, and ReduceMean in GPT-2 still take a sig-
nificant portion of runtime. Compared to the baselines, GEMM
layers only become a more significant runtime component, when
the highly specialized Tandem Processor is used to reduce the over-
heads of non-GEMM layers.
Energy breakdown analysis for the Tandem Processor. Fig-
ure 25 shows the energy breakdown of the Tandem Processor across
off-chip memory accesses, on-chip memory (Interim BUF) accesses,
ALU logic, loop + address calculation logic, and the rest of the
Tandem Processor logic (decode, muxing logic, etc.) Although non-
GEMM layers are memory bound operations, but off-chip memory
accesses take about only 31% of the total energy on average, due
to the seamless integration of Tandem Processor and the GEMM
unit which minimizes the number of off-chip data transfer. The

on-chip memory accesses take 13% of the total energy, on average,
due to removing overheads of register files and associated mem-
ory hierarchy from the design. ALU logic takes 12% of the total
energy because of leveraging integer primitive implementation
philosophy in its design. Overall, the nested loop execution control
and scratchpad address calculation logic takes the majority of the
energy consumption in the Tandem Processor (40%), since they
handle the heavy lifting portion of the overall execution.
The Tandem Processor layout. Fig. 26(a) shows the layout of the
Tandem Processor. Fig. 26(b) shows the post-layout area breakdown.
ALU logic occupies the largest area (56.6%), Interim BUF 1 & 2 is
the second (29.2%) and the permute logic is the third (12.0%). The
rest of the area is mainly for muxing logic, pipeline registers, Code
Repeater and decode logic.

9 Related Work
Section 2.3 covers the related work on supporting non-GEMM
layers. Below, we discuss the prior work on SIMD/vector units.

Designing general-purpose SIMD units, vector ISA extensions,
and compilation for themhave been largely explored in academia [21,
29, 34, 55, 64, 71, 73, 109, 110] and industry products such as Intel
AVX-512 [2], ARM SVE [1], RISC-V vector extensions [4], and etc..
Digital Signal Processors (DSPs) [20, 23, 66, 74, 103, 106, 116] are
more specialized SIMD units that often come with VLIW architec-
tures. Qualcomm Hexagon DSP [20] and MediaBreeze DSP [103]
provide hardware-managed loop executions that work with their
register file/FIFOs. MediaBreeze [103] also leverages a decoupled
access-execute architecture to handle address generation for streams
of data, which are fed into SIMD ALUs through FIFOs. ARM He-
lium [116] incorporates a set of DSP extensions such as low-overhead
branch and scatter-store/gather-load instructions. In contrast, our
design completely departures from register-file-memory semantics.
This fundamental design choice enables Tandem Processor to elim-
inate explicit address calculations that are conventionally carried
over registers and replace them with a customized loop logic. Addi-
tionally, the front-end of the pipeline in Tandem Processor handles
memory access while in conventional designs this is normally in
the back-end stages. This is also different from the prior SIMD units
with Access-Execute architectures (e.g. MediaBreeze) that pass data
to the execute units through FIFOs. In Tandem Processor, Access
and Execute are part of the same pipeline and there are no FIFOs.
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Energy Breakdown
Pla$orm GEMM Add ReLU Clip LeakyR

eLU
DW-
Conv

Transpo
se

Reduce
Mean

Softmax GELU Others

XSIMD VGG-16 0.9363974192 0 0 0 0 0 0 0 0 0 0.06217644857
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Figure 24. Runtime breakdown of the Tandem
Processor.

Energy Breakdown
Pla$orm Off-chip 

Memory 
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Address 
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Logic
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Figure 25. Energy breakdown of the
Tandem Processor.
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Figure 26. (a) Tandem Processor layout and (b) area break-
down in 65nm node.

Finally, the combination of not using register files/FIFOs with the
loop logic is a new design feature in Tandem Processor.

10 Conclusion
The increasing prevalence of neural networks and advancements
in language models prompt a reevaluation of neural accelerator
design. In the last ten years, the research community has primarily
concentrated on GEMM operations while overlooking non-GEMM
operations. This has created a misconception that neural networks
are solely composed of matrix multiplications. Furthermore, as deep
learning has evolved and entered new domains, the non-GEMM op-
erations have diversified and been interwoven in various structural
patterns within neural networks. As such, to run neural networks
end-to-end, there has been a need to consider non-GEMM layers as
a first class citizen. To address this timely need, this paper proposes
the Tandem Processor that brings forth a novel architecture along
with a compiler and an innovative programmable ISA. Moreover,
this architecture, which is the result of 10 years of research in build-
ing NPUs also enables adapting to the volatile landscape of deep
learning algorithms. The Tandem Processor has become the heart
of our open-source GeneSys project, a parametrizable NPU genera-
tor with a full-stack, multi-target compilation stack that goes from

Python to accelerated execution of LLMs and other DNNs. GeneSys
provides comprehensive NPU solutions for applications ranging
from high-end datacenters to ultra-low-power brain-implantable de-
vices and is publicly available at https://actlab-genesys.github.io/.
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