
NeuPIMs: NPU-PIMHeterogeneous

Acceleration for Batched LLM Inferencing

Guseul Heo Sangyeop Lee Jaehong Cho Hyunmin Choi Sanghyeon Lee
Hyungkyu Ham† Gwangsun Kim† Divya Mahajan§ Jongse Park

KAIST, †POSTECH, §Georgia Institute of Technology
{gsheo, sangyeop-lee, jhcho, hmchoi, leesh6796}@casys.kaist.ac.kr

{hhk971, g.kim}@postech.ac.kr divya.mahajan@gatech.edu jspark@casys.kaist.ac.kr

Abstract

Modern transformer-based Large Language Models (LLMs)
are constructed with a series of decoder blocks. Each block
comprises three key components: (1) QKV generation, (2)
multi-head attention, and (3) feed-forward networks. In
batched processing, QKV generation and feed-forward
networks involve compute-intensive matrix-matrix mul-
tiplications (GEMM), while multi-head attention requires
bandwidth-heavy matrix-vector multiplications (GEMV).
Machine learning accelerators like TPUs or NPUs are
proficient in handling GEMM but are less efficient for GEMV
computations. Conversely, Processing-in-Memory (PIM)
technology is tailored for efficient GEMV computation, while
it lacks the computational power to handle GEMM effectively.

Inspired by this insight, we proposeNeuPIMs, a heteroge-
neous acceleration system that jointly exploits a conventional
GEMM-focused NPU and GEMV-optimized PIM devices.
The main challenge in efficiently integrating NPU and PIM
lies in enabling concurrent operations on both platforms,
each addressing a specific kernel type. First, existing PIMs
typically operate in a “blocked” mode, allowing only either
NPU or PIM to be active at any given time. Second, the
inherent dependencies between GEMM and GEMV in LLMs
restrict their parallel processing. To tackle these challenges,
NeuPIMs is equipped with dual row buffers in each bank,
facilitating the simultaneous management of memory
read/write operations and PIM commands. Further,NeuPIMs
employs a runtime sub-batch interleaving technique to
maximize concurrent execution, leveraging batch parallelism
to allow two independent sub-batches to be pipelined within
a singleNeuPIMs device. Our evaluation demonstrates that
compared to GPU-only, NPU-only, and a naïve NPU+PIM
integrated acceleration approaches, NeuPIMs achieves 3×,
2.4× and 1.6× throughput improvement, respectively.

Permission tomakedigitalorhardcopiesofpartorallof thiswork forpersonal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this workmust be honored. For all other uses, contact the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0386-7/24/04.
https://doi.org/10.1145/3620666.3651380

CCS Concepts: • Computer systems organization →
Parallel architectures;Neural networks;Heterogeneous

(hybrid) systems.

Keywords: Processing-in-memory (PIM), Neural processing
unit (NPU), Heterogeneous system, Large language model
(LLM), Inference serving, Transformer-based generative
model (GPT)

ACMReference Format:

GuseulHeo, SangyeopLee, JaehongCho,HyunminChoi, Sanghyeon
Lee, Hyungkyu Ham, Gwangsun Kim, Divya Mahajan and Jongse
Park. 2024. NeuPIMs: NPU-PIM Heterogeneous Acceleration
for Batched LLM Inferencing. In 29th ACM International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (ASPLOS ’24), April 27-May 1,
2024, La Jolla, CA, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3620666.3651380

1 Introduction

Large Language Models (LLMs) are being widely deployed
across various sectors such as natural language understand-
ing [9, 12, 27, 67, 80, 85, 86], content generation [13, 57, 73, 74],
and decision support [51]. However, a key challenge with
these models is the substantial resource requirement they
impose - both memory and compute. This paper specifically
addresses the inference challenges in contemporary LLMs,
with an emphasis on models like GPT4 [67] and LLaMA [80].

The algorithmic commonality of these state-of-the-art
LLMs is that their model architecture constitutes a stack of
decoder blocks. As illustrated in Figure 1(a), each block is
structured around three primary layers: (1) Query-Key-Value
(QKV) generation, (2) Multi-Head Attention (MHA), and (3)
Feed-Forward Networks (FFNs). For efficient computation
of these blocks, a prevalent strategy is batching multiple
inference requests. Batching allows QKV generation and
feed-forward layers to reuseweights acrossmultiple requests,
resulting in GEneral Matrix Multiplication (GEMM) oper-
ations between weight and activation matrices. Conversely,
the multi-head attention layer requires multiplication
between activation matrices and activation vectors with no
data reuse opportunity, leading to GEneral Matrix-Vector
Multiplication (GEMV) operations.

https://doi.org/10.1145/3620666.3651380
https://doi.org/10.1145/3620666.3651380

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

Decoder Block

+ +

=

Matrix-Matrix Multiplication
(a.k.a., GEMM)

=

Matrix-Vector Multiplication
(a.k.a., GEMV)

(a)

NPU

NPU
Util.

Bandwidth
Util.

(b)

NPU

PIM

NPU
Util.

PIM
Util.

Bandwidth
Util.

(c) (d)

NPU

PIM

NPU
Util.

PIM
Util.

Bandwidth
Util.

QKV
Generation

Feed
Forward
Networks

QKV
Gen.

Feed
Forward
Networks

QKV
Gen.

Feed
Forward
Networks

Att.
H1

Att.
H2

Att.
H4

Att.
H3

Multi-Head
Attention

Figure 1. (a) Mathematical components of decoder blocks that constitute LLMs, (b) NPU-only baseline accelerator equipped
with non-PIMmemory (e.g., GPU), (c) NPU+PIM integrated baseline accelerator, and (d) the proposedNeuPIMs accelerator.

Overall, LLM inference involves the computation of
numerous large-scale GEMMs and GEMVs. To address this
computational demand, a common practice is to utilize
high-performance machine learning (ML) accelerators, such
as GPUs and TPUs. In this paper, we will refer to these ML
accelerators as Neural Processing Units (NPUs). NPUs are
often optimized for compute-intensive tasks, particularly for
the efficient execution of GEMMs. However, their utility for
GEMVs is less optimal due to the latter’s lower arithmetic
intensity, which leads to under-utilization of the NPU’s
computational resources. On the other hand, Processing-
in-Memory (PIM) technology [6, 7, 10, 14–16, 19–26, 29–
31, 33, 35–40, 43, 44, 46, 47, 49, 53, 59, 64, 68, 70, 82, 83, 88],
while not as effective for GEMMs, shows promise for the
bandwidth-intensive GEMV operations.

To this end, this work proposesNeuPIMs, a novel heteroge-
neous acceleration system for batched inference of LLMs.We
architectNeuPIMs such that it effectively balances the utiliza-
tion of memory bandwidth and computational resources of
the system to improve the overall inference throughput.Ne-
uPIMs jointly exploits (1) a conventional GEMM-centric NPU
using a 2D cluster of multiple systolic arrays and (2) a multi-
tudeofGEMV-friendlyprocessing-in-memory (PIM) accelera-
tors. In designingNeuPIMs, we identify twomajor challenges:
• Microarchitectural Challenge: Current PIMs operate in
a “blocked” mode, preventing the simultaneous execution
of NPU and PIM. This serialization leads to an inherent
under-utilization of resources.
• Algorithmic Challenge: In LLM decoder block, GEMM
and GEMV operations have a data dependency. This
algorithmic limitation fundamentally limits the possibility
of parallel NPU+PIM computations.
NeuPIMs addresses the aforementioned challenges by

taking a hardware-algorithm co-design approach and makes
the following contributions:
(1) Microarchitectural Contribution: To facilitate
NPU+PIM parallel execution, NeuPIMs introduces a
modified PIM bank architecture that enables regular memory
accesses to occur concurrently with GEMV operations within
the PIM. This is achieved by employing distinct row buffers
for these two functionalities, hereafter referred to as dual
row buffers. Dual row buffers leverage the property of DRAM

where multiple rows can be activated independently without
affecting functionality. This further requires handling and
scheduling of mixed commands for memory access and
PIM operation at the memory controllers without violating
DRAM timing parameters. To do so,NeuPIMs strategically
intersperses the two types of commands, minimizing row ac-
tivation delays. Additionally, a few composite commands are
appended to thebaselinePIMISA,performingmultipleGEMV
operations and thereby amortizing the controlling cost.
(2) Algorithmic Contribution: To enable parallel
executions of GEMM and GEMV operators within the
decoder block, we introduce the sub-batch interleaving
technique, which concurrently processes two sub-batch
inference computations on the NeuPIMs system. As the
two sub-batches are independent of each other, it is possible
to parallelize the execution of GEMM operations from one
sub-batch with GEMV operations from another sub-batch.
This approach creates avenues for simultaneous executions,
enhancing overall efficiency. With sub-batch interleaving,
NeuPIMs aims to balance the workload between GEMM
and GEMV operations effectively. To balance the pipeline
of sub-batches, we estimate mappings from sequence lengths
to the MHA execution latency on the PIM. This information
allows NeuPIMs to partition a given batch such that it
balances the total sum of sequence lengths in the sub-batches.
Combining the proposed microarchitectural and algorith-

mic innovations,NeuPIMs achieves high utilization on both
NPU and PIM accelerators, thus offering significant through-
put improvement over NPU-only and naïve NPU+PIM
integrated baselines. Figure 1(b)-(d) visualizes the operator-
accelerator mappings on NPU and/or PIM, along with their
utilization trends for a shortwindow in the execution runtime.

We evaluate the effectiveness of NeuPIMs using 4 variants
of GPT3, a state-of-the-art LLM, with varying sizes. The eval-
uation utilizes real-world LLM inference datasets, ShareGPT
and Alpaca, both accompanied by input and output sequence
length information. We develop theNeuPIMs simulator1 by
integratinganopen-sourceNPUsimulator,ONNXim[3],with
our in-house PIM simulator built on DRAMsim3 [50]. Our ex-
perimental results report that compared to an NPU-only and
a naïve NPU+PIM integrated baseline accelerators,NeuPIMs

1Our simulator is available at https://github.com/casys-kaist/NeuPIMs.

https://github.com/casys-kaist/NeuPIMs

NeuPIMs: NPU-PIMHeterogeneous Acceleration for Batched LLM Inferencing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

+

Projection

V

+

Decoder 1

Decoder 2

Decoder n

is

readI think this

Decoder 1

Decoder 2

Decoder n

great

readis

Decoder 1

Decoder 2

Decoder n

as

readgreat

LogitLogit

AttendAttendAttend

Q K

SoftmaxSoftmaxSoftmax

Summarization Phase Generation Phase

Activation-Activation Operation
Weight-Activation Operation

Logit

Feed
Forward

Networks

QKV
Generation

(Multi-Head Attention)

Figure 2.Model architecture and inference in LLMs.

(a) Weight-Activation Operation

(b) Activation-Activation Operation

Batching

QaKThe
Kman

Kwearing
Ka

QstudentKIKam
KaKstudent

st
ud

en
t

WQ

Qstudent

aWQ

Qa
st
ud

en
t

a
re
ad

QreadKI
Klike
KtoKread

WQ =
Q stu

de
nt

Q a Q rea
d

Qread
=

re
adWQ

Figure 3.Operators in a LLM decoder block.

achieves2.4×and1.6× throughput improvement, respectively.
These significant throughput gains are attributed to the im-
proved resource utilization ofNPU andPIM from28% and 17%
to 65% and 26%, respectively. These compelling advantages
highlight thatNeuPIMs effectively overcome the limitations
of existing solutions and take an effective initial step towards
the practical deployment of PIM for LLM inference scenarios.

2 Background

2.1 Computational Characteristics of LLM Inference

Model architecture and execution of LLMs. Figure 2 il-
lustrates the model architecture that all state-of-the-art large
language models share [9, 18, 61, 78, 80, 86]. This illustration
serves as a recurring example throughout the paper. For an
input prompt (e.g., "I think this"), the model undergoes an
summarization phase, encoding the input to establish context
for the subsequent generation phase. In the generation
phase, the model produces tokens one at each iteration in
an autoregressive manner, using the generated key-value
projections for the next iteration. Both phases constitute
a sequence of decoder blocks, each comprising three major
layers: (1) QKV generation, (2) multi-head attention (MHA),
and (3) a set of feed-forward networks (FFNs).
Batched inference of LLMs. Computationally, the MHA
layers have significantly different characteristics than QKV
generation and FFN layers. Figure 3 denotes the example ten-
sor operations of LLMs that show (a) weight-activationmulti-
plications, and (b) activation-activation multiplications. The
computations for QKV generation and FFNs are performed

ModelsOperators

Logit,
Attend

QKV gen,
Projection

Summarization Phase
Generation Phase

Pe
rfo

rm
an

ce
 (T

FL
O

PS
)

Arithmetic Intensity (FLOPS/byte)
140

Compute boundMemory bound

0.25 8 43 978 1755

GPT3-175B
(Dark)

GPT3-13B
(Bright)

Figure 4.Arithmetic intensities of LLM layers.

by multiplying a per-token Q/K/V activation or attention
vector with the trained weight matrices (GEMV). However,
theseGEMVoperators are transformed intoGEMMswhen (1)
they are located at the decoders in the summarization phase,
getting multiple token vectors in parallel (e.g., “I think this”)
or (2)multiple inferences are batched, further parallelizing the
computations for multiple single-token generation processes.
On the other hand, the computations forMHA layers are mul-
tiplications between twodifferent activationswhere one is for
the current token (vector), and the other is for all the tokens
before the current token (matrix), rendering a matrix-vector
multiplication (GEMV).As the activation operands are unique
for each inference request, their batching is not possible,
making the computations highly memory bandwidth-bound.
Analysis of arithmetic intensity. To better understand the
computational characteristics of LLM inference, we conduct
a roofline analysis using two GPT3 variants, GPT3-13B
and GPT3-175B. Figure 4 shows the relationship between
the arithmetic intensity (FLOPS/byte) and performance
(TFLOPS). We observe that for both models, the generation
phases are severelymemory-bound,while the summarization
phases are compute-bound. As these two phases have algo-
rithmic dependencies and occur alternately in a sequential
manner, it is fundamentally challenging to achieve high re-
source utilization using a homogeneous computing platform.
This insight motivates this work and drives us to design
a heterogeneous system that combines a compute-centric
systolic array-based NPU for GEMMs with memory-centric
Processing-in-Memory (PIM) accelerators for GEMVs.

2.2 LLM Inference Serving

As there is a massive resource demand for LLMs, the de-facto
practice is to build large-scale inference serving frameworks
such as DeepSpeed [8], Orca [84] and vLLM [41]. These
frameworks offer inference services for customer requests
(i.e., prompts), which enables batching.
Selective batching. In general, batching is an effective
method for neural network inference to improve resource
utilization, while not sacrificing the latency requirement.
However, MHA layers pose a challenge as they do not allow
batching. This presents a difficulty for hyperscalers dealing
with numerous customer requests while operating within
limited compute resources. To address this, a recent work,

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

Orca [84], proposes a solution where attention layers are
individually computed,whileQKVgeneration and FFN layers
are batched. This approach allows the system to still benefit
from batching when possible; otherwise, it serializes the
computation. This unique algorithmic property necessitates
the simultaneous computations of GEMM and GEMV, which
is the main motivation for this work.
Iteration level scheduling. Inference serving system re-
ceives requests in a streaming fashionwithout a deterministic
schedule. Therefore, there is a need for a parallelization ap-
proach that can efficiently process the non-deterministically
collected set of inference requests. Orca [84] additionally
proposes to schedule batched inference at the beginning of
every iteration. This allows new inference requests to be
added to and terminated requests to be removed from the
batch. Consequently, newly arrived requests do not need to
wait until the generation phase for an already-started batch
is terminated. This approach can significantly reduce the
average latency for inference serving.NeuPIMs is built upon
this scheduling technique, and thus, it manages the inference
requests at the iteration boundaries.
Memory paging for attention. vLLM [41] is another
recent effort to enhance the resource utilization of LLM
inference serving systems, with a specific focus on memory
management. As discussed in Section 2.1, theQKVgeneration
layer produces KV cache, the input for the attention layers
that can be reused in the generation phases. Leveraging this
opportunity, LLM inference systems cache the KV projections
in the memory, the size of which can be significant when the
sequence length becomes large. vLLM introduces memory
paging for this cacheddata, ensuring that a significant amount
of memory is not pre-allocated long before its actual use.Ne-
uPIMs employs the vLLM’s paging technique, implementing
the page-based memory allocation mechanism for KV cache,
which effectively increases the batch size significantly.

It is worthwhile to note that NeuPIMs is designed to be
deployed on an inference serving system that incorporates all
of these aforementioned techniques.

3 Motivation

This section provides themotivation that underlies the design
decisions of NeuPIMs. First, we identify problems of the
existing GPU-based LLM inference serving systems, which
motivates the NPU-PIM heterogeneous approach. Then, we
will discuss the limitations of naïve NPU-PIM integration
approach, defining the target research challenges of thiswork.

3.1 GPU-based LLM Inference Serving

Particularly for LLMs, as they require a lot of memory, it is
a common practice to deploy them on a cluster of multiple
GPUs [1, 2, 8, 17, 63], leveraging pipeline parallelism [28, 60]
and/or tensor parallelism [61, 87].

0

20

40

60

80

100

GPT-NeoX LLaMa2 OPT MPT

Ut
iliz

at
io

n
(%

)

Compute (RTX 3090) Bandwidth (RTX 3090) Capacity (RTX 3090)
Compute (A100) Bandwidth (A100) Capacity (A100)

Figure 5.GPU resource utilization for four different LLMs.

76.9

0.0

75.3

28.0

0.0

27.0

0.0
17.0

0

20

40

60

80

100

QKV
Generation

Multi-Head
Attention

Projection +
FFNs

Total

U
til

iz
at

io
n

(%
)

NPU Compute PIM Compute

Figure 6.NPU-PIM resource utilization for decoder block.

Under-utilization of the GPU system. We analyze a
GPU-equipped baseline system to understand the utilization
of compute, memory, and bandwidth for LLM inference. We
compare systems with NVIDIA GeForce RTX 3090 24GB and
NVIDIAA100 40GB, running four different LLMmodels: GPT-
NeoX, LLaMa2, OPT, andMPT. Figure 5 presents the utiliza-
tion results along with the layer-wise variations as error bars.
The figure illustrates that the capacity utilization closely ap-
proaches 100% despite the inherent imperfections in the paral-
lelization schemes. This observation is intuitive as thenumber
of GPUs used is determined based on the capacity constraints.
However, the utilization of computational resources is consis-
tently lower than 40%, which shows the cost-ineffectiveness
of GPU-based LLM inference systems. This under-utilization
is attributed to insufficient bandwidth, despite A100s being
equipped with HBM, providing an aggregate of 1,555 GB/s.
Unfortunately, this imbalance is inevitable as long as serial
dependencies between GEMMs and GEMVs persist.

3.2 A Naïve NPU-PIMApproach

A straightforward approach to resolve this bandwidth
bottleneck is to exploit the Processing-in-Memory (PIM)
technology, which allows offloading the bandwidth-bound
computations to its in-memory accelerator. Thus, we design a
naïvely integrated NPU-PIM accelerator, exploiting a systolic
array architecture for the NPU and incorporating a state-of-
the-artPIM-basedGEMVaccelerator,Newton[25].Weuse the
same methodology as in Section 3.1, where we replace GPUs
with a standard NPU-PIM integrated device. The detailed
hardware and system simulation methodology are described
in Section 8. Figure 6 presents the compute utilization of
NPU and PIM for running different layers in the LLM decoder
blocks. The results show thatwhileNPU is busy runningQKV
generation, projection, and FFN layers, PIM utilization stays
at zero. On the other hand, NPU utilization becomes almost

NeuPIMs: NPU-PIMHeterogeneous Acceleration for Batched LLM Inferencing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Request Pool Table

Neu
PIMs

Neu
PIMs

Neu
PIMs

Neu
PIMs

LLM
Inference
Requests

High-Bandwidth Interconnect

NeuPIMs System 1 NeuPIMs Scheduler3

Scheduler
Host CPU

1
2

reqt

143
61

107

7
8

31

2

3

Done
Done

Run Sub-batch
Interleaving
Scheduler

reqt+1 76 11 8 Run

reqsreqs+1
15
8

0
0

-
-

Wait
Wait

NPU NPU
Request

ID
Input

Length
Generated

Tokens Channel Status

NeuPIMs Accelerator2

NeuPIMs Compiler Framework4

LLM
Specification

System
Specification

System
Admin

NeuPIMs
Compiler NeuPIMs

Binary

NPU
Binary

SPM

PIM Channel 32

NPU

Systolic
Array

Vector Unit

PIM Channel 1

PIM Channel 2

PIM

Figure 7.Overview of the proposedNeuPIMs system.

zero when PIM is running the MHA layers. Consequently,
the combined utilization of NPU and PIM, when measured
across the entire execution time, is less than 40% for both.
Necessity of concurrent NPU and PIM executions. The
observed under-utilization is primarily due to the fundamen-
tal limitation in PIM’s microarchitecture that disallows the
concurrent execution of host (NPU) and PIM units, which
serializes the disjoint resource usages. Consequently, the
most critical challenge in realizing the practical use of PIM in
NPU accelerators is enabling their parallel executions. This
research problem constitutes the focus of this work.

4 Overview of NeuPIMs
Figure 7 illustrates theoverviewof theproposedNeuPIMs sys-
tem. This system alleviates the low resource utilization of an
LLM inference serving system. To achieve this goal,NeuPIMs
comprises: (1) an NPU equipped with systolic arrays, vector
processing units, and multiple HBM-based PIM channels that
collaboratively process the batched inference requests, and
(2) a scheduler that partitions an inference batch into two sub-
batches and leverages sub-batch parallelism to enable their
interleaved executions for enhancedNPU-PIMparallelization.
Note that NPU in theNeuPIMs device is a general representa-
tion of anyMLaccelerator such as TPU [34] and is not the con-
tributionof thiswork. In thispaper,weproposeanovelacceler-
ator integrating PIMwith NPU and the corresponding sched-
uling strategy. First, we provide an overview of the system.
1 NeuPIMs system. This system comprises a host CPU,
multiple NeuPIMs devices (i.e., NPU+PIM accelerators),
and multiple standalone NPUs connected through a high-
bandwidth interconnect such as PCIe and CXL. As the
summarization phase is entirely composed ofGEMMs,we del-
egate its computation to the standaloneNPUs,whileNeuPIMs
focuseson the computationof thegenerationphase.While the
diagramvisualizes a single-nodeNeuPIMs system, the system
can scale to multiple nodes, which will be discussed in more
detail in Section 7.As in typical inference serving systems, our
system receives the LLM inference requests in a streaming
fashion. The requests are assigned to a PIM channel and

queued in the request pool table until the on-going iteration is
completed and a new iteration commences for the execution.
2 NeuPIMs accelerator.We extend the design of standard
PIM to supportNeuPIMs LLM inferencing strategy. The bank
architecture is expanded to include dual row buffers—one
for PIM execution and the other for regular memory accesses,
as illustrated in Figure 8. The dual row buffer architecture
enables the NPU to perform memory read/write accesses
on the bank rows that are not currently in use for PIM
computations. This segregation is regulated by memory
controllers to ensure that multiple activations are not issued
over the same bank row (Section 5).
3 NeuPIMs scheduling algorithm. Our prototype
NeuPIMs accelerator has 32 HBM-based PIM channels, each
of which is controlled by its own memory controller. The
memory controllers manage the interleaving of memory
read/write commands and PIM commands in a way that
the inter-command timing delays are not violated, while
maximizing the control path throughput. Effective interleav-
ing is critical for performance since it directly affects the
concurrent executions of NPU and PIM (Section 6).
4 NeuPIMs compiler framework. NeuPIMs compiler
framework is the frontend where the system admin provides
the desired LLM and system specifications. The syntax
of LLM specification largely resembles ONNX [58]. Upon
receiving the specification, the compiler translates the model
configuration into operations, each of which is represented
as an intermediate representation (IR). For the given IR, our
compiler produces NPU and NeuPIMs instruction binaries
(i.e., Compute and MEM/PIM access instructions). This
process involves adjusting tile sizes and the sequence of
instructions to align with theNeuPIMs system specification.

5 NeuPIMsArchitecture
5.1 PIMMicroarchitecture for Concurrent Execution

Single row buffer for PIM-based accelerator. Figure 8(a)
depicts the high-level architecture of PIM-based GEMV
accelerators that utilize banks equipped with a single row
buffer. For a GEMV, the vector operand is first located in the

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

global buffer shared across all banks in a channel. On the
contrary, the rows of matrix operand are read frommultiple
banks simultaneously, exploiting bank-level parallelism,
and located at their corresponding row buffers. When the
operands are ready, the parallel multipliers and adder tree
perform a partial dot-product by reading the broadcast vector
input from the global buffer and per-bank row buffers.
Limitation of current PIM-based GEMV accelerators.

Current PIM accelerators [25, 35, 49] operate in a “blocked”
mode, preventing the simultaneous executions of NPU2 and
PIM. This limitation arises primarily because the memory
bank utilizes a single row buffer that serves two purposes:
read/write memory operations and PIM acceleration specif-
ically for GEMV. These modes are managed sequentially,
making it impossible to perform simultaneous executions.
While this constraint does not significantly impact PIM
system’s performance for sole execution of GEMV, it becomes
pertinent for LLM inferencing that requires both GEMM and
GEMV operations. Addressing this issue, our work aims to
facilitate the parallel execution of both modes within the PIM
framework. This advancement is expected to significantly
enhance performance in LLM inferencing applications, un-
locking the full potential of PIMbeyond its current limitations.
Extending PIM with dual row buffers. Figure 8(b)
delineates the microarchitecture of NeuPIMs bank. The
memory banks of NeuPIMs are equipped with dual row
buffers, namely MEM row buffer and PIM row buffer, which
are associated with two independent data paths. Memory
(MEM) row buffer is exclusively used for regular memory
read/write accesses, whereas PIM row buffer is employed for
GEMVoperation. In designingNeuPIMs, our design principle
is to minimize the microarchitectural modification since the
complication would impose significant area and power costs,
lowering the practicality in the real-world system. Instead,
we delegate the complications to the command interface and
memory control mechanism, which will be elaborated below.
For prototyping and evaluating NeuPIMs, we choose an

industry-developed PIM accelerator designed for GEMV,
Newton [25]. However, note that the proposed techniques
in this work are not bounded to the Newton architecture,
rather applicable to any GEMV accelerator that follows the
standard DRAMmicroarchitecture and command interface.

5.2 Memory Command Interface

Existing command interface for PIM-based GEMV.

We develop the NeuPIMs device using a PIM accelerator
with a modified command interface on top of the existing
DRAM standard interface. There are four commands that
collaboratively operate the PIM. First, to process GEMV in
PIM banks, NeuPIMs must copy the operand vector to a
global vector buffer shared by the banks within a channel.

2Henceforth in this paper, “NPU” refers exclusively to the device integrated
withinNeuPIMs, setting it apart from any standalone NPUs.

Ro
w

 D
ec

od
er

Adder
Tree

G
lo

ab
al

 V
ec

to
r B

uff
er

Column
Decoder

Result

Column
MUX

Memory
Cell Array

PIM MEM

Adder
Tree

Column
Decoder

Result

Column
MUX

Ro
w

 D
ec

od
er

Memory
Cell Array

G
lo

ab
al

 V
ec

to
r B

uff
er

Row Buffer

(a) (b)

Da
ta

 B
us

Da
ta

 B
usRow Buffer Row Buffer

Figure 8.Microarchitecture of memory banks in (a) existing
PIM accelerators with single row buffer banks, and (b) the
proposedNeuPIMswith dual row buffer banks.

C/A bus

(a) Baseline C/A bus idleness

PIM_DOTPRODUCT PIM_GEMV

Idleness of C/A Bus (MEM_CMD can be issued)

PIM_RDRESULT

MEM
PIM

MEM
PIM

Bank1

Bank2

MEM
PIM

MEM
PIM

C/A bus

(b) NeuPIMs C/A bus idleness

MEM
PIM

MEM
PIM

Bank1

Bank2

MEM
PIM

MEM
PIM

Figure 9. PIM command timing comparison.

Table 1. List of NeuPIMs commands.

Command Description

PIM_HEADER Configure a GEMV operation
PIM_GEMV Perform 𝑘 dot-products and read the results

PIM_PRECHARGE Precharge PIM row buffer

NeuPIMs perform this operation using the PIM_GWRITE
command, which copies a specific row of a particular bank to
the global vector buffer. Similarly, it needs another command
to activate the rows of the operand matrix into PIM row
buffers across the banks. For this, the host produces grouped
activation commands, called “PIM_ACTIVATION”, which
activate PIM row buffers of multiple banks simultaneously,
usually for 4 banks at a time due to the power constraints
(i.e., tFAW). Once all the banks are activated, the host sends
“PIM_DOTPRODUCT” command that performs parallelized
dot-product computation, extracting massively larger
in-memory bandwidth than host-memory bandwidth. Finally,
the “PIM_RDRESULT” command transfers the accumulated
results to the host, ending a round of GEMV operation in PIM.
NeuPIMs command interface.Wemodify the command
interface of baseline PIM by augmenting three additional
commands that support new capabilities forNeuPIMs.

NeuPIMs: NPU-PIMHeterogeneous Acceleration for Batched LLM Inferencing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

• PIM_HEADER: This command allows varying
dimensionalities of GEMV operation. Existing PIM
accelerators have a rigid architecture supporting a
GEMVwith fixed dimensionalities, and therefore, the
GEMV’s execution latency is deterministic. This prop-
erty allows the memory controller to deterministically
schedule the PIM commands without violating the
DRAM refresh intervals. However, asNeuPIMs targets
the GEMV operations of LLM’s MHA layers, its dimen-
sionality varies depending on the sequence length, and
thus, thememory controller has nomeans to accurately
calculate the latency, which may lead to DRAM refresh
in the middle of PIM execution. To address this issue,
NeuPIMs allows the software to initialize a GEMV
execution by sending the PIM_HEADER command,
which delivers the dimensionality information of
scheduled GEMV operation. This way, the memory
controller is able to estimate the end-to-end latency
of GEMV operation and schedule its constituent
commands without conflicting with the DRAM refresh.
• PIM_GEMV: The GEMV operation in existing PIM
is controlled by a series of PIM_DOTPRODUCT com-
mands, and the result is read using the PIM_RDRESULT
commands, as depicted in Figure 9(a). This fine-grained
control approach naturally results in substantial
command traffic in the memory C/A bus. While this
is not an issue for PIM that operates in a blocked mode,
it becomes a significant concern for NeuPIMs that
operate two functionalities in parallel. PIM_GEMV
is a composite command that controls multiple
dot-products simultaneously, and at the end, returns
the result back to the host NPU. Figure 9(b) shows an
example timeline that shows the reduced command
traffic by PIM_GEMV. The number of dot-products, 𝑘 ,
is given as an argument for the command.
• PIM_PRECHARGE:As theNeuPIMs banks have dual
row buffers, there is a need for an additional command
that specifically precharges the PIM row buffers once
the GEMV is completed. PIM_PRECHARGE is the
same as the regular PRECHARGE command except
that it triggers precharge of the PIM row buffer.

5.3 Memory Controller

For NeuPIMs, we have multiple channels, each of which
has multiple PIM banks. The LLM requests are assigned
to one of these channels, with the MHA layer execution
for each request being distributed across the channel’s
multiple PIM banks. The memory controllers located in their
respective PIM channels are equipped with their individual
PIM command queues. PIM commands are broadcast to all
banks in the corresponding channel.
Interleaved scheduling of memory read/write and

PIM commands. A challenge in the implementation of

Dependency

Softmax Softmax Softmax

Logit Logit Logit Attend Attend Attend

NPU-V

PIM

time

NPU-S

Head #1

Head #2

Head #3

Idleness

Figure 10. Overlapping opportunities of multi-head
attention layers. NPU-S: systolic arrays; NPU-V: vector units.

Proj.
& FFNs

MHA

QKV
Gen.

QKV
Gen.

QKV
Gen.

Proj.
& FFNs

MHA

Proj.
& FFNs

Proj.
& FFNs

MHA

(a) Serialization

NPU-V

PIM

NPU-S

Multi-
Head

Attention

QKV
Generation

Projection
& FFNs

(b) Sub-batch Interleaving

Single Batch

Repeat N-1 times

Repeat N times

time

MHA

QKV
Gen.

NPU-V

PIM
time

NPU-S

Sub-batch #1 Sub-batch #2Idleness

Figure 11. Example execution timelines of LLM decoder
blocks: (a) Serialized execution, (b) Sub-batch interleaving.
NPU-S: systolic arrays; NPU-V: vector units; 𝑁 : the number
of decoder blocks.

NeuPIMs memory controller is to interleave the memory
read/write commands and PIM commands efficiently so that
the command/address bus bandwidth does not become a
performance bottleneck.NeuPIMs prioritize PIM commands
over memory read/write commands, since the issuing delay
of PIM commands is greater than that of memory commands,
so the C/A bus bandwidth used to issue PIM commands
is relatively small, allowing both commands to be issued
without significant performance degradation.

6 NeuPIMs Scheduling
The integration of dual row buffers enables NeuPIMs
to handle NPU’s memory accesses and PIM commands
simultaneously. This section describes computation over-
lapping opportunities for multi-head attention (MHA) layer
execution and a novel request scheduling technique for
batched LLM inferencing, dubbed sub-batch interleaving.

6.1 Overlapping Opportunities inMHA Layer

Figure 10 illustrates the overlapping of (1) logit and attend
operations on PIM-side, and (2) softmax operations on NPU-
side inNeuPIMs. As operations of multi-head attention can
be decomposed to a head granularity, even naïveNPU-PIM in-
tegrated architecture should have an opportunity to harness

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

both resources to overlap operations. However, it cannot take
advantage of this opportunity because operational results
cannot be transferred between PIM units and vector units
through PIM channels. In contrast,NeuPIMs, by employing
dual row buffers, can concurrently harness both NPU and
PIM. This configuration allows vector units withinNeuPIMs
to store partial logit (softmax) values without having to wait
for the completion of the entire logit operations (GEMV) on
the PIM, reducing the underutilization of integrated units.
It is worthwhile to note that this overlapping is only

possible because there is head-level parallelism, which is only
available within the multi-head attention layer. Further, the
overlapping opportunity exists only between PIM and vector
units of NPU, resulting in the NPU’s systolic arrays largely
remaining unused during the execution of the MHA layer.

6.2 Sub-batch Interleaving

Limitation of serialized executions. Figure 11(a) illus-
trates an example execution timeline of the decoder block
operations, running on a naïve NPU-PIM integrated device.
In particular, the figure depicts the algorithmic dependencies
amongQKV generation, multi-head attention, and projection
& FFNs, within the batch. Due to the dependencies, theymust
be executed serially, inevitably leading to low utilization on
both NPU and PIM.
Interleaving the two sub-batches. To tackle this challenge,
we propose sub-batch interleaving that partitions one large
batch into two sub-batches and alternate them to improve
resource utilization. Figure 11(b) delineates the sub-batch in-
terleaving technique that allows the simultaneous executions
of PIM-friendly and NPU-friendly operations within the
sub-batches on the PIM and NPU, respectively, significantly
improving the utilization of both NPU and PIM.
Comparative analysis on the execution timelines. Let
𝑁 denote the number of decoder blocks to be executed on
a single NeuPIMs device. Figure 11(a) shows that without
the use of sub-batch interleaving, the operators in each
decoder block would be executed sequentially, leading to a
total execution time equal to 𝑁 times the per decoder-block
execution time (i.e., QKV generation on NPU-S + MHA on
PIM&NPU-V + Projection & FFNs on NPU-S).
However, as depicted in Figure 11(b), sub-batch interleav-

ing effectively hides the execution times of MHA layer in the
NPU-S execution times, resulting in the total execution time
equal to (𝑁 - 1) times the per-sub-batch partial execution time
(i.e., Projection, FFNs, and QKV generation on NPU-S) plus
a single decoder-block execution time divided at the start
and end. While the interleaving occurs, the NPU and PIM
utilization is improved as their executions are effectively over-
lapped. Our empirical study demonstrates that theNeuPIMs
execution time in the interleaved period is mostly bounded
by the NPU execution time running GEMM operations,
hiding the PIM execution time for MHA layer execution.

Algorithm 1:MHA Latency Estimation
Input: 𝑠𝑒𝑞_𝑙𝑒𝑛 : Sequence length of the request
Parameter: 𝐸 : Model embedding size

𝐿𝑡𝑖𝑙𝑒 : GEMV latency for one PIM tile
𝐿𝐺𝑊𝑅𝐼𝑇𝐸 : GWRITE latency for global buffer
𝐸 : Model embedding size
𝑃𝐷𝑅𝐴𝑀 : DRAM page size
𝐵𝑐ℎ𝑛𝑙 : PIM banks per channel
𝑁ℎ𝑒𝑎𝑑 : Number of heads

Output: 𝐿𝑀𝐻𝐴 : Estimated latency for MHA

1 𝐿𝑀𝐻𝐴 ← 0;
/* GEMV latency for𝐾𝑒𝑦𝑇 ×𝑄𝑢𝑒𝑟𝑦 */

2 𝑁𝑡𝑖𝑙𝑒𝑠 ← (𝑠𝑒𝑞_𝑙𝑒𝑛 / 𝐵𝑐ℎ𝑛𝑙) ∗ (𝐸 / 𝑃𝐷𝑅𝐴𝑀) ;
3 𝐿𝑀𝐻𝐴 += 𝐿𝐺𝑊𝑅𝐼𝑇𝐸 ∗ (𝐸 / 𝑃𝐷𝑅𝐴𝑀) ;
4 𝐿𝑀𝐻𝐴 += 𝐿𝑡𝑖𝑙𝑒 ∗ 𝑁𝑡𝑖𝑙𝑒𝑠 ;

/* GEMV latency for 𝐿𝑜𝑔𝑖𝑡𝑠 ×𝑉𝑎𝑙𝑢𝑒 */

5 𝑁𝑡𝑖𝑙𝑒𝑠 ← ((𝐸/𝑁ℎ𝑒𝑎𝑑)/𝐵𝑐ℎ𝑛𝑙) ∗ ((𝑠𝑒𝑞_𝑙𝑒𝑛/𝑃𝐷𝑅𝐴𝑀) ∗𝑁ℎ𝑒𝑎𝑑) ;
6 𝐿𝑀𝐻𝐴 += 𝐿𝐺𝑊𝑅𝐼𝑇𝐸 ∗ ((𝑠𝑒𝑞_𝑙𝑒𝑛 / 𝑃𝐷𝑅𝐴𝑀) ∗ 𝑁ℎ𝑒𝑎𝑑) ;
7 𝐿𝑀𝐻𝐴 += 𝐿𝑡𝑖𝑙𝑒 ∗ 𝑁𝑡𝑖𝑙𝑒𝑠 ;
8 return 𝐿𝑀𝐻𝐴

Challenges. For optimal exploitation of parallelism inherent
in sub-batch interleaving,NeuPIMsmust consider two key
aspects: First,NeuPIMs requires a strategic balancing of the
execution time for each sub-batch, particularly focusing on
the multi-head attention. Since the latency of multi-head
attention is determined by the channel processing the longest
sequence, we must implement load balancing across the
channels, ensuring an equitable distribution of token lengths.
This challenge is addressed through a channel load balancing
algorithm (Section 6.4). Second, NeuPIMs must ensure
similar execution times for both sub-batches for efficient
interleaved execution. The duration of each stage within
the interleaving is bound by the processing time of more
time-consuming sub-batch. For that, NeuPIMs introduces
a sub-batch partitioning algorithm (Section 6.5).

6.3 Multi-Head Attention Latency Estimation

The latency of operations running in the NPU is largely
dependent on the batch size of the inference. To apply
optimization techniques for multi-head attention, we
estimate the execution time of its operations by considering
the key-value mapping to the PIMmemory layout. Since the
vector for GEMV is shared across the banks, the matrix for
GEMV is interleaved row-wise to each banks. Consequently,
key caches at the same row and column share the same layer
and head index, with differing sequence indices. Conversely,
value caches at the same rowand column share the same layer,
head, and sequence index, interleaving each head embedding
into banks. Algorithm 1 takes thismapping into account to es-
timate the execution time of the multi-head attention latency.

6.4 GreedyMin-Load Bin Packing Algorithm.

Tominimize theexecution timediscrepancybetween themost
congested channel and the load-free channel, we developed

NeuPIMs: NPU-PIMHeterogeneous Acceleration for Batched LLM Inferencing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Algorithm 2:GreedyMin-Load Bin Packing
Input: 𝐿𝑟𝑒𝑞 : A list for sqeunce length of new requests

𝐿𝑐ℎ𝑛𝑙 : A list for request allocation of channels

/* Calculate each channel’s total load by applying
MHA latency estimation to each allocated request */

1 𝐿𝑙𝑜𝑎𝑑 ← [];
2 foreach 𝑐ℎ𝑛𝑙 in 𝐿𝑐ℎ𝑛𝑙 do
3 𝑆𝑢𝑚𝑙𝑜𝑎𝑑 ← 0;
4 foreach 𝑟𝑒𝑞 in 𝑐ℎ𝑛𝑙 do
5 𝑆𝑢𝑚𝑙𝑜𝑎𝑑 += MHALatencyEstimation(req)
6 end

7 𝐿𝑙𝑜𝑎𝑑 .append(𝑆𝑢𝑚𝑙𝑜𝑎𝑑);
8 end

/* Allocate each request by greedy algorithm */

9 foreach𝑛𝑒𝑤_𝑟𝑒𝑞 in 𝐿𝑟𝑒𝑞 do

10 𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥 = Min(𝐿𝑙𝑜𝑎𝑑).index();
11 𝐿𝑐ℎ𝑛𝑙 [𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥] .append(new_req);
12 𝑙𝑜𝑎𝑑𝑟𝑒𝑞 = MHALatencyEstimation(new_req);
13 𝐿𝑙𝑜𝑎𝑑 [𝑚𝑖𝑛_𝑖𝑛𝑑𝑒𝑥] += 𝑙𝑜𝑎𝑑𝑟𝑒𝑞 ;
14 end

15 return 𝐿𝑐ℎ𝑛𝑙

the channel load balancing algorithm. Algorithm 2 leverages
the aforementioned multi-head attention latency estimation
to batch requests. It initially sorts the batch of requests in
decreasing order of input token length. Then, NeuPIMs
places a request with the longest token length in the channel
with minimal load. At each iteration, it updates the estimated
latency, taking into account the newly appended request.
NeuPIMs allocate LLM inference requests to one of the

PIM channels. A PIM channel constitutes multiple PIM banks,
each of which partially executes the MHA layers of the
assigned requests. Thus, it is crucial tominimize the execution
time discrepancy between the most congested channel and
the load-free channel for load-balancing purposes. To this
end, we develop greedy min-load bin packing algorithm,
as presented in Algorithm 2. This algorithm leverages the
aforementioned multi-head attention latency estimation to
batch requests. As implied by its name, the algorithm greedily
allocates requests starting from the longest sequence length
to the least loaded PIM channel sequentially. Therefore, it
initially sorts the batch of requests in decreasing order of
input token length. Then,NeuPIMs places a request with the
longest token length in the channel with minimal load. At
each iteration, it updates the estimated latency, taking into
account the newly appended request.

6.5 Sub-batch Partitioning Algorithm

Given the dependency of NPU-friendly operations on the
batch size of inference, it is essential to maintain a balanced
size between the two sub-batches. As outlined in Algorithm 3,
the approach involves dividing the requests for each channel
into halves and appending each half to one of the sub-batches.

Algorithm 3: Sub-Batch Partitioning
Input: 𝐿𝑟𝑒𝑞 : A list of active request set in each channel
Output: 𝑆𝐵1, 𝑆𝐵2 : Sub-batchs for interleaving

1 𝑡𝑢𝑟𝑛 ← 𝑇𝑟𝑢𝑒 ;
2 𝑆𝐵1, 𝑆𝐵2 ← [];
3 foreach 𝑟𝑒𝑞𝑐ℎ𝑛𝑙 in 𝐿𝑟𝑒𝑞 do

4 𝑏𝑠𝑖𝑧𝑒 ← Size(𝑟𝑒𝑞𝑐ℎ𝑛𝑙) / 2;
5 if Size(𝑟𝑒𝑞𝑐ℎ𝑛𝑙) % 2 != 0 then
6 𝑏𝑠𝑖𝑧𝑒 = 𝑡𝑢𝑟𝑛 ? ceil(𝑏𝑠𝑖𝑧𝑒) : floor(𝑏𝑠𝑖𝑧𝑒);
7 𝑡𝑢𝑟𝑛 = !𝑡𝑢𝑟𝑛;
8 end

9 𝑏𝑠𝑖𝑧𝑒 = int(𝑏𝑠𝑖𝑧𝑒) ;

10 𝑆𝐵1 .append(𝑟𝑒𝑞𝑐ℎ𝑛𝑙 [: 𝑏𝑠𝑖𝑧𝑒]);
11 𝑆𝐵2 .append(𝑟𝑒𝑞𝑐ℎ𝑛𝑙 [𝑏𝑠𝑖𝑧𝑒 :]);
12 end

13 return 𝑆𝐵1, 𝑆𝐵2

7 ScalingNeuPIMs System
Model parallelism, which involves partitioning model param-
eters acrossmultipleNeuPIMs devices for parallel processing,
is essential for inference tasks of LLM, due to the limited
memory capacity of NeuPIMs devices. In this section, we
will discuss the applicability of NeuPIMs systems to pipeline
parallelism and tensor parallelism, two widely used model
parallelism techniques in deep learning libraries [1, 61, 62] for
LLM inference. Note that, these model parallelism strategies
are not the contribution of this work, but this section high-
lights the adaptability of such techniques toNeuPIMs system.

7.1 Pipeline Parallelism of NeuPIMs System
Pipelineparallelisminvolvesdividing themodel layer-wise, so
that several layers ofmodel are placedona singleNeuPIMsde-
vice. To facilitate parallel processing, the batch is divided into
micro-batches corresponding to the pipeline depth, and each
device processes them in a pipelined manner. This approach
can also be applied toNeuPIMs systems in a similar manner.
When applying pipeline parallelism to the NeuPIMs

systems, the number of decoder blocks executed on a single
NeuPIMs device decreases proportionally. As mentioned
in Section 6.2, the reduced decoder blocks co-located in one
NeuPIMs device would lower the achievable performance
benefits. Furthermore, exploiting pipeline parallelism leads
to smaller batch size. Using the sub-batch interleaving
technique further reduces batch size, which would lead to
under-utilization of the NPU systolic arrays.

7.2 Tensor Parallelism of NeuPIMs System
Tensor parallelism is a parallelization approach that splits
the model tensors into multiple shards and distributes
them across devices. Multiple devices execute on their
respective model shards in parallel, the results of which are
aggregated at the end of the step. This aggregation requires
communication between devices.

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

Table 2.NeuPIMs hardware specification.
NPUConfiguration HBMOrganization

Systolic Arrays/Chip 8 Banks/Bankgroup 4
Vector Units/Chip 8 Banks/Channel 32

HBMChannels/Chip 32 Frequency 1GHz
Systolic Array Size 128 x 128 Capacity/Channel 1GB
Vector Unit Size 128 x 1 Page Size 1KB

HBMTiming Parameter

tRP = 14, tRCD = 14, tRAS = 34, tRRD_L = 6, tWR = 16,
tCCD_S = 1, tCCD_L = 2, tREFI = 3900, tRFC = 260, tFAW = 30

Although the sub-batch interleaving technique increases
communication frequency twofold, the total communication
traffic remains unchanged compared to the non-partitioned
batch, resulting in only a modest overhead from communi-
cation. Moreover, the sub-batch that completes first among
the two sub-batches can engage in communication, while
the other sub-batch performs computations. This further
reduces the communication latency, mitigating the increased
communication overhead.

Inspired by the aforementioned insights, we prioritize the
exploitation of tensor parallelism over pipeline parallelism
and start employing pipeline parallelism when the model
size is too large to exclusively leverage tensor parallelism.

8 Evaluation

8.1 Methodology

Baseline. For evaluation, we compare three baseline
systems along with ourNeuPIMs system, namely GPU-only,
NPU-only, and NPU+PIM.
• GPU-only:GPU-only is a real GPU system.We conduct
experiments with an A100 40GB GPU, and we compile the
LLM batched inference workload with PyTorch [71].
• NPU-only:NPU-only represents existing NPU accelera-
tors such as TPU, without any PIM capabilities.We assume
that this baseline has the equivalent memory bandwidth
with other alternatives for fairness. Moreover, a NPU is
equipped with not only systolic array but also GPU-like
vector processing units to support non-GEMM operators.
• NPU+PIM:NPU+PIM is also a PIM-enabled NPU baseline,
which integrates existing PIM-based GEMV accelera-
tors [25] with the off-the-shelf NPU accelerator.Wemerely
map theGEMVoperations inMHA layers to the PIM,while
all the others are computed at the NPU side. We allocate
the requests to PIM channels in a round-robin manner.

Cycle-level simulation.We build theNeuPIMs simulator
on two open-source cycle-accurate simulators, ONNXim [3]
and DRAMsim3 [50]. We link the two simulators by modi-
fying the memory interface of ONNXim and offloading the
memory accesses to the PIM simulator based on DRAMsim3.
Hardware specifications.We prototypeNeuPIMs accelera-
tor using a set of hardware specifications, which are listed in
Table 2. OurNeuPIMs accelerator prototype is amulti-chiplet
design containing 8 systolic arrays, each integrated with a

Table 3. The evaluated LLM configurations.
Model # Layers #Heads d𝑚𝑜𝑑𝑒𝑙 # TP # PP

GPT3-7B 32 32 4096 4 1
GPT3-13B 40 40 5120 4 1
GPT3-30B 48 56 7168 4 2
GPT3-175B 96 96 12288 8 4

SIMD vector unit that serves activation operations. Each
memory channel controls 32 PIM banks, which offer in
aggregate 1GB memory capacity. Note that while we
choose this set of specifications for prototyping purposes,
the NeuPIMs architecture is orthogonal to these choices,
allowing varying configurations depending on the model
size and data-specific properties (e.g., sequence lengths).
LLMmodels.Weuse four variants ofGPT3, a state-of-the-art
LLM developed by OpenAI as described in Table 3. While
our experiments focus on GPT-3 model variants, NeuPIMs
can host any decoder-based generation models, offering
generality and wide applicability.
Datasets.We use two real-world LLM inferencing datasets,
ShareGPT [79] and Alpaca [76]. ShareGPT dataset is a set
of conversations scraped from the real-world user log of
ChatGPT [66]. Alpaca dataset is an instruction dataset
generated by OpenAI’s text-davinci-003 engine. The two
datasets have distributions for input and output sequences.
ShareGPT has an average input token length of 80 and an
output of 296, while Alpaca has shorter sequence lengths of
12 and 56 for input and output, respectively.
Workload. As running experiments for inference serving
scenarios with a cycle-accurate simulator is infeasible, we
develop an alternative methodology to synthesize workloads
for system-level evaluation. To define the search space for
workloads, we consider various hyperparameters, including
model types, batch sizes, and tensor/pipeline parallelism.
For each permutation of these hyperparameters, we simulate
the inference serving for a fixed amount of time, randomly
picking sequence lengths from the datasets. This way, we
can warm up the inference batch in a way that the batch is
filled with requests having various sequence lengths. We
sample 10 different batches and use them to measure the
throughputs of different hyperparameter combinations.

8.2 Results

Throughput. Figure 12 reports the throughput comparison
results between the three baselines andNeuPIMs. The GPU-
only and NPU-only baseline systems showmarginal differ-
ences since theybothexecute end-to-enddecoderblockopera-
tionswithout PIM, including bandwidth-boundmulti-head at-
tention. Simply integrating PIMwith the NPU, i.e., NPU+PIM
alreadyoffers, on average 1.5× throughput improvement com-
pared to theNPU-onlybaselinebecause thebandwidth-bound

NeuPIMs: NPU-PIMHeterogeneous Acceleration for Batched LLM Inferencing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Al
pa

ca
Sh

ar
eG

PT

Batch size = 64 Batch size = 128 Batch size = 256 Batch size = 384 Batch size = 512

NPU-only NPU+PIM NeuPIMsGPU-only

(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e)

Figure 12. Throughput comparison results of GPU-only, NPU-only, NPU+PIM, and NeuPIMs. We use the two datasets, (a)
Alpaca and (b) ShareGPT, using the batch sizes including 64, 128, 256, 384, and 512.

Table 4.Average resource utilization of NPU/PIM compute
resource and memory bandwidth utilization.

NPU-only NPU+PIM NeuPIMS

NPU 12.3% 28.0% 64.9%
PIM - 17.0% 26.4%

Bandwidth 67.6% 27.4% 85.4%

GEMV operations in MHA are all offloaded to the PIM. How-
ever, NeuPIMs consistently surpasses the NPU+PIM base-
line, and offers additional throughput improvements over the
NPU+PIMbaseline across all themodels anddatasets, ranging
from 13% to 3×. These trends are observed consistently for
both datasets, with larger gains observed for ShareGPT, given
its longer input/output sequences, offering increased acceler-
ation opportunities for PIMs. Furthermore, as the batch size
increases from64 to 512, the throughput gains exhibit substan-
tial growth. This is because theNeuPIMs system effectively
shifts the bottleneck from bandwidth to compute towards the
NPU, thus allowingNeuPIMs to extract higher performance
from batched computation as the batch size grows. Note that
NeuPIMs achieves significant throughput improvements us-
ing the same memory capacity, which demonstrates its cost-
effectiveness, especially in a datacenter-scale inference serv-
ing scenario where larger batch sizes are advantageous.
Utilization. The main source of large throughput gain is
the improved resource utilization across the board. Table 4
compares the average utilization for three major resources
in the baselines and NeuPIMs, when using GPT3-30B, the
batch size of 256, and the ShareGPT dataset. As NPU+PIM
offloads the bandwidth-bound MHA operations to PIM, it
increases NPU utilization by 28.0%. However, NPU+PIM still
suffers from temporal blocking due to the GEMM-GEMV
dependencies in LLM inferencing.NeuPIMs overcomes this

0

1

2

3

4

B=64 B=128 B=256 B=384 B=512Th
ro

ug
hp

ut
 Im

pr
ov

em
en

t
NPU+PIM NeuPIMs-DRB
NeuPIMs-DRB+GMLBP NeuPIMs-DRB+GMLBP+SBI

Figure 13.We use the GPT3-7Bmodel and ShareGPT dataset
for this experiment. DRB: Dual Row Buffers; GMLBP: Greedy
Min-LoadBinPackingalgorithm;SBI: Sub-Batch Interleaving.

limitation, achieving 64.9% and 26.4% utilization on NPU
and PIM, respectively, through the concurrent NPU+PIM
execution capability.Weobserve similar trends from the other
system configurations, which demonstrate the effectiveness
of the proposed technique in enabling concurrent NPU+PIM
execution byNeuPIMs.
Ablation study. Using NPU+PIM as the baseline, we
augment the proposed three techniques and observe the
performance behaviors, shown inFigure 13. For all batch sizes,
the dual row buffers offer 69.7% throughput improvement
on average, which has the largest impact on the performance
as it enables concurrent NPU+PIM execution without
significant overhead. For the channel loading balancing, our
greedy min-load bin packing algorithm also always offers
performance benefits by evenly distributing the requests
to the available channels. In contrast to the previous two
techniques, the sub-batch interleaving technique does not
always yield gains. For small batch sizes, partitioning the
batch into two may cause underutilization in a NPU systolic
array, leading to inefficiency, and the penalty from pipelining

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

4 NeuPIMs 8 NeuPIMs 16 NeuPIMs 64 NeuPIMs

0

10

20

30

(4, 1) (2, 2) (8, 1) (4, 2) (8, 2) (4, 4) (16, 4) (8, 8)Th
ro

ug
hp

ut
 (1

k
To

ke
n/

s)

(4, 1) (8, 1) (8, 2) (8, 8)GPT3-7B GPT3-13B GPT3-30B GPT3-175B

Figure 14. Throughput of multi-NeuPIMs system as the
parallelization schemes change. We employ four combina-
tions of tensor parallelism (TP) and pipeline parallelism (PP),
represented as (TP, PP).

Table 5.NeuPIMs power overhead.
Baseline Average Power

NPU-only HBM (non-PIM) 364.1 mW
NeuPIMs Dual row buffered PIM 634.8 mW

could outweigh the benefits. However, when the batch size
is equal to or larger than 256,NeuPIMs achieve the highest
throughput, suggesting that batched inference with a large
batch size is preferable for theNeuPIMs-based system.
Implication of parallelization schemes.As the LLM size
increases, the NeuPIMs system must scale the number of
devices to harness tensor and pipeline parallelisms. Figure 14
analyzes the implications of such parallelization schemes on
the system throughput. For the experiment, we fix the total
number of requests to 256, while the batch size per device
varies depending on the parallelization scheme. The results
highlight the preference for exploiting tensor parallelism
over the pipeline counterpart, as it maintains a large batch
size, resulting in better efficiency at the NPU. We observe
this trend consistently for all model variants, while the
overall throughput decreases since the per-device batch size
becomes small, due to low NPU utilization.
Area overhead. The main source of area overhead in
the NeuPIMs architecture is the dual row buffer. We use
CACTI 7.0 [11] with 22nm technology to measure the area
overhead by doubling the row buffer resource usage in the
tool configuration. We observe 3.11% area overhead, which
is marginal considering the significant performance boost
provided the microarchitectural addition.
Power overhead. Compared to the NPU-only counterpart,
NeuPIMs requires higher power in memory because it
operates NPU and PIM concurrently. We examine this
power implication by measuring it using Micron’s DRAM
power model [32] provided by DRAMsim3 [50]. We assume
all-bank computation command incurs 4× higher power than
read command [25]. Moreover, the “additional” row buffer
requires DRAM to consume more background power to hold
each row buffer status. We measure the total power overhead

(a) Alpaca (b) ShareGPT

Sp
ee
du
p

Sp
ee
du
p

B=256 B=384 B=512B=64 B=128

Figure 15. Speedup of NeuPIMs over TransPIM [89].

by aggregating all these factors together. Table 5 compares
the average power of NeuPIMs and NPU-only system where
NPUs are equippedwith vanilla HBMs.NeuPIMs exhibit 1.8×
higher power consumption, offering 2.4× speedup, which
can be translated into 25% energy reduction.
ComparisonwithTransPIM.TransPIM[89] is a standalone
PIM-only solution that operates the entirety of transformer
operators within PIM devices. As there is no open-source sim-
ulator for TransPIM,we develop our ownTransPIM simulator
basedonDRAMsim3[50].Wealign thememoryspecifications
of TransPIM, such as HBM timing parameters and capacity,
with those used forNeuPIMs and the NPU+PIM baseline.

Figure 15 reports the speedup of NeuPIMs over Tran-
sPIM [89]NeuPIMs shows an average 228× higher through-
put than TransPIM. The significant performance gap is at-
tributed to the effectiveness of GEMM computation executed
on the NPU in the case of NeuPIMs, as opposed to PIM in
TransPIM. That is, TransPIM specifically targets single-batch
transformermodel inference,making itunsuitable forbatched
inference. Additionally, we observe that the token-based
dataflow and ring-broadcast mechanism proposed in Tran-
sPIM are designed to target encoder block operations,making
theminefficient fordecoder-basedLLMinference.Overall,Ne-
uPIMs consistently deliver superior performance compared
to TransPIM, achieving speedups ranging from 79× to 431×.

9 Discussion

Model training.As training has fixed-length sequences for
both input and output, it entirely entails GEMMs, not requir-
ing anyGEMVs for its computations. PIM targets accelerating
bandwidth-bounded GEMV operations, delivering signifi-
cantly poorer performance forGEMMs.Therefore,while aNe-
uPIMs system can be used for training, its efficiency is limited.
Integrationwithproduction software stack.Asdescribed
in Section 4, the NeuPIMs compiler framework employs a
similar interface with the modern machine learning libraries
such as ONNX, PyTorch, and JAX. Therefore, the integration
of NeuPIMs solution with the existing production software
stack would require one to write a translator, which can
convert the ONNX-, PyTorch-, and Jax-defined model rep-
resentations into our LLM specification. With the translator
being developed, the rest of NeuPIMs systemwould remain

NeuPIMs: NPU-PIMHeterogeneous Acceleration for Batched LLM Inferencing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the same since it is already a holistic system stack that con-
stitutes an inference serving scheduler, operator compilers
for NPU and PIM, and an inference execution runtime.

10 RelatedWork

LLM inference serving.Multiple LLM serving systems opti-
mize for their inference performance either through reducing
the memory footprint [42, 81], improving the kernel execu-
tion strategy [87], determining the partitioning techniques
for intra- and inter- operator [61, 72, 77] execution, or a combi-
nation of these [2, 8, 41, 52, 56, 62, 63, 65, 84]. In this work, we
specifically tackle the utilization of the current hardware plat-
forms which deploy these models through a compute and I/O
suitable platforms, NPUs and PIMs, to create a more efficient
system. Moreover, to ensure such a heterogeneous system
can perform well for LLM inferencing, we offer a scheduling
policy. Prior works that support kernel optimizations for bet-
ter utilization of GPUs for LLMs, cannot fullymitigate the I/O
and bandwidth bottleneck of GEMV kernels. Instead in this
work, we build a system that can benefit from existing opti-
mizations such as selective batching, KV caching, etc. to offer
better utilization across the transformer model architecture.
PIM for language model support. TransPIM [89] is a
PIM solution that accelerates the end-to-end transformer
inference using PIM. The work proposes a data loading
overhead reduction technique by customizing its dataflow for
transformer models. TransPIM is optimized for attention op-
erations of transformer encoder blocks, making it unsuitable
for LLM inference based on decoder blocks. Furthermore, it is
tailored for single-request inference, offering suboptimal per-
formance for batched inference scenarios. AttAcc [16] further
offers an accelerator (with PIM) for attention layer to reduce
the data movement for the KV matrices. Instead NeuPIMs
proposes a new system for PIM accelerator in addition to the
scheduling of operations for the end to end inference of LLMs.
There are also variety of prior works that leverage PIM

for GEMV operations [25, 40, 44, 48, 49, 68, 83] due to their
inherent potential in benefits towards bandwidth bound
applications. However, none of these works enable simul-
taneous execution of PIM and NPU operations, necessary
for the efficient execution of LLM inference.
Heterogeneous acceleration pipeline for deep learning.

There are a variety of prior works that propose a pipelined
solution for machine learning [4, 55, 69, 75], however none
of these prior works leverage PIM to alleviate the bandwidth
requirement of LLMs. Certain prior works use an accelerator
for specific models [5, 45, 54], however, they do not alleviate
the under-utilization of GEMV and GEMM operations in
transformer decoder blocks.

11 Conclusion

Large Language Model (LLM) inferencing, given its signif-
icance, demands dedicated resources that can be deployed

at scale. However, these models present a confluence of
challenges, encompassing high memory capacity, high
compute intensity, and bandwidth constraints. In this work
we propose a novel system, NeuPIMs, that integrates NPU
(a general ML accelerator) with PIM technology to mitigate
the limitations associated with different operations and their
dataflow in the transformer layers. We introduce a novel
scheduling and execution strategy for the proposed system,
that can better utilize HBMmemory, compute intensive NPU,
and the PIM accelerator for LLM inference serving. Results
indicate that the system developed in this work offers a 1.6×
throughput improvement compared to the baseline system
that naïvely integrates an NPUwith the PIM accelerator.

Acknowledgments

We thank our shepherd Vidushi Goyal and the anonymous
reviewers for their comments and feedback. This research
is supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) (No.2022-0-01037,
No.2018-0-00503), Information Technology Research Center
(ITRC) support program (IITP-2024-2020-0-01795), and
Artificial Intelligence Graduate School Program (KAIST)
(No.2019-0-00075), funded by the Korea government (MSIT).

References

[1] Nvidia Tensor RT 4.0. https://developer.nvidia.com/tensorrt.
[2] HuggingFace. https://github.com/huggingface/transformers/tree/

main, 2022.
[3] ONNXim NPU Simulator. https://github.com/PSAL-POSTECH/

ONNXim, 2024.
[4] Muhammad Adnan, Yassaman EbrahimzadehMaboud, DivyaMahajan,

and Prashant J. Nair. Accelerating Recommendation System Training
by Leveraging Popular Choices. Proc. VLDB Endow., 15(1):127–140, jan
2022.

[5] Muhammad Adnan, Yassaman EbrahimzadehMaboud, DivyaMahajan,
and Prashant J Nair. Heterogeneous Acceleration Pipeline for Recom-
mendation System Training. arXiv preprint arXiv:2204.05436, 2022.

[6] JunwhanAhn, SungpackHong, Sungjoo Yoo, OnurMutlu, andKiyoung
Choi. A scalable processing-in-memory accelerator for parallel graph
processing. In ISCA, 2015.

[7] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.
PIM-enabled instructions: A low-overhead, locality-aware processing-
in-memory architecture. In ISCA, 2015.

[8] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang,
Ammar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley,
Shaden Smith, Olatunji Ruwase, and YuxiongHe. DeepSpeed Inference:
Enabling Efficient Inference of Transformer Models at Unprecedented
Scale. Technical report, Microsoft, 06 2022.

[9] Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry
Lepikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige
Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey,
Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira,
Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan
Ahn, JacobAustin, Paul Barham, JanBotha, James Bradbury, Siddhartha
Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin Cherry,
Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément
Crepy, Shachi Dave,Mostafa Dehghani, SunipaDev, JacobDevlin,Mark

https://developer.nvidia.com/tensorrt
https://github.com/huggingface/transformers/tree/main
https://github.com/huggingface/transformers/tree/main
https://github.com/PSAL-POSTECH/ONNXim
https://github.com/PSAL-POSTECH/ONNXim

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

Díaz, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fien-
ber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonza-
lez,GuyGur-Ari, StevenHand,HadiHashemi, LeHou, JoshuaHowland,
AndreaHu, JeffreyHui, JeremyHurwitz,Michael Isard, Abe Ittycheriah,
Matthew Jagielski,Wenhao Jia,KathleenKenealy,MaximKrikun, Sneha
Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li,
Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim,Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, AromaMahendru, Joshua Maynez,
Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric
Ni, Andrew Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex
Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker
Riley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel,
Renee Shelby, Ambrose Slone, Daniel Smilkov, David R. So, Daniel Sohn,
Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli,
Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting,
Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui
Yu, Qiao Zhang, Steven Zheng, Ce Zheng,Weikang Zhou, Denny Zhou,
Slav Petrov, and YonghuiWu. PaLM 2 Technical Report, 2023.

[10] Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, and
Nam Sung Kim. Chameleon: Versatile and practical near-DRAM
acceleration architecture for large memory systems. InMICRO, 2016.

[11] Rajeev Balasubramonian, Andrew B. Kahng, NaveenMuralimanohar,
Ali Shafiee, and Vaishnav Srinivas. CACTI 7: New Tools for Intercon-
nect Exploration in Innovative Off-Chip Memories. ACM Transactions
on Architecture and Code Optimization (TACO), 14(2), jun 2017.

[12] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason
Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An Open-Source Autoregressive Language Model, 2022.

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph,GregBrockman,AlexRay, Raul Puri, GretchenKrueger,Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, ClemensWinter, Philippe Tillet, Felipe Petroski
Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, WilliamHebgen Guss, Alex Nichol, Alex
Paino,Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike,
Josh Achiam, Vedant Misra, EvanMorikawa, Alec Radford, Matthew
Knight, Miles Brundage, Mira Murati, Katie Mayer, PeterWelinder, Bob
McGrew, Dario Amodei, SamMcCandlish, Ilya Sutskever, andWojciech
Zaremba. Evaluating Large Language Models Trained on Code, 2021.

[14] Shuang Chen, Yi Jiang, Christina Delimitrou, and José F. Martínez.
PIMCloud: QoS-Aware Resource Management of Latency-Critical
Applications in Clouds with Processing-in-Memory. InHPCA, 2022.

[15] Benjamin Y. Cho, Jeageun Jung, and Mattan Erez. Accelerating
bandwidth-bound deep learning inference with main-memory
accelerators. In SC, 2021.

[16] Jaewan Choi, Jaehyun Park, Kwanhee Kyung, Nam Sung Kim, and
Jung Ho Ahn. Unleashing the potential of pim: Accelerating large
batched inference of transformer-based generative models. IEEE
Computer Architecture Letters, 22(2):113–116, 2023.

[17] ONNX Runtime developers. ONNX Runtime. https://onnxruntime.ai/,
2021.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. In arXiv, 2018.

[19] Fei Gao, Georgios Tziantzioulis, and DavidWentzlaff. ComputeDRAM:
In-Memory Compute Using Off-the-Shelf DRAMs. InMICRO, 2019.

[20] Christina Giannoula, Ivan Fernandez, Juan Gómez-Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu. Towards efficient
sparse matrix vector multiplication on real processing-in-memory
architectures. SIGMETRICS Perform. Eval. Rev., 50(1):33–34, jul 2022.

[21] Christina Giannoula, Ivan Fernandez, Juan Gómez-Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu. Towards Efficient Sparse
Matrix Vector Multiplication on Real Processing-In-Memory Archi-
tectures. In Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP
PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, 2022.

[22] Christina Giannoula, Ivan Fernandez, Juan Gómez-Luna, Nectarios
Koziris, Georgios Goumas, and Onur Mutlu. SparseP: Efficient
Sparse Matrix Vector Multiplication on Real Processing-In-Memory
Architectures. In ISVLSI, 2022.

[23] Juan Gómez-Luna, Yuxin Guo, Sylvan Brocard, Julien Legriel, Remy
Cimadomo, Geraldo F. Oliveira, Gagandeep Singh, and Onur Mutlu.
Machine Learning Training on a Real Processing-in-Memory System.
In ISVLSI, 2022.

[24] Juan Gómez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Gian-
noula, Geraldo F. Oliveira, and Onur Mutlu. Benchmarking a New
Paradigm: Experimental Analysis and Characterization of a Real
Processing-in-Memory System. IEEE Access, 10:52565–52608, 2022.

[25] Mingxuan He, Choungki Song, Ilkon Kim, Chunseok Jeong, Seho
Kim, Il Park, Mithuna Thottethodi, and T. N. Vijaykumar. Newton:
A DRAM-maker’s Accelerator-in-Memory (AiM) Architecture for
Machine Learning. InMICRO, 2020.

[26] Jaehoon Heo, Yongwon Shin, Sangjin Choi, Sungwoong Yune,
Jung-Hoon Kim, Hyojin Sung, Youngjin Kwon, and Joo-Young Kim.
PRIMO: A Full-Stack Processing-in-DRAM Emulation Framework for
Machine LearningWorkloads. In ICCAD, 2023.

[27] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena
Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas,
Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan,
Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc,
Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Jack W.
Rae, Oriol Vinyals, and Laurent Sifre. Training Compute-Optimal
Large Language Models, 2022.

[28] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Xu Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le,
Yonghui Wu, and Zhifeng Chen. GPipe: Efficient Training of Giant
Neural Networks using Pipeline Parallelism. In NeurIPS, 2019.

[29] Bongjoon Hyun, Taehun Kim, Dongjae Lee, and Minsoo Rhu. Pathfind-
ing Future PIM Architectures by Demystifying a Commercial PIM
Technology. InHPCA, 2024.

[30] Mohsen Imani, Saransh Gupta, Yeseong Kim, and Tajana Rosing.
FloatPIM: In-Memory Acceleration of Deep Neural Network Training
with High Precision. In ISCA, 2019.

[31] Mohsen Imani, Saikishan Pampana, Saransh Gupta, Minxuan Zhou,
Yeseong Kim, and Tajana Rosing. DUAL: Acceleration of Clustering
AlgorithmsusingDigital-basedProcessing In-Memory. InMICRO, 2020.

[32] J Janzen. Calculating memory system power for DDR3. Micron
Designline, 13(1), 2008.

[33] Gilbert Jonatan, Haeyoon Cho, Hyojun Son, XiangyuWu, Neal Livesay,
Evelio Mora, Kaustubh Shivdikar, José L. Abellán, Ajay Joshi, David
Kaeli, and John Kim. Scalability Limitations of Processing-in-Memory
using Real System Evaluations. Proceedings of the ACM onMeasurement
and Analysis of Computing Systems, 2024.

[34] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan,
Lifeng Nai, Nishant Patil, Suvinay Subramanian, Andy Swing, Brian
Towles, CliffordYoung,XiangZhou,ZongweiZhou, andDavidAPatter-
son. TPU v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings. In ISCA, 2023.

[35] Hongju Kal, Chanyoung Yoo, and Won Woo Ro. AESPA: Asyn-
chronous Execution Scheme to Exploit Bank-Level Parallelism of
Processing-in-Memory. InMICRO, 2023.

[36] Shinhaeng Kang, Sukhan Lee, Byeongho Kim, Hweesoo Kim, Kyomin
Sohn, Nam Sung Kim, and Eojin Lee. An FPGA-based RNN-T Inference
Accelerator with PIM-HBM. In FPGA, 2022.

https://onnxruntime.ai/

NeuPIMs: NPU-PIMHeterogeneous Acceleration for Batched LLM Inferencing ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[37] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas
Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill
Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere,
Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong
Wang, Brandon Reagen, Carole-JeanWu, Mark Hempstead, and Xuan
Zhang. Recnmp: Accelerating personalized recommendation with
near-memory processing. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pages 790–803, 2020.

[38] Donghyeon Kim, Taehoon Kim, Inyong Hwang, Taehyeong Park,
Hanjun Kim, Youngsok Kim, and Yongjun Park. Virtual PIM: Resource-
Aware Dynamic DPU Allocation andWorkload Scheduling Framework
for Multi-DPU PIM Architecture. In PACT, 2023.

[39] Heesu Kim, Hanmin Park, Taehyun Kim, Kwanheum Cho, Eojin Lee,
Soojung Ryu, Hyuk-Jae Lee, Kiyoung Choi, and Jinho Lee. GradPIM:
A Practical Processing-in-DRAMArchitecture for Gradient Descent.
InHPCA, 2021.

[40] Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim,Woongjae
Song, Yuhwan Ro, Seungwon Lee, David Wang, Hyunsung Shin,
Bengseng Phuah, Jihyun Choi, Jinin So, YeonGon Cho, JoonHo Song,
Jangseok Choi, Jeonghyeon Cho, Kyomin Sohn, Youngsoo Sohn,
Kwangil Park, and Nam Sung Kim. Aquabolt-XL: Samsung HBM2-PIM
with in-memory processing for ML accelerators and beyond. In Hot
Chips, 2021.

[41] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient Memory Management for Large Language Model Serving
with PagedAttention. In SOSP, 2023.

[42] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
Efficient Memory Management for Large Language Model Serving
with PagedAttention. In SOSP, 2023.

[43] Young-Cheon Kwon, Suk Han Lee, Jaehoon Lee, Sang-Hyuk Kwon,
JeMinRyu, Jong-Pil Son,OSeongil,Hak-SooYu,HaesukLee, SooYoung
Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung Shin, Jin
Kim, BengSeng Phuah, HyoungMin Kim, Myeong Jun Song, Ahn Choi,
Daeho Kim, SooYoung Kim, Eun-Bong Kim, DavidWang, Shinhaeng
Kang, YuhwanRo, Seungwoo Seo, JoonHo Song, JaeyounYoun, Kyomin
Sohn, and Nam Sung Kim. 25.4 A 20nm 6GB Function-In-Memory
DRAM, Based on HBM2with a 1.2TFLOPS Programmable Computing
Unit Using Bank-Level Parallelism, for Machine Learning Applications.
In ISSCC, 2021.

[44] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. TensorDIMM: A
Practical Near-Memory Processing Architecture for Embeddings and
Tensor Operations in Deep Learning. InMICRO, 2019.

[45] Youngeun Kwon andMinsoo Rhu. Training Personalized Recommen-
dation Systems from (GPU) Scratch: Look Forward Not Backwards.
In ISCA, 2022.

[46] Ann Franchesca Laguna, Arman Kazemi, Michael Niemier, and
X. Sharon Hu. In-Memory Computing based Accelerator for
Transformer Networks for Long Sequences. InDATE, 2021.

[47] Juhyoung Lee, Jihoon Kim,Wooyoung Jo, Sangyeob Kim, Sangjin Kim,
Donghyeon Han, Jinsu Lee, and Hoi-Jun Yoo. An Energy-efficient
Floating-Point DNN Processor using Heterogeneous Computing
Architecture with Exponent-Computing-in-Memory. In 2021 IEEE Hot
Chips 33 Symposium (HCS), 2021.

[48] Seongju Lee, Kyuyoung Kim, Sanghoon Oh, Joonhong Park, Gimoon
Hong, Dongyoon Ka, Kyudong Hwang, Jeongje Park, Kyeongpil Kang,
Jungyeon Kim, Junyeol Jeon, Nahsung Kim, Yongkee Kwon, Kornijcuk
Vladimir, Woojae Shin, Jongsoon Won, Minkyu Lee, Hyunha Joo,
Haerang Choi, Jaewook Lee, Donguc Ko, Younggun Jun, Keewon
Cho, Ilwoong Kim, Choungki Song, Chunseok Jeong, Daehan Kwon,
Jieun Jang, Il Park, Junhyun Chun, and Joohwan Cho. A 1ynm 1.25V
8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting
1TFLOPS MAC Operation and Various Activation Functions for
Deep-Learning Applications. In 2022 IEEE International Solid-State

Circuits Conference (ISSCC), 2022.
[49] Sukhan Lee, Shin-haeng Kang, Jaehoon Lee, Hyeonsu Kim, Eojin

Lee, Seungwoo Seo, Hosang Yoon, Seungwon Lee, Kyounghwan
Lim, Hyunsung Shin, Jinhyun Kim, O Seongil, Anand Iyer, David
Wang, Kyomin Sohn, and Nam Sung Kim. Hardware Architecture
and Software Stack for PIM Based on Commercial DRAM Technology
: Industrial Product. In ISCA, 2021.

[50] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava, and Bruce
Jacob. Dramsim3: A cycle-accurate, thermal-capable dram simulator.
IEEE Computer Architecture Letters, 19(2):106–109, 2020.

[51] Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, ClintonWang, Linxi
Fan, Tao Chen, De-AnHuang, EkinAkyürek, AnimaAnandkumar, et al.
Pre-trained languagemodels for interactive decision-making. Advances
in Neural Information Processing Systems, 35:31199–31212, 2022.

[52] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng,
Xin Jin, Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez,
et al. {AlpaServe}: Statistical multiplexing with model parallelism for
deep learning serving. InOSDI, 2023.

[53] Haifeng Liu, Long Zheng, Yu Huang, Chaoqiang Liu, Xiangyu Ye,
Jingrui Yuan, Xiaofei Liao, Hai Jin, and Jingling Xue. Accelerating
Personalized Recommendation with Cross-level Near-Memory
Processing. In ISCA, 2023.

[54] Divya Mahajan, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-
bakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. TABLA: A Unified
Template-based Framework for Accelerating Statistical Machine
Learning. InHPCA, 2016.

[55] Divya Mahajan, Joon Kyung Kim, Jacob Sacks, Adel Ardalan, Arun
Kumar, and Hadi Esmaeilzadeh. In-RDBMS Hardware Acceleration
of Advanced Analytics. In PVLDB, 2018.

[56] Xupeng Miao, Chunan Shi, Jiangfei Duan, Xiaoli Xi, Dahua Lin, Bin
Cui, and Zhihao Jia. Spotserve: Serving generative large language
models on preemptible instances. arXiv preprint arXiv:2311.15566, 2023.

[57] Microsoft. Github copilot. https://github.com/features/copilot, 2022.
[58] Facebook Research Microsoft. Onnx: an open format to represent deep

learning models. http://onnx.ai/, 2017.
[59] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith

Kumar, and Hyesoon Kim. GraphPIM: Enabling Instruction-Level PIM
Offloading in Graph Computing Frameworks. InHPCA, 2017.

[60] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. PipeDream: Generalized Pipeline Parallelism for DNN
Training. In SOSP, 2019.

[61] Nvidia. Megatron-lm. https://github.com/NVIDIA/Megatron-LM.
[62] Nvidia. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM.
[63] NVIDIA. NVIDIA Triton. https://developer.nvidia.com/triton-

inference-server, 2020.
[64] Geraldo F. Oliveira, Juan Gómez-Luna, Saugata Ghose, Amirali

Boroumand, and Onur Mutlu. Accelerating neural network inference
with processing-in-dram: From the edge to the cloud. IEEE Micro,
42(6):25–38, 2022.

[65] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen,
Li Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan
Soyke. TensorFlow-Serving: Flexible, High-Performance ML Serving.
CoRR, abs/1712.06139, 2017.

[66] OpenAI. chatgpt. https://chatgpt.com/blog/chatgpt, 2023.
[67] OpenAI. Gpt-4 technical report, 2023.
[68] Jaehyun Park, Byeongho Kim, Sungmin Yun, Eojin Lee, Minsoo Rhu,

and Jung Ho Ahn. TRiM: Enhancing Processor-Memory Interfaces
with Scalable Tensor Reduction in Memory. InMICRO, 2021.

[69] Jongse Park, Hardik Sharma, Divya Mahajan, Joon Kyung Kim, Preston
Olds, and Hadi Esmaeilzadeh. Scale-out acceleration for machine
learning. InMICRO, October 2016.

[70] Sang-SooPark,KyungSooKim, JininSo, Jin Jung, JonggeonLee,Kyoung-
wanWoo, Nayeon Kim, Younghyun Lee, Hyungyo Kim, Yongsuk Kwon,

https://github.com/features/copilot
http://onnx.ai/
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/TensorRT-LLM
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://chatgpt.com/blog/chatgpt

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Heo et al.

Jinhyun Kim, Jieun Lee, YeonGon Cho, Yongmin Tai, Jeonghyeon Cho,
Hoyoung Song, Jung Ho Ahn, and Nam Sung Kim. An LPDDR-based
CXL-PNM Platform for TCO-Efficient GPT Inference. InHPCA, 2024.

[71] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library, 2019.

[72] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin,
James Bradbury, Anselm Levskaya, JonathanHeek, Kefan Xiao, Shivani
Agrawal, and JeffDean. Efficiently Scaling Transformer Inference, 2022.

[73] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical Text-Conditional Image Generation with CLIP
Latents, 2022.

[74] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt,
Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin,
Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code Llama:
Open Foundation Models for Code, 2023.

[75] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro,
Joon Kyung Kim, Chenkai Shao, Asit Misra, and Hadi Esmaeilzadeh.
From high-level deep neural models to fpgas. InMICRO, October 2016.

[76] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois,
Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B.
Hashimoto. Stanford Alpaca: An Instruction-following LLaMA
model. https://github.com/tatsu-lab/stanford_alpaca, 2023.

[77] Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya
Mahajan, and Fanny Nina Paravecino. Efficient algorithms for device
placement of dnn graph operators. Advances in Neural Information
Processing Systems, 33, 2020.

[78] MosaicML NLP Team. Introducing MPT-30B: Raising the bar for
open-source foundation models, 2023.

[79] ShareGPT Team. ShareGPT. https://sharegpt.com, 2023.

[80] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet,
Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin,
Edouard Grave, and Guillaume Lample. Llama: Open and efficient
foundation language models, 2023.

[81] XiaohuiWang,YingXiong,YangWei,MingxuanWang, andLeiLi. Light-
Seq: A High Performance Inference Library for Transformers, 2021.

[82] Zhengrong Wang, Christopher Liu, Aman Arora, Lizy John, and
Tony Nowatzki. Infinity Stream: Portable and Programmer-Friendly
In-/Near-Memory Fusion. InASPLOS, 2023.

[83] XinfengXie, Zheng Liang, PengGu,Abanti Basak, Lei Deng, Ling Liang,
Xing Hu, and Yuan Xie. SpaceA: Sparse Matrix Vector Multiplication
on Processing-in-Memory Accelerator. InHPCA, 2021.

[84] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim,
and Byung-Gon Chun. Orca: A Distributed Serving System for
Transformer-Based Generative Models. InOSDI, 2022.

[85] Aohan Zeng, Xiao Liu, Zhengxiao Du, ZihanWang, Hanyu Lai, Ming
Ding, Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam,
Zixuan Ma, Yufei Xue, Jidong Zhai, Wenguang Chen, Peng Zhang,
Yuxiao Dong, and Jie Tang. GLM-130B: An Open Bilingual Pre-trained
Model, 2023.

[86] Susan Zhang, Stephen Roller, NamanGoyal, Mikel Artetxe, Moya Chen,
Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria
Lin, TodorMihaylov,MyleOtt, Sam Shleifer, Kurt Shuster, Daniel Simig,
Punit Singh Koura, Anjali Sridhar, TianluWang, and Luke Zettlemoyer.
OPT: Open Pre-trained Transformer Language Models, 2022.

[87] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P Xing, Joseph Gonzalez, and Ion Stoica. Alpa: Automating
inter-and {Intra-Operator} parallelism for distributed deep learning.
InOSDI, 2022.

[88] Minxuan Zhou, Guoyang Chen, Mohsen Imani, Saransh Gupta,
Weifeng Zhang, and Tajana Rosing. PIM-DL: Boosting DNN Inference
on Digital Processing In-Memory Architectures via Data Layout
Optimizations. In PACT, 2021.

[89] Minxuan Zhou, Weihong Xu, Jaeyoung Kang, and Tajana Rosing.
TransPIM: A Memory-based Acceleration via Software-Hardware
Co-Design for Transformer. InHPCA, 2022.

https://github.com/tatsu-lab/stanford_alpaca
https://sharegpt.com

	Abstract
	1 Introduction
	2 Background
	2.1 Computational Characteristics of LLM Inference
	2.2 LLM Inference Serving

	3 Motivation
	3.1 GPU-based LLM Inference Serving
	3.2 A Naïve NPU-PIM Approach

	4 Overview of NeuPIMs
	5 NeuPIMs Architecture
	5.1 PIM Microarchitecture for Concurrent Execution
	5.2 Memory Command Interface
	5.3 Memory Controller

	6 NeuPIMs Scheduling
	6.1 Overlapping Opportunities in MHA Layer
	6.2 Sub-batch Interleaving
	6.3 Multi-Head Attention Latency Estimation
	6.4 Greedy Min-Load Bin Packing Algorithm.
	6.5 Sub-batch Partitioning Algorithm

	7 Scaling NeuPIMs System
	7.1 Pipeline Parallelism of NeuPIMs System
	7.2 Tensor Parallelism of NeuPIMs System

	8 Evaluation
	8.1 Methodology
	8.2 Results

	9 Discussion
	10 Related Work
	11 Conclusion
	References

