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Abstract—Training deep neural networks (DNNs) is a compu-
tationally expensive job, which can take weeks or months even
with high performance GPUs. As a remedy for this challenge,
community has started exploring the use of more efficient data
representations in the training process, e.g., block floating point
(BFP). However, prior work on BFP-based DNN accelerators
rely on a specific BFP representation making them less versatile.
This paper builds upon an algorithmic observation that we can
accelerate the training by leveraging multiple BFP precisions
without compromising the finally achieved accuracy. Backed up
by this algorithmic opportunity, we develop a flexible DNN
training accelerator, dubbed FlexBlock, which supports three
different BFP precision modes, possibly different among activa-
tion, weight, and gradient tensors. While several prior works
proposed such multi-precision support for DNN accelerators,
not only do they focus only on the inference, but also their
core utilization is suboptimal at a fixed precision and specific
layer types when the training is considered. Instead, FlexBlock
is designed in such a way that high core utilization is achievable
for i) various layer types, and ii) three BFP precisions by mapping
data in a hierarchical manner to its compute units. We evaluate
the effectiveness of FlexBlock architecture using well-known
DNNs on CIFAR, ImageNet and WMT14 datasets. As a result,
training in FlexBlock significantly improves the training speed
by 1.5∼5.3× and the energy efficiency by 2.4∼7.0× on average
compared to other training accelerators and incurs marginal
accuracy loss compared to full-precision training.

I. INTRODUCTION

With the development of high-performance computing sys-

tems and ever-growing open source datasets, deep learning has

advanced at a very rapid pace. Due to its accuracy improve-

ment, many applications have started to utilize deep learning

including computer vision, language modeling, autonomous

driving, robotics, and even chip design [3], [6], [14], [41],

[44], [51]. Moreover, many researchers have focused on re-

ducing the model complexity of deep neural networks (DNNs)

to move intelligence into mobile devices [16], [22], [36],

[40], [59], [62], [70]. As different deep learning models

are actively developed for a wide range of applications and

domains, various layer types and precision levels are being

used. Unfortunately, there is still a lack of training accelerators

optimized for these various conditions with high efficiency.

Generally, deep neural networks are trained in IEEE single-

precision format, i.e., FP32, to minimize the accuracy loss

during the training on CPUs/GPUs. To increase the effective

arithmetic and memory bandwidth during the training, one

may reduce the precision in representing activations, weights,

and/or gradients [12], [18], [43]. Micikevicius et al. pro-

posed mixed precision training [43], multiplying two inputs in

IEEE half-precision (FP16), while accumulating the results in

FP32, using Tensor Cores in NVIDIA GPUs. This approach

doubles the effective memory bandwidth and achieves up to

2∼4× speed-up in DNN training. Instead, one may preserve

the exponent bits of FP32 (8-bit) but truncate the mantissa

bits to make 16-bit, i.e., bfloat16 [13]. There are several

commercial DNN training accelerators that utilize bfloat16

to support wider numeric representations [12], [18].

Considering the overwhelming size of the recently devel-

oped DNNs, e.g., 469M parameters for AmoebaNet-A [50]

and 175B parameters in GPT-3 [6], keeping all tensors in float-

ing point representations would require huge memory footprint

and significant training time. Recently, a block floating point

(BFP) representation has been revived and applied in training

DNNs to improve performance and energy efficiency [10],

[31]. However, prior work on BFP-based DNN accelerators

rely on a specific BFP representation, making them less

versatile and offering limited opportunities for performance

and efficiency gains. Moreover, DNNs for mobile environment

are trained at a low precision which are suited for the hardware

running at that specific precision, e.g., INT8 on Google Edge

TPU [27]. As training such edge-optimized DNNs entails both

low- and high-precision arithmetics, it further motivates the

accelerator architecture with the multi-precision support on

both fixed- and floating-point representations.

Unlocking the missing opportunities, we first propose a

BFP-based training hardware, dubbed FlexBlock, which sup-

ports multiple BFP precision modes and layer types. FlexBlock

is designed to support 4-bit, 8-bit and 16-bit (sign+mantissas)

with 8-bit shared exponents1. With the hardware support, we

empirically demonstrate the possibility of training DNNs even

with 4-bit arithmetic (FB12) for computing feature maps

and local gradients, while allowing 8-bit/16-bit arithmetic

(FB16/FB24) for computing weight gradients. This aggres-

sive precision scaling during the DNN training results in

5.3× speedup compared to the training in bfloat16 with

negligible accuracy loss.

The main contributions can be summarized as follows:

1) Multi-mode BFP support: We develop a BFP-based

DNN training accelerator supporting the multiple pre-

cision modes. A DNN model trained in FB12, FB16

1The basic FlexBlock formats are defined as FB12 (=FB4+8) for 4-bit,
FB16 for 8-bit, and FB24 for 16-bit mantissas with 8-bit shared exponents.
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Fig. 1: Three important computational steps involved during the training of a convolutional layer.

or FB24 can be executed on an accelerator support-

ing bfloat16 [12], [18] or CPUs/GPUs with single-

precision as they use the same exponent bits. In addition,

we can train DNNs in INT4, INT8 or INT16 with a

quantization scaling factor since the compute units of

FlexBlock are mainly fixed-point arithmetic units.

2) High core utilization: We maximize the core utilization

at all training steps and various layer types by proposing

two design techniques: i) mapping tensor dimensions in

a hierarchical manner to compute units, and ii) placing

a separate reduction unit for depthwise operations.

3) Low precision training: We demonstrate the use case

of FlexBlock that maximizes the energy efficiency of the

training by using 4-bit arithmetics (FB12). We accom-

plish this by statically/dynamically selecting higher bit

precisions when computing weight gradients.

II. BACKGROUND

A. Training Deep Neural Networks

To train DNN models, three important computational steps

are required: i) computing the training loss (forward pass;

FW), ii) computing local gradients (backward pass; BW),

and iii) computing weight gradients (weight update; WU). As

an example, Fig. 1 illustrates these steps for a convolutional

(Conv) layer. We can easily extend the similar analysis to fully-

connected (FC) layer as well. During the forward pass, ‘Ci’

input feature maps (fmaps) are convoluted with a set of weight

kernels to generate ‘Co’ output fmaps. After completing the

forward pass, the total loss (L) for a given mini-batch is

computed. Then, the backward pass begins to backpropagate

L to every layer in the network. In backpropagation, the

same convolution operation is performed where the input

becomes the local gradient GY = ∂L/∂Y at layer ‘l’ and

weight kernels are transposed and flipped. The output of this

operation is the local gradient GX = ∂L/∂X for layer ‘l−1’.

At each layer, the weight gradient ∂L/∂Wck is computed

by performing a pairwise (and depthwise) full convolution

between the local gradient GY [k] and input fmap X [c]. The

weight gradient is then used to update the weights after

multiplying it with the learning rate.

B. Block Floating Point

As mentioned in Section I, DNNs are generally trained with

FP32. The real value xi in the floating point representation

is expressed as

xi = (−1)si ·mi · 2
ei , (1)

where si is the sign, mi is the mantissa, and ei is the exponent

of the number xi. Block floating point (BFP) is a special

form of the floating point representation, where a block of

N numbers share an exponent corresponding to the number

with the largest magnitude [10], [29]. Then, numbers within

the block are represented as

~x = [x1, x2, . . . , xN ] = [x̂1, x̂2, . . . , x̂N ] · 2es = ~̂x · 2es , (2)

where es = ⌊log2(max(|x1|, · · · , |xN |))⌋ is the shared expo-

nent of the block, and x̂i = xi · 2
−es is the aligned number

represented by only ‘sign+mantissa’. With the BFP repre-

sentation, therefore, we can perform a dot product in fixed-

point arithmetic without the in-place alignment of intermediate

results (cheaper in hardware). A dot product between two

vectors ~w and ~x can be computed by

~w · ~x = ( ~̂w · ~̂x) · 2ew+ex , (3)

where ew and ex are the shared exponents of ~w and ~x,

respectively. One of the goals of this work is to design

hardware accelerator that supports various precision levels in

computing ~̂w · ~̂x for the efficient DNN training.

C. Precision-Scalable MAC Array

Many research efforts have been made over the recent years

to design precision-scalable MAC arrays that enable on-device

DNN inference [7], [34], [35], [45], [46], [52], [54]–[56].

Earlier work use a simple data gating scheme to zero out

operand(s) to minimize the dynamic power consumed by the

MAC array [34], [35], [45], [56]. A bit-serial data fetching

on weight tensors has been presented to allow fully-variable

weight precision (temporal scalability) [35]. This temporal

scalability has been extended to both operands, i.e., input and

weight tensors, to simplify the computing logic [54]. How-

ever, the bit-serial approach consumes varying clock cycles

depending on the precision level and requires more complex

control logic. On the other hand, Shin et al. proposed to utilize

sub-word parallelism on weight tensors [56]. A full-precision

multiplier is built out of multiple sub-multipliers, which are

always active (spatial scalability). To provide the sub-word

parallelism on both operands (2D parallelism), a systolic array

in which each processing engine consists of sixteen multipliers

has been presented [55]. As pointed out by Camus et al. [7],

the 2D sub-word parallelism shows the best energy efficiency

when designing the precision-scalable MAC array.
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III. MOTIVATION

In this paper, we aim to devise a multi-precision support

accelerator architecture for DNN training. While the exist-

ing multi-precision architectures are exclusively designed for

inference, one may think that the naı̈ve adaptation of such

architecture is sufficient for training. Thus, we first delve

into the prior work and identify the limitations of existing

architectures that we target to optimize in this work.

Limitation: One of the representative works on a precision-

scalable MAC array is Bit Fusion [55]. Fig. 2(a) shows a fusion

unit (FU) presented in [55] using the 2D sub-word parallelism.

Each partial product in a 16b×16b multiplication is computed

at a dedicated 4b×4b multiplier (some are color-coded). Since

all accumulations within an FU need to be completed prior to

passing the result to the next FU, the number of accumulated

partial sums (psums) quadruples when there is 2× precision

reduction on both operands (X and W). A simple motivational

example on this issue is provided in Fig. 3(a-c). This may

result in the underutilization of MACs limiting the speed-

up expected by the precision scaling. In addition, Bit Fusion

requires a significant number of shifters, e.g., ∼98k 4-bit

shifters for the 64×64 array. To improve the power-efficiency,

BitBlade [52] clusters multipliers with the identical shift length

and reduces the number of shifters by 93.8% compared to Bit

Fusion. Still, the number of accumulations increases at the

same rate as Bit Fusion with precision scaling.

Solution: To mitigate this problem, a subset of multipliers

are grouped together, as a processing unit (PU), to realize

1D sub-word parallelism on X (Fig. 2(b)). Across multiple

PUs, i.e., four in FlexBlock, 1D sub-word parallelism on W

is realized where psums from PUs are accumulated at the end

depending on the precision mode. The advantage of splitting

the 2D parallelism is more clear by looking at the example

shown in Fig. 3(d-f). Instead of forcing all PUs to perform the

same vector multiplication with a lengthy vector dimension,

each accumulation path can be assigned to compute different

output channels. With this hierarchical sub-word parallelism,

the number of accumulated psums doubles even with the 2×
precision reduction on both X and W (Fig. 3(d-f)).

Analysis: To quantitatively examine the implication of such

architectural difference, we analyze the MAC utilization of

FW, BW and WU steps on Bit Fusion, BitBlade, and our

FlexBlock architectures, as we change the input and weight

tensor precisions. For the analysis, we assume the training

variants of Bit Fusion and BitBlade architectures attached

with necessary FP32 accumulators and BFP modules at

the end of the MAC array. Fig. 4 reports that the MAC

utilization is 76.5% for both Bit Fusion and BitBlade on

training MobileNetV1 [19] when both input (X) and weight

(W) tensors are 16-bit (denoted as X16W16). When we reduce

the precision to 8-bit (X8W8), the utilization reduces by

13.8% on average. If we further reduce the precision from

8-bit to 4-bit (X4W4), additional 22.0% utilization drop is

observed on average. This is because a much larger number

of accumulations are required at a reduced precision to avoid
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Fig. 2: An illustration of performing a 16b×16b multiplication

using two precision-scalable multipliers: (a) a fusion unit (FU)

in Bit Fusion [55] and (b) a processing unit (PU) in the

proposed FlexBlock. Four PUs in FlexBlock split the 2D sub-

word parallelism into two 1D sub-word parallelisms.

TABLE I: Examples of two and three-dimensional operations

supported by FlexBlock

Modes Operations

2D
Computing ∂L/∂W , Depthwise Conv,

Dilated Conv, Up Conv

3D
General Conv, Pointwise Conv, FC

(for both forward and backward pass)

wasting computing resources.

This MAC underutilization problem gets exacerbated when

considering the weight gradient calculation, i.e., WU step,

since the WU consists of a number of depthwise operations

that require a small number of accumulations and thus utilize

a small subset of MAC units. As the depthwise operations do

not entail computations across multiple channels, we classify

them as 2D operations in this paper. Table I summarizes 2D

and 3D DNN operations supported by the FlexBlock core.

IV. DESIGN OF A FLEXBLOCK CORE

A. Hierarchical Design in FlexBlock

For the fine-grained control of hardware modules depend-

ing on the precision mode and layer type, we designed a

processing core of FlexBlock to have a hierarchical struc-

ture, i.e., multiplier→processing element (PE)→processing

unit (PU)→subcore (Fig. 5). A multiplier in FlexBlock accepts

both signed and unsigned operands similar to [55]. One global

sign bit is used to indicate whether the input/weight tensor is

in signed or unsigned representation. Then, nine multipliers
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of MobileNetV1 with mini-batch size of 16 using various

precision-scalable MAC arrays (Bit Fusion [55], BitBlade [52]

and the proposed FlexBlock).

are clustered together to make one PE to efficiently map

and compute 2D convolutions2. In FlexBlock, the sub-word

parallelism on the input tensor X is achieved across four PEs

in a PU. For the 16-bit input tensor X, each 4-bit sub-word (x3,

x2, x1 or x0) is mapped to the corresponding PE. Four PEs are

then clustered to form a PU. Note that a PU in Fig 2(b) has

a PE with one multiplier for the simple illustration. Another

sub-word parallelism on the weight tensor W is realized across

four PUs in a subcore. For the 16-bit weight tensor, only a 4-

bit sub-word (w3) is mapped to PU3 and transferred to all PEs

within the PU assuming that the precision of the input tensor

is 16-bit. The remaining three sub-words, i.e., w2, w1 and w0,

are distributed to the rest of PUs, respectively.

2Having nine multipliers removes the burden of im2col operations on the
host CPU. However, the number of multipliers per PE can vary depending on
the design strategy (e.g., 8 multipliers per PE).
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Fig. 5: Hierarchical structure of hardware modules in Flex-

Block. Four PUs form a subcore in FlexBlock.

B. Bit Reconfigurability

In FlexBlock, we provide three levels of bit precision, i.e.,

4-bit, 8-bit and 16-bit, for ‘sign+mantissa’ of each tensor for

Conv/GEMM operations. For all three precision levels, we

use the same 8-bit shared exponents. Thus, we define three

basic FlexBlock formats as FB12 (X4W4), FB16 (X8W8)

and FB24 (X16W16). We can also mix-and-match different

mantissa bits on the associated tensors, e.g., 8-bit inputs, 4-bit

weights, and 16-bit gradients, allowing 33 = 27 combinations.

Sub-word parallelism on X: Fig. 6 shows how the input

activations (forward pass) or local gradients (backward pass)

are delivered to PEs and PUs for the Conv3 layer3. For the

3ConvK represents a K×K convolutional layer.
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Fig. 6: Examples on distributing input data to PEs in each PU

depending on the input tensor precision (feature maps or local

gradients). Inputs are broadcast to PUs in a single cycle.

16-bit mode (X16), each fmap element consists of four 4-

bit sub-words. Thus, each sub-word is mapped to a 4b×4b

multiplier in the corresponding PE with the matching gray

color. Note that input operands are broadcast to PUs rather

than mapping different input channels to each PU. For the 8-

bit mode (X8), each fmap element consists of two 4-bit sub-

words. In this case, we can broadcast two input channels to

PUs with the 144-bit interconnect. Similarly, we broadcast four

input channels to PUs in the 4-bit mode (X4). In this case, each

input channel is mapped to a PE in the PU.

Sub-word parallelism on W: Fig. 7 shows how the weight

parameters are delivered to PUs for the Conv3 layer as well.

For the 16-bit mode (W16), a 4-bit sub-word of each weight

parameter is delivered to the corresponding PU. The other

three sub-words are distributed to the remaining PUs in a

subcore. In this mode, the outputs from all PUs are accu-

mulated by the selective adder tree. For the 8-bit mode (W8),

we partition PUs into two clusters and assign the dimension

Cout across clusters. Thus, PU2-3 and PU0-1 provide partial

sums for Cout = k and Cout = k + 1, respectively. The

selective 4-way adder tree at the end of the reduction unit

produces the two partial sums. For the 4-bit mode (W4), four

output channels are distributed to four PUs. In this case, each

PU produces a partial sum for the assigned output channel

bypassing the selective adder tree.

C. Mapping Various DNN Layers

Mapping 3D operations: In this subsection, we present

how the input/weight tensors are being mapped to a FlexBlock

core for various DNN layers. The compute modules in

FlexBlock are designed with hierarchy so that different tensor
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w w! w"

w# w$ w%

w& w' w(

w[15:12]
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w& w' w(

C
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+

+ +

Subcore

Subcore

Subcore

Fig. 7: Examples on distributing weight data to processing

units in a subcore depending on the precision of the weight.

In this example, 16-bit inputs are assumed (thus, a single input

fmap is shared across multiple weight kernels).

TABLE II: Tensor dimensions mapped to each FlexBlock

module depending on layer types

FlexBlock Module Mapped Tensor Dimension

Subcore
Cin (Conv1/FC, Conv3), Cout (2D Mode),

W/H (Conv5, Conv7)

Processing Unit Cout (determined by the precision of weights)

Processing Element Cin (determined by the precision of inputs)

Multiplier
Cin (Conv1/FC),

W/H (Conv3, Conv5, Conv7, 2D Mode)

dimensions can be easily mapped to these modules depending

on the layer type as summarized in Table II. Some examples

on how FlexBlock clusters subcores or PUs depending on the

layer type are shown in Fig. 8. We assume FB16 (X8W8) as

a precision level for the illustration here. For the Conv1 or FC

layer, the only partial sums to be accumulated are in dimension

Cin. Thus, input elements and the corresponding weight

parameters across the dimension Cin are mapped to subcores,

PEs and multipliers (Fig. 8(a)). Subcore0 is responsible for the

first 18 input channels (Cin = 0∼17), Subcore1 is in charge

of computing the next 18 input channels (Cin = 18∼35),

and so on. For the Conv3 layer, the only difference over the

Conv1 case is in mapping operands to multipliers (Fig. 8(b)).

The dimension mapped to the multipliers becomes the fmap

width/height (W /H). With larger weight kernels, e.g., a Conv5

or Conv7 layer, we cluster multiple subcores to assign all input

elements in the W /H dimension with the size of a weight

kernel. To maximize the core utilization on various layer types,

we placed six subcores in FlexBlock. For the Conv5 layer, we

make two clusters with three subcores each. Then, the core

utilization becomes (5 × 5)/(3 × 9) = 0.93. For the Conv7

layer, we make a cluster with all six subcores providing the

core utilization of (7× 7)/(6× 9) = 0.91.
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Fig. 8: Examples on how FlexBlock groups subcores depending on the layer type and distributes input/weight tensors. FlexBlock

can efficiently process (a) a Conv1 or fully-connected layer, (b) a Conv3 layer and (c) a Conv5 layer. Note that three subcores

are grouped together to compute the Conv5 layer. Since we have six subcores in FlexBlock, we can map another set of input

feature maps (e.g., two subsequent input channels for 8-bit activations) to the remaining subcores. To compute a Conv7 layer,

which is omitted here for brevity, FlexBlock groups all six subcores.

Mapping 2D operations: Thus far, we explained the map-

ping strategy for 3D operations where the outputs from PUs

are vertically accumulated by the reduction unit for 3D mode.

FlexBlock has a separate reduction unit for 2D operations to

maximize the core utilization. The depthwise convolution (DW

Conv) layer is a good example of the 2D operation. In Fig. 9,

we illustrate the mapping of a DW Conv3 layer to FlexBlock

subcores. For 2D operations, we recommend to keep 8-bit or

16-bit for each tensor since some 2D operations are sensitive to

the precision reduction (see Section VII-A). Then, all outputs

from PUs per subcore are accumulated by the 4-way adder

tree in the 2D reduction unit. For the DW Conv3, each output

that comes from the subcore is for each output channel Cout.

We cluster subcores for larger weight kernels, e.g., DW Conv5

(three subcores) or DW Conv7 (six subcores), which is similar

to scaling up the Conv size in the 3D mode (Fig. 8(c)).

V. OVERALL ARCHITECTURE

The detailed microarchitecture of FlexBlock is provided

in Fig. 10. There are three major blocks in the FlexBlock

core design: i) a processing core, ii) a reduction unit for 2D

operations, and iii) a reduction unit for 3D operations.

A. Major Building Blocks

1) Processing Core: As mentioned earlier, each processing

core consists of six subcores to maximize the core utilization

on various DNN layers. The ‘sign+mantissas’ of input and

weight tensors are mapped to these subcores and the multi-

plication results are accumulated together by integer adders,

i.e., ( ~̂w · ~̂x) in Eq. (3), if their shared exponents are extracted

a priori. Depending on the bit precision (FB12, FB16 or

FB24), we block each sub-tensor differently that shares the

same exponent. Table III summarizes the minimum block size

for each FlexBlock format on various DNN layers. With the

reduced precision, the number of input channels mapped to

Input (16b)

144b

C
in

(DW Conv3)
w! w" w#
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C
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36b
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Fig. 9: An example of mapping 2D operations to FlexBlock

subcores. Here, we select a widely used depthwise Conv3

as an example. Note that outputs from each subcore move

horizontally to the reduction unit for 2D mode.

the processing core doubles (FB16) or quadruples (FB12)

compared to FB24 (refer to Fig. 6). In addition, the number of

input channels grouped by the block proportionally decreases

as the size of weight kernels increases. This fine-grained

control of the block size is proposed to make use of all the

multipliers available in the processing core, i.e., high core

utilization, for various precision levels and DNN layers.

2) Reduction Units: The prior work [7], [52], [54], [55] on

the design of precision-scalable MAC arrays have two major

limitations: i) no support for DNN training, and ii) low core

utilization for 2D operations. The former is handled by sup-

porting the block floating point arithmetic in FlexBlock with a

shared exponent handler, arithmetic converters placed prior to

FP32 accumulation units, and an FP2BFP converter (Fig. 10).

The latter is resolved by placing the dedicated reduction unit

for 2D operations along with the default reduction unit for

3D operations (dual-path reduction units). The core utilization

for the 2D operation becomes important for the DNN training

since the computation of a weight gradient (∆W
l

ck
) involves
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Fig. 10: The overall microarchitecture of FlexBlock core. There are two reduction units where each unit is dedicated to either

2D or 3D operation mode. Our FlexBlock core is capable of processing various block floating point numbers with 8-bit shared

exponents (e.g., FB12, FB16 and FB24). The ‘out CORE’ goes to a weight update or a batch normalization unit. Before

storing the data to DRAM, we extract shared exponents of sub-tensors at a FP2BFP converter for computing the next layer.

TABLE III: The minimum block size of an input tensor sharing

the exponent at each FlexBlock format on various layer types

Layer Type Format Block Size Layer Type Format Block Size

CONV1/FC
FB12 1×1×216

CONV5
FB12 5×5×8

FB16 1×1×108 FB16 5×5×4
FB24 1×1×54 FB24 5×5×2

COVN3
FB12 3×3×24

CONV7
FB12 7×7×4

FB16 3×3×12 FB16 7×7×2
FB24 3×3×6 FB24 7×7×1

a depthwise full convolution between every pair of the local

gradient (GY
l+1

k
) and input fmap (Xl

c). Due to the nature of

channel-wise computations, a small number of multiplication

results are required to be accumulated, which significantly

reduces the core utilization in the prior work (Section III).

B. Other Functional Blocks for BFP-based DNN Training

1) Batch Normalization Unit: When training DNNs, batch

normalization (BN) is an essential step to find better weight

parameters with faster convergence. The BN reduces the

internal covariate shift making the training process more

stable [24]. To update the BN parameters, i.e., running mean µ
and variance σ2, all input tensors need to be read from DRAM

three times [28]. In [28], authors present a fusion technique

to reduce the read accesses to twice. In FlexBlock, we use

range batch normalization [4] that further reduces the number

of DRAM accesses to one with simpler hardware modules.

2) ReLU-Pool Unit: In general, the BN layer is followed by

a nonlinear activation function and an optional pooling layer

in CNNs. Since the pooling layer may not exist between the

BN layer and Conv layer, we design a reconfigurable ReLU-

ReLU
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B
N
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u
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Fig. 11: Design of a reconfigurable ReLU-Pool unit placed

after batch normalization unit.

Pool unit as shown in Fig. 11. For the activation function,

FlexBlock provides ReLU and ReLU-α. The ReLU-α unit

accepts a clipping value α as a parameter, which is set to

6 for MobileNets [19], [53]. The α can also be trained for

improving the accuracy of quantized neural networks [8]. For

the pooling layer, FlexBlock allows no pooling, max pooling,

or avg pooling by controlling the ‘out sel’ signal.

3) Weight Update Unit: A weight update unit is directly

connected to the core output buffer. After the weight gradients

are computed by the processing core, they are passed to the

weight update unit at which a vector unit is placed to multiply

a learning rate η to the weight gradients. Then, the weight

parameters (W l

ck
) are subtracted by the scaled weight gradients

(η ·∆W l

ck
) using element-wise subtract units.

4) Block Floating Point Converter: The FP2BFP converter

is placed after the weight update unit to prepare input/gradient

and weight tensors for computations at the next layer. This

unit blocks each sub-tensor by the pre-defined block size as

summarized in Table III depending on the precision level and
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Fig. 12: A simple illustration of the process performed by the

FP2BFP converter. The number of zero setting errors (ZSEs)

can be used to determine the precision mode of each tensor

at runtime (Section VII-D).

layer type of the following layer. It has a shared exponent

extractor and mantissa aligners that let the processing core of

FlexBlock handle only fixed-point computations (Fig. 12). The

quantization unit is followed by the FP2BFP unit to minimize

communication overheads between the core and DRAM.

VI. METHODOLOGY

A. Software Framework for BFP-based DNN Training

For evaluating the accuracy of a fine-grained blocking

of sub-tensors during the DNN training, we implemented a

configurable BFP trainer using PyTorch. The BFPsim first

defines the network, then it replaces all ‘torch.nn.Conv2d’

and ‘torch.nn.Linear’ modules with ‘BFP.Conv2d’ and

‘BFP.Linear’ modules in a configuration file provided by

the user (‘bfp_config.json’). The bit precision of each

tensor can be configured in this file as well as the block

size that shares the exponent. To monitor the impact of the

reduced precision during the computation of weight gradients,

we allow users to individually control the mantissa bits for

local and weight gradients. The values for blocked sub-tensors

are converted to BFP format by extracting the shared exponent

and aligning mantissas within the block. Then, we perform

pseudo BFP computations in the BFPsim, which means that

we store the converted BFP values in FP32 to fully utilize

internal functions of PyTorch.

B. Hardware Implementation

To evaluate the proposed FlexBlock hardware in detail, we

implemented RTL of all building blocks shown in Fig. 10

except SRAMs. Then, they are synthesized in 65nm CMOS

technology using Synopsys Design Compiler (ver. N-2017.09-

SP5 [61]) running at 333MHz (Tclk = 3ns). To extract

more accurate area estimation, post-PnR area is obtained by

using Synopsys IC Compiler [60]. For the power analysis, we

extracted saif files after setting different BFP modes and layer

types then feeding testbenches to FlexBlock. The extracted

saif files are then used in Design Compiler to estimate the

power consumption of FlexBlock with more realistic switching

probabilities at each BFP mode. The energy consumption and

cycle time of accessing SRAMs in 65nm are estimated by

using CACTI [38], [68]. We assume a FlexBlock accelerator

with a 512KB input buffer, a 512KB weight buffer, and a

256KB output buffer that are distributed to 64 FlexBlock

cores. Double buffering is utilized to hide the DRAM access

latency when possible. The 64 FlexBlock cores are capable

of computing 54× 64 = 3, 456 16b×16b MAC operations in

FB24. The number of operations increases by 4× (13,824) or

16× (55,296) when the mode is set to FB16 or FB12.

VII. EXPERIMENTAL RESULTS

A. Accuracy of DNN Training with Multi-Mode BFP Support

1) Benchmarks: To evaluate the algorithmic stability of

training DNNs in various BFP formats, we selected four

datasets, i.e., CIFAR-10, CIFAR-100 [32], ImageNet [9] and

WMT14 [5]. Note that FlexBlock is able to individually set

mantissa bits for activations, weights, and gradients to achieve

the minimum training cost in terms of energy consumption.

First, we extensively studied the training of five representative

CNNs, i.e., AlexNet [33], VGG16 [57], ResNet-18 [17],

MobileNetV1 [19] and DenseNet-121 [20] on simple CIFAR

datasets (Fig.13). Then, we trained ResNet-18 on ImageNet

and Transformer [63] on WMT14 in various BFP formats to

check how well they scale to more complex tasks (Fig. 14).

2) Basic BFP Formats: As a baseline, we trained all

benchmarks in FP32. As another baseline, we trained the

benchmarks using mixed precision supported by Tensor Cores

in NVIDIA RTX3090. In the mixed precision training, multi-

plications are performed in FP16 and accumulations are done

in FP32, i.e., ‘FP16+FP32’ in Table IV. First, we trained all

benchmarks with basic BFP formats, i.e., FB24, FB16 and

FB12. In the basic BFP format, ‘sign+mantissa’ bits of all
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Fig. 13: Accuracy of five CNN models trained in FB12 on CIFAR datasets improves by setting 8-bit ‘sign+mantissas’ for

weight gradients (WG), i.e., denoted as FB12+WG16. With the precise weight gradient computation, the accuracy of FlexBlock

closely matches with the baseline (FP32) even with FB12 for most computations.
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Fig. 14: Comparison of training curves between different

precision formats on more complex datasets, i.e., ImageNet

and WMT14 En-De (best viewed in color).

TABLE IV: Achieved final accuracy when using a diverse set

of precisions for training DNNs on four well-known datasets

Precision FP32
FP16

+FP32
FB24 FB16 FB12

FB12

+WG16

Dataset CIFAR-10 (Top-1 Accuracy)

AlexNet 87.12 86.96 87.06 86.68 85.11 86.41

VGG16 92.83 92.90 92.93 92.97 87.43 92.71

ResNet-18 93.37 93.68 93.79 93.75 90.36 93.50

MobileNetV1 87.07 86.85 85.98 86.67 79.80 87.22

DenseNet-121 93.37 93.61 93.06 93.32 89.42 93.01

Dataset CIFAR-100 (Top-1 Accuracy)

AlexNet 59.52 59.21 59.39 59.77 57.03 59.66

VGG16 73.35 73.16 73.06 73.20 62.51 72.35

ResNet-18 77.26 76.88 77.45 77.23 66.69 76.45

MobileNetV1 67.40 66.80 66.95 67.60 57.11 67.06

DenseNet-121 77.24 77.57 77.68 77.05 70.53 74.93

Dataset ImageNet (Top-1 Accuracy)

ResNet-18 69.95 69.23 69.92 68.60 58.49 68.20†

Dataset WMT14 En-De (Perplexity)

Transformer-base 3.87 3.92 4.33 4.29 4.26 4.27

†For ImageNet dataset, training with FB12+WG24 achieves the similar
accuracy to the baseline.

tensors are set to the same bit-width, e.g., 8-bit for activa-

tion, weight, and gradient tensors in FB16. Throughout the

experiments, we stick to the block size provided in Table III

to evaluate the training/test accuracy of FlexBlock. If we look

at the accuracy comparisons in Table IV, the test accuracy

with FB24 or FB16 is similar to the baselines. However, the

test accuracy is significantly lower than the baselines when

we train the model with FB12 (-6.21% on average for CIFAR

datasets and -11.46% for ImageNet, respectively). For Trans-

former trained on WMT14 dataset, FB12 still provides similar

perplexity to other high-precision data formats (Fig. 14).

3) BFP Variants: The accuracy degradation in FB12 is due

to the limited precision by having 4-bit ‘sign+mantissas’. Note

that all FlexBlock formats use 8-bit shared exponents, i.e.,

same as FP32 and bfloat16, making the dynamic range of

FB12 wide enough to train DNNs. As emphasized by the prior

work, the precision and/or dynamic range during the weight

gradient computation is extremely important for the reliable

DNN training [10], [31], [43], [58]. Thus, we may elevate

the bit precision to FB16 during the weight update when

training with FB12. All computations use 4-bit except when

computing the weight gradients (marked as FB12+WG16). As

shown in Fig. 13, the test accuracy on CIFAR datasets mostly

Fig. 15: Area and power breakdowns of a FlexBlock core and

hardware blocks for the BFP-based training.

matches with the FP32 baseline by using FB12+WG16 in

FlexBlock. For DenseNet-121 on CIFAR-100, the accuracy

with FB12+WG16 is 2.31% short from the FP32 baseline (but,

still 4.4% better than the model trained with FB12). As shown

in Fig. 14, training ResNet-18 on ImageNet fails when we

use FB12+WG16. By elevating the precision to FB12+WG24,

we can achieve similar accuracy to the baseline. This set of

experiments shows that supporting multi-mode BFP arithmetic

maximizes the efficiency of DNN training.

B. Area and Energy Analysis

To analyze the area and energy consumption, we synthe-

sized the RTL of a single FlexBlock core and all the required

functional blocks for the BFP-based training. The reported area

and power consumption are shown in Fig. 15. The numbers

for the FlexBlock core include the processing core, dual-path

reduction units, and control blocks in Fig. 10. About 36% of

area and 41% of power consumption are used by the core. In

total, 1.48mm2 of area (∼2.81mm2 after PnR) and 295.59mW

of power consumption are used by the single core.

For more realistic analysis, we scaled up the FlexBlock

accelerator with 64 cores, which places 54×64 full-precision

(i.e., 16b×16b) multipliers for the FB24 mode. RTLs of two

baselines are designed and compared to FlexBlock in Table V:

i) a systolic array using bfloat16 (in short, SA) and ii) a

BFP-based training accelerator using Bit Fusion architecture

(in short, BF). For BF, the array size is set to 64×64 for

the FB24 mode. The both FlexBlock and BF support multi-

precision modes, e.g., FB12, FB16 and FB24. The array size

of SA is set to 128×128 to match the number of multipliers to

the FB16 mode in BF or FlexBlock (i.e., 8-bit mantissas + 8-

bit shared exponents; a BFP version of bfloat16). All three

training accelerators are running at 333MHz in 65nm CMOS

technology. The area of 64 FlexBlock cores (33.82mm2) is

2.2× and 1.2× smaller than SA and BF, respectively. The

power consumption of 64 FlexBlock cores, i.e., 7.48mW on

average, is 1.3× and 2.5× lower than SA and BF, respectively.

To compare the throughput of three training accelerators,

RTL simulations were performed to extract the MAC utiliza-

tion depending on the layer type, precision mode, and tensor

dimensions. The extracted MAC utilization is being used in

our cycle-approximate simulator to estimate the required clock
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TABLE V: Architectural comparisons between TPU-like systolic array, BitFusion-like BFP accelerator, and FlexBlock Cores

in terms of area, power consumption, and energy efficiency

Training Hardware TPU-like Systolic Array (SA) BitFusion-based BFP Accelerator (BF) FlexBlock Cores (Proposed; FB)

Technology 65nm 65nm 65nm

Supported Precision bfloat16 FB12, FB16, FB24 FB12, FB16, FB24

Array Size 128×128 64×64 (for FB24) 54×64 (for FB24)

# of Multipliers 128×128 256×256 (FB12) / 128×128 (FB16) / 64×64 (FB24) 216×256 (FB12) / 108×128 (FB16) / 54×64 (FB24)

Area [mm2] 74.38 40.22 33.82

Power Consumption [W] 9.84 17.83 (FB12) / 17.13 (FB16) / 15.96 (FB24) 8.27 (FB12) / 7.80 (FB16) / 7.36 (FB24)

Clock Frequency 333MHz 333MHz 333MHz

Throughput [TFLOPS] 1.77 2.82 (FB12) / 1.77 (FB16) / 0.66 (FB24) 8.78 (FB12) / 3.35 (FB16) / 0.95 (FB24)

Efficiency [GFLOPS/W] 179.6 157.96 (FB12) / 103.16 (FB16) / 41.11 (FB24) 1,061.7 (FB12) / 428.9 (FB16) / 128.7 (FB24)

Core (FW) Core (BW) Core (WU) Buffer (FW) Buffer (BW) Buffer (WU)

SA: Systolic Array (bfloat16) | BF: BitFusion-based | FB: FlexBlock (Proposed)
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Fig. 16: Comparisons of the performance and energy consumption between the systolic array (SA), the BitFusion-based BFP

accelerator (BF), and the proposed FlexBlock (FB in red). For the analysis, we evaluated five CNN benchmarks on ImageNet

and Transformer-base model on WMT14. Here, FB12 represents FB12+WG24 format.

cycles considering the memory access latency and the on-

chip buffer size. Instead of using small CIFAR datasets for

CNN benchmarks, we used ImageNet for all CNN models

(with mini-batch size of 128) to compare three architectures

in terms of the performance and energy consumption. For

Transformer model, we also used the mini-batch size of 128.

With the estimated clock cycles and the extracted power

consumption of each accelerator, we report and compare the

performance and energy consumption in Fig. 16. The training

accelerators at an equivalent precision level are compared, e.g.,

SA with bfloat16 is compared to BF and FlexBlock in

FB16. As a result, FlexBlock reduces the energy consumption

(training time) by 65.3%, 68.2%, and 79.3% (32.0%, 47.5%,

and 68.4%) on average compared to BF at FB24, FB16,

and FB12+WG24, respectively. Compared to SA, FlexBlock

reduces the energy consumption and training time by 44.3%

and 52.7% on average. When we train DNN models with

FB12+WG24 in FlexBlock, we can reduce the energy con-

sumption and training time by 76.4% and 81.0% on average

compared to SA.

C. Performance Comparison with GPU

In this subsection, we compare the training speed and energy

efficiency with a high-end GPU card, i.e., NVIDIA RTX3090.

When training in GPU, we utilized the mixed precision

training (FP16+FP32) presented in [43]. The runtime for a

single training iteration on 128 batches in GPU is measured

TABLE VI: Comparisons of the performance and energy

efficiency between GPU (NVIDIA RTX3090) and FlexBlock

when training CNN benchmarks on ImageNet

DNN Benchmark AlexNet VGG16 ResNet MobileNet DenseNet

GPU
(FP16

+FP32)

Runtime [ms] 46.0 296.4 71.4 65.9 214.0
Power [W] 207.7 326.7 321.4 322.7 336.2

GFLOPS/W 41.1 61.0 36.3 9.8 15.5

FlexBlock
(FB16)

Runtime [ms] 178.8 1372.3 243.6 68.0 296.1
Power [W] 19.0 19.0 19.0 19.0 19.0

GFLOPS/W 115.5 226.4 179.9 160.9 197.9

FlexBlock
(FB12

+WG24)

Runtime [ms] 61.8 391.4 114.1 36.7 116.9
Power [W] 19.5 19.5 19.5 19.5 19.5

GFLOPS/W 325.9 774.4 374.8 290.8 489.0

* All functional units listed in Fig. 15 are included in the power report.

by a built-in function in Python. The power consumption of

running each CNN benchmark is measured by nvidia-smi.

The reported numbers are summarized in Table VI. As one

RTX3090 card has 384 Tensor Cores, it is equivalent to 20,992

FP16 multipliers. Thus, we compare the performance with

FlexBlock using FB16 and FB12+WG24. The performance

of FlexBlock with FB16 is 2.9× lower than GPU. However,

this may come from the ∼1/4 of GPU clock frequency

used by the current FlexBlock hardware. The training speed

with FB12+WG24 on AlexNet, VGG16 and ResNet-18 is

1.4× slower than GPU. However, training in FlexBlock is

1.8× faster on MobileNetV1 and DenseNet-121 than GPU.

Considering the 15.5× lower power consumption, FlexBlock

in FB12+WG24 achieves similar training speed with much

higher energy efficiency (18.4×) compared to the recent GPU.
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D. Case Study: Dynamic Precision Control

So far, we studied the benefit of statically assigning a dif-

ferent bit precision to each tensor for efficient DNN training.

However, it will be extremely useful if we can automatically

tune the precision of each tensor at runtime while training

a DNN model. To accomplish this, we count the number

of zero setting errors (ZSEs) due to the shift operations in

the FP2BFP converter explained in Fig. 12. We keep track

of ZSEs of each tensor for the current epoch and determine

the precision for the next training epoch by comparing the

ratio of ZSEs to pre-defined thresholds. We utilize a hysteresis

controller to slowly change the bit precision (Fig. 17(a)). If the

ratio of ZSEs is too large, it means that the current mantissa

bit is not sufficient to train the model. To demonstrate the

feasibility of this approach, we fixed activation and weight

precisions to FB12 and dynamically adjusted the precision

of weight gradients between FB12 and FB16 at runtime. We

tested this approach on ResNet-18 with CIFAR-10 dataset.

Fig. 12(b) shows how layer-wise precision adaptation is done

by the proposed control mechanism. Thanks to this dynamic

precision control, we observed 16% speed-up compared to the

static FB12+WG16 case with no accuracy degradation (∼45%

of weight gradients, WG, were set to FB12 instead of FB16).

VIII. RELATED WORK

A. Accelerators for Training Deep Neural Networks

As training DNNs requires higher memory bandwidth and

more computational resources than the inference, many prior

work proposed accelerators [25], [30], [64] or systems [11],

[21], [26], [66] optimized for the training. In ScaleDeep [64],

heterogeneous processing tiles are utilized to map different

types of DNN layers for the efficient training. In Deep-

Train [30], authors present temporally heterogeneous tensor

mapping with near-memory computing using a 3D-stacked

memory. Gist [25] encodes the feature maps computed during

the forward pass to efficiently store them for later use in

the backward pass. In addition, many research focus on the

distributed (or pipelined) training of DNN models [11], [21],

[26], [66] to achieve the best training performance.

Recently, sparse DNN accelerators are proposed to increase

the throughput of training DNNs by exploiting the possible

sparsity at each tensor [48], [69]. SIGMA [48] proposes a

training accelerator that handles both sparsity and irregular

structure in GEMM operations by using a Benes network

for efficient workload distribution. Authors in [69] present

a sparse DNN training accelerator, named Procrustes, that

exploits one source of sparsity (either activations or weights)

during the forward pass, backward pass, or weight update.

Procrustes leverages the mini-batch dimension, i.e., a dense

tensor dimension, for the balanced workload distribution when

performing arithmetic operations involving sparse tensors.

B. Reduced Precision During DNN Training

To maximize the arithmetic density of training accelerators,

fixed-point logic can be used during the DNN training [10],

[15], [31]. In [15], stochastic rounding is used in training

FP2BFP
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Fig. 17: Dynamic precision control: (a) a hysteresis controller

is used to determine the precision of a tensor for the next train-

ing epoch, (b) Layer-wise precision adaptation by checking the

ZSE ratio (only three layers are shown for brevity).

DNNs with INT16 to minimize the expected numerical er-

ror. This work, however, evaluated the proposed method on

relatively simple tasks, i.e., classifying 10 different image

classes using MNIST and CIFAR-10. Other previous work

aggressively reduce the precision during the training at the

cost of noticeable accuracy degradation [2], [22], [23],

[37], [39], [42], [49], [59]. To overcome the limited range

of the fixed-point representation, Flexpoint [31] extracts a

5-bit shared exponent for each tensor (coarse-grained) and

adjusts the exponent twice per mini-batch to prevent the

overflows. To perform in-place exponent extraction, rather

than periodically checking the overflow, an accelerator with

hybrid block floating point [10] is proposed that performs

multiply-and-accumulate operations on the fixed-point logic

while other remaining operations are done in FP32. Compared

to [10], [31], FlexBlock allows more fine-grained blocking

of sub-tensors to support variable precisions for accelerating

the training process as discussed in Section VII-B. In the

very recent work on low-precision training [1], [47], [58],

[65], [67], 8-bit floating point (FP8 or HFP8) has been

used to train DNNs with a little accuracy loss on a wide

spectrum of benchmarks. However, the hardware associated

with FP8 training uses specific mantissa and exponent bits for

its maximum energy efficiency, which lacks flexibility.

IX. CONCLUSION

In this work, we proposed a DNN training accelerator,

i.e., FlexBlock, designed to support multi-precision block

floating point arithmetics. This multi-mode BFP support has

two main advantages: i) enabling users to train DNNs at

desired precision levels, and ii) reducing the training time for

faster DNN exploration. We identified the inherent limitation

of the prior precision-scalable MAC arrays and hierarchically

allocated the tensor dimensions to compute units in FlexBlock

for better performance. As the computations involved in the

DNN training are rapidly increasing, this work will encourage

developing training hardware with better flexibility and higher

energy efficiency using various BFP formats.
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