
Hardware Hardened Sandbox Enclaves for Trusted Serverless

Computing

JOONGUN PARK, KAIST, Republic of Korea
SEUNGHYO KANG, KAIST, Republic of Korea
SANGHYEON LEE, KAIST, Republic of Korea
TAEHOON KIM, ETRI, Republic of Korea
JONGSE PARK, KAIST, Republic of Korea
YOUNGJIN KWON, KAIST, Republic of Korea
JAEHYUK HUH, KAIST, Republic of Korea

In cloud-based serverless computing, an application consists of multiple functions provided by mutually distrusting parties.

For secure serverless computing, the hardware-based trusted execution environment (TEE) can provide strong isolation

among functions. However, not only protecting each function from the host OS and other functions, but also protecting the

host system from the functions, is critical for the security of the cloud servers. Such an emerging trusted serverless computing

poses new challenges: each TEE must be isolated from the host system bi-directionally, and the system calls from it must

be validated. In addition, the resource utilization of each TEE must be accountable in a mutually trusted way. However, the

current TEE model cannot eiciently represent such trusted serverless applications. To overcome the lack of such hardware

support, this paper proposes an extended TEE model called Cloister, designed for trusted serverless computing. Cloister

proposes four new key techniques. First, it extends the hardware-based memory isolation in SGX to conine a deployed

function only within its TEE (enclave). Second, it proposes a trusted monitor enclave that ilters and validates system calls

from enclaves. Third, it provides a trusted resource accounting mechanism for enclaves which is agreeable to both service

developers and cloud providers. Finally, Cloister accelerates enclave loading by redesigning its memory veriication for fast

function deployment. Using an emulated Intel SGX platform with the proposed extensions, this paper shows that trusted

serverless applications can be efectively supported with small changes in the SGX hardware.

CCS Concepts: · Security and privacy→ Hardware-based security protocols.

Additional Key Words and Phrases: Security, Hardware, Serverless computing, Trusted Execution Environment

1 INTRODUCTION

Serverless computing has become a mainstream cloud service with the advent of platforms such as AWS Lambda,

Azure Function, and Google Function [25, 48, 66]. In the serverless computing, the cloud provider manages server

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) (IITP2017-0-00466 SW

StarLab and IITP2021-0-01817 Development of Next-Generation Computing Techniques for Hyper-Composable Datacenters). This work

was also supported by the National Research Foundation of Korea (NRF-2022R1A2B5B01002133). Both grants are funded by the Ministry of

Science and ICT, Korea.

Authors’ addresses: Joongun Park, jupark@casys.kaist.ac.kr, KAIST, Daejeon, Republic of Korea, 34141; Seunghyo Kang, shkang@casys.kaist.

ac.kr, KAIST, Daejeon, Republic of Korea, 34141; Sanghyeon Lee, jupark@casys.kaist.ac.kr, KAIST, Daejeon, Republic of Korea, 34141; Taehoon

Kim, taehoon.kim@etri.re.kr, ETRI, Daejeon, Republic of Korea, 34141; Jongse Park, jspark@casys.kaist.ac.kr, KAIST, Daejeon, Republic of

Korea, 34141; Youngjin Kwon, yjkwon@casys.kaist.ac.kr, KAIST, Daejeon, Republic of Korea, 34141; Jaehyuk Huh, jhhuh@casys.kaist.ac.kr,

KAIST, Daejeon, Republic of Korea, 34141.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1544-3566/2023/11-ART

https://doi.org/10.1145/3632954

ACM Trans. Arch. Code Optim.

https://doi.org/10.1145/3632954
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3632954&domain=pdf&date_stamp=2023-11-14

2 • Park et al.

infrastructures, and developers compose services with functions running in containers. The serverless model

allows cloud providers to optimize the platform using their customized software stacks while developers can

focus on their services without concerning deployment, scalability, and failure resistance of services.

In serverless computing, a service is composed by integrating ine-grained functions written by diferent

developers, and each function communicates with each other according to APIs provided by the platform.

Compared to traditional cloud architectures, the serverless model has a more complex relationship among

mutually distrusting parties: clients who need to protect their data, service developers who require the isolation

of each function, and the platform provider who wants to protect their system from malicious clients and

developers. To meet the security requirements, a new protection model has been proposed for the complex

scenarios, called trusted serverless computing model [23, 47, 51, 85]. In the trusted serverless computing, each

function is encapsulated by a protection domain to isolate the function from the platform.

Prior approaches [22, 47, 55, 76] use hardware-based Trusted Execution Environment (TEE) which enables the

strong isolation of functions in remote clouds, even when the servers are exposed to potential vulnerability in

privileged software and physical attacks. Recent TEE supports such as Intel Software Guard Extension (SGX)

and RISC-V Keystone [61] provide ine-grained isolated execution environments called enclaves protected by the

CPU hardware. The CPU hardware isolates each enclave (function) from the operating system (the platform) and

other applications (other functions). Its code and data can be encrypted and integrity-veriied while they reside

in the external DRAM.

However, trusted serverless computing requires more protections and services which cannot be supported by

the traditional TEE: First, in the traditional TEE, the codes inside an enclave can freely access or jump to the

remaining untrusted memory of the process. Such uni-directional protection can endanger the rest of the system

if the enclave code is malicious [89]. To address such vulnerability, the prior study proposed to employ a heavy

software-based sandboxing layer inside an enclave [22, 47, 55]. Second, as it requires to use operating system

services via system calls, the secure interaction with system calls must be supported. Not only such system call

requests must be veriied to protect the hosting system, but return values must also be checked to prevent Iago

attacks against the enclave [26, 41, 79, 86]. Third, tracking the resource utilization of each enclave is important

for serverless computing, as both the service developer and cloud provider must agree on the resource usage.

However, the current mechanism allows only one-sided accounting, where either an enclave or OS tracks the

resource utilization independently [23, 44, 47]. Finally, the current enclaves cause non-negligible performance

degradation for veriication when loading functions, hindering fast function deployment for changing demands.

To overcome the limitations of the current enclave model, this study proposes a new HW and SW extension

of enclave architecture, called Cloister. Cloister provides eicient hardware-supported solutions for the four

limitations, with relatively minor hardware changes. First, instead of using software-based sandboxing, Cloister

proposes a hardware-based sandboxed enclave (sbx-enclave), which blocks accesses from enclaves to the untrusted

world. By simply extending the pre-existing memory validation mechanism in SGX hardware, an sbx-enclave can

not only be protected from the untrusted world but also be prevented from accessing the untrusted context. Such

bi-directional isolation enables solid sandboxing support for each sbx-enclave without any extra software layer.

The second mechanism is to provide a hardened interaction between an sbx-enclave and the operating system.

The interaction of the sbx-enclave and operating system is forced to go through the monitor enclave to process

system calls only if they are valid. The key diference from the prior approaches [22, 47, 55, 76, 89] is that the

monitor is isolated both from the sbx-enclave and from the operating system, which provides stronger protection

for the system call veriication and return value validation. The codes running in the monitor enclave are attested

by the sbx-enclave and operating system, providing veriied monitoring operations by the two entities.

Third, with the neutral monitor enclave, Cloister can provide a tamper-proof accounting service of system

resources such as CPU, memory, ile I/Os, and network usage, as both the cloud provider and service developer

can trust the monitor enclave. With the support, the resource usage can be reported in a mutually trusted way for

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 3

SSL

Sandbox

Enclave

SQL

Sandbox

Enclave

File

System

Sandbox

Enclave

Client

Cloud Platform

No direct

access

f1 f2 f3Developer

Fig. 1. Overview of trusted serverless computing

both parties. Finally, to accelerate dynamic deployment of functions, Cloister signiicantly reduces the function

launching overheads of the original SGX by parallelizing memory measurement and eliminating redundant

operations.

Cloister proposes hardware extensions to the enclave while minimizing required hardware modiications. To

show the efectiveness of the new enclave extensions, we use two evaluation methods. Architectural simulation

validates that the performance degradation by the bidirectional isolation is negligible. In addition, we port several

application scenarios on an emulated SGX runtime with the extended interface. The experimental results show

that minor hardware extensions can improve the eiciency and security of serverless applications on clouds.

Compared to the prior SW-based sandboxing, Cloister shows up to 44.1% better performance in query servers

with multiple functions and 94.3% faster loading with 8x parallelization.

This paper aims to support trusted serverless computing and makes the following new contributions:

• It proposes bi-directional isolation between an enclave and its untrusted environment with a simple

extension of the existing memory access control mechanism in SGX. With the hardware extension, it can

eliminate an extra SW layer in the prior trusted sandboxes.
• It proposes a hardware-protected monitoring mechanism for handling system call iltering and return value

validation.
• Using the monitor enclave, it allows trusted accounting of each enclave resource usage, so that both the

service developer and cloud provider can agree on the resource utilization collected by the CPU hardware

and monitor enclave.
• To meet the performance requirement of serverless computing, we propose a hardware extension that

accelerates enclave loading by reducing measurement overheads.

2 BACKGROUND

2.1 Serverless computing

A serverless application is composed of ine-grained functions which communicate with each other through

pre-deined APIs. These functions are event-driven and user-level codes running in an isolated environment.

Generally, there are three types of participants in this system: cloud provider, service developers, and clients.

The cloud provider ofers the underlying infrastructure including hardware, system software, and runtime to

build an application. On top of that, the service developer builds applications by deploying functions so that their

clients use them remotely. The developer leverages function modules provided either by the platform or by other

developers to simplify the development process. [25, 48, 66]. For better responsiveness and availability, the cloud

provider automatically scales the number of functions in applications by dynamically loading and unloading

functions. This dynamic nature of serverless computing requires fast function loading.

Serverless computing adopts a pay-as-you-go pricing model in which developers only pay for the amount

of resources used by deployed functions. To support the payment model, it is important to have a ine-grained

ACM Trans. Arch. Code Optim.

4 • Park et al.

resource accounting system for the dynamic resource consumption used by functions. The cloud provider runs

monitoring tools to accurately track resource usage of each function.

Trusted serverless computing: Serverless computing poses both new challenges and opportunities for the

security of cloud computing. It decomposes an application into small functions, opening the possibility of

compartmentalized execution of functions to avoid the propagation of vulnerabilities across diferent functions

used for an application. However, to exploit the new opportunities from the decomposition, each function must

be running on a sandbox, and the bidirectional isolation and secure system services are needed. This study is to

improve the security and eiciency of such sandboxed execution required for serverless computing.

Serverless computing needs more complex security models than traditional cloud computing. Three mutually

distrusting participants are involved in this system with diferent requirements. The client should protect their

data from the service developer and the cloud provider. The cloud provider must protect their system from

the service developer and client with a safe isolation mechanism. In addition, because each function can be

implemented by a diferent developer, they should run in diferent protection domains.

In addition, billing and monitoring should be protected as well [23, 42, 44, 47], as the service developer and

provider have conlicting interests. Since the resource usage measured by an untrusted counter-party is unreliable,

it calls for a trustworthy accounting mechanism that both the cloud provider and developer can trust.

To support such protection, recent studies have proposed to run each function in a user-level enclave, and

applied additional sandboxing mechanisms to conine the function running in the enclave [55, 69, 76]. The

sandbox blocks accesses to the untrusted memory from the enclave to limit the access boundary of an enclave

only within its own memory. On top of the protection model, they allow controlled interactions between the

function and platform under the supervision of a trusted reference monitor. The monitor is a trusted computing

base (TCB) of the application which mediates system calls and APIs.

Figure 1 presents a serverless application consisting of SSL, SQL, and user-level ile system. Each function is

enclosed with both enclave and sandbox isolating their execution from the platform and any other functions. The

functions communicate with each other through pairwise protected channels while their system call interfaces

are controlled by the monitor.

2.2 Intel Sotware Guard Extensions (SGX)

Intel SGX provides a user-level trusted execution environment called an enclave. The context of an enclave is

protected by the hardware mechanism. The protected memory region of an enclave is created in Enclave Page

Cache (EPC). The virtual address range for an enclave should be a single contiguous region called Enclave Linear

Address Range (ELRANGE). Part of physical memory, Processor Reserved Memory (PRM), is reserved for SGX

and is protected by the hardware memory encryption engine (MEE). PRM contains EPC pages in addition to other

security meta-data for SGX. Although EPC pages are in the external DRAM, their conidentiality and integrity

are guaranteed under direct physical attacks on DRAM and system interconnection components. The attestation

service allows a requester to verify the identity of an enclave and the platform setting where the enclave runs.

The memory isolation for each enclave is achieved during the address translation step for each memory access.

A transition between the enclave mode and untrusted mode requires lushing Translation Lookaside Bufers

(TLBs). For each TLB miss, the validity of access is veriied by the CPU hardware logic. A key internal data

structure for veriication is Enclave Page Cache Map (EPCM) which is stored in PRM. An EPCM entry has

information about a physical page that belongs to the EPC region. It contains the owner’s enclave identity and its

virtual address in the enclave memory space, in addition to other status information. Even though page tables

are still managed and updated by the operating system, the EPCM table is accessible only by the hardware, and

the page table entry for EPC can be veriied using EPCM. The crucial invariant for the correctness of memory

isolation is that TLB must contain only veriied translations.

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 5

SGX controls enclave through a set of instructions. To create an enclave, ECREATE creates security metadata

of the enclave including SGX Enclave Control Structures (SECS). Then, EADD loads the enclave content into the

protected memory, and EEXTEND measures the loaded EPC to verify its content. Finally, EINIT initializes it to be

ready for protected execution. The context information of an enclave is stored in its SECS. SECS are allocated in

EPC pages for its safety against the malicious operating system. Once an enclave is initialized, even software

running in the enclave cannot modify its SECS. SGX writes an enclave digest (MRENCLAVE) in SECS which

is needed for attestation from EREPORT. SGX includes instructions for switching modes between the enclave

context and unprotected context: EENTER to enter enclave mode, and EEXIT to exit enclave mode. In addition,

Asynchronous Enclave Exit (AEX) occurs when an enclave generates a fault, or it receives an interrupt. When

AEX occurs, the execution context is securely saved in State Save Area (SSA), and registers are sanitized. The

saved context will be restored during the next ERESUME.

2.3 Sandboxing

Sandboxing is widely adopted for runtime protection against third-party applications, such as web browsers

running plugins written by unauthorized developers [9, 27], and testbeds for third-party developers migrating

their applications to the production system [3, 8, 15]. An application running in a sandbox must not be allowed

to directly access the memory outside of the sandbox. In addition, the application control should never reach

beyond the designated sandbox neither directly nor indirectly during its runtime.

Using binary instrumentation, Google Native Client (NaCl) [92] restricts memory accesses from untrusted

applications by masking target addresses with memory boundaries before the binary execution. Such software-

based isolation needs to execute extra instructions for access validation, adding performance overheads.

In addition to the memory access control, the interaction with the operating system must also be regulated by

sandboxing. Although the operating system is protected with privilege separation and system call interfaces,

system vulnerabilities via system calls have been continuously reported [4, 11, 13, 14]. The sandbox must

provide controlled system functionalities by verifying system calls from the untrusted application. For example,

Seccomp-bpf [37] interposes system call requests by iltering system calls with ID and arguments.

2.4 Threat model

Cloister shares the basic threat model and trusted computing base (TCB) of SGX. The SGX-enabled processor

package is trusted. Privileged software such as the operating system and hypervisor can be compromised by its

vulnerability or any person who obtains the privilege permission. Moreover, attackers can wield direct physical

attacks on onboard interconnections and external DRAM. We assume that each function does not fully trust the

other functions, even when they are used together to build an application. In our model, the code running in the

monitor enclave (5488 LOC) is trusted. The monitor enclave runs on its own enclave, isolated from sbx-enclaves,

and it is trusted by the service developer and cloud provider. The integrity of the monitor can be veriied using

attestation, a key feature of SGX. To establish this monitor, the cloud provider develops the monitor enclave

code and release it as open-source. This public approach enables cross-veriication by the user community.

Additionally, the monitor code can undergo comprehensive functional correctness proof, mirroring the approach

of the formally veriied operating system, seL4 [59]. The monitor code is much smaller than the operating system,

facilitating such veriication eforts.

Foreshadow attack [31], side-channel attacks [29, 30, 49, 63, 80, 81, 88, 91], controlled channel attack [67], and

availability are not considered in this work. For such attacks, prior patches [19] and protections [21, 40, 67, 70, 75,

77, 78] can be used as orthogonal measures. Cloister does not support resiliency to code reuse attacks [29, 62]

and arbitrary API invocation [58].

ACM Trans. Arch. Code Optim.

6 • Park et al.

Sbx-enclave

;mask and align

andl eax, 0xffffffe0

;rax = base + eax

leaq rax, [r14 + rax]

call rax

;rax = target address

call rax

Sandbox

Enclave

Blocked!

Enclave

Sandbox

Page Table Entry (OS)

PKEY …

PKEY

No perm

Blocked!

…
TLB

VA #2 PA #2

(a) SW confinement (b) HW+OS confinement (c) HW-only confinement

PKRU Register (User)

VA #1 Abort

Requirement:

MPK disabled

Secured w/ HW

Blocked!

Frame Number

Fig. 2. Three confinement approaches: SW, HW+OS (MPK), and HW-only (Sbx-enclave)

3 MOTIVATION

3.1 Requirement of trusted serverless computing

Supporting trusted serverless computing poses new challenges in the current SGX model. First, TEE not only

needs to protect applications itself in an enclave but also must conine accesses from the applications inside

enclaves. Second, a function in an enclave often needs to access the system resource via system calls, so it requires

a method to control the interaction with OS in both directions. Third, the resource usage of cloud functions must

be accurately monitored and tracked for billing in a way that both the cloud provider and service developer can

trust. Finally, after applying all of the above protection techniques, there should be no signiicant performance

degradation for loading and running serverless applications under dynamic load changes.

3.2 Challenge 1: Bi-directional Isolation

In trusted serverless computing, an enclave execution must be protected, but it must also be prevented from

accessing memory beyond its own EPC region. In the current SGX model, the in-enclave execution is freely

allowed to access the rest of its process memory, which is conined only by the operating system. There are

two diferent ways of providing coninement supports for the current SGX enclave model. Figure 2 presents the

diferent approaches.

Figure 2 (a) describes the software-based coninement (SW). This technique is to place an instrumented

application binary and sandbox libraries together in an enclave. In this approach, both the sandbox library and

application binary must be trusted by application developers, increasing the Trusted Computing Base (TCB) of

the enclave.

When vulnerabilities exist in the sandbox library, the application code can exploit the vulnerability to bypass

the coninement of the sandbox. We ind that many vulnerabilities in software sandboxing have been reported in

CVEs (keyword:Sandbox)[5] from 2019 to 2022. For instance, attackers can exploit them in two primary ways. First,

they can execute unauthorized codes outside an established sandbox, bypassing its defenses [1]. Alternatively,

they can intricately design and deploy malicious codes directly within the sandbox, potentially compromising its

intended functionality [2, 10].

The software-based coninement incurs performance overheads because every memory access from an enclave

has to be veriied by instrumentation. A recent study reports that the software-based coninement causes 12.43%

slowdown on average, up to 24.89% compared to native execution because it adds 23.52% more instructions [22].

Recent hardware supports for memory coninement such as Intel Memory Protection Keys (MPK) can mitigate

the weaknesses of software-only approaches. Figure 2 (b) shows the hardware-assisted approach with MPK,

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 7

Monitor

Operating System

Function Monitor

Enclave

(a) In-enclave (c) Neutral

Sbx-enclave
Monitor

Enclave

(b) Exo-enclave

Function

Operating System

Function

Enclave

Operating System

attackattack

Fig. 3. Three system call monitor approaches: in-enclave, exo-enclave, and neutral enclave

called HW+OS coninement. MPK is designed for user-level coninement, and thus the domain permission can be

changed by user-level instructions, which updates the PKRU register deining the permissions. Therefore, the

conined application in an enclave must be prohibited from updating the PKRU registers by additional software

mechanisms [34, 87]. In addition, since MPK can be nulliied by some classes of system calls, MPK-based sandbox

must ilter those system calls [73]. Furthermore, the MPK and page access permission mechanism required for

the HW+OS coninement relies on the security of page tables. However, recent studies showed that page tables

can be vulnerable to various attacks based on rowhammer [35, 50, 74, 90].

To overcome the limitations of the current SW and HW+OS coninements, this paper proposes a new HW-only

coninement mechanism that eliminates SW from the mechanism. Figure 2 (c) shows our approach of Cloister.

In our approach, the coninement extends the current protection mechanism of SGX. With security metadata

stored in SECS and EPCM, the integrity of which is protected by the hardware memory protection of SGX,

resilient from rowhammer attacks.

3.3 Challenge 2: Secure Interaction with OS

A sandbox enclave is prohibited to access the memory outside of its own EPC, but it should be allowed to

issue system call requests if the system call requests can be veriied for their safety. Therefore, to provide fully

functioning sandbox enclaves, it is necessary to support a safe mechanism to verify system call requests and

forward the iltered requests to the operating system. In addition, the returned value from the untrusted operating

system needs to be checked.

There are two diferent approaches to providing system call services to enclave execution: system call emulation

and system call delegation. First, the system call emulation approach imports the entire library OS and C standard

libraries inside an enclave [26, 28, 76, 86]. However, since the intra-enclave libOS runs in user mode, it still transfers

some system calls to kernel (e.g., 42 syscalls among 192 in GrapheneSGX) [65]. In addition, this approach adds the

entire software stack within an enclave, increasing 20 KLOC (kilo lines of code) - 1,348 KLOC of TCB [26, 79, 86].

Formal veriication for such large TCB with POSIX-compatible interfaces is hard to achieve [39, 59]. Figure 3 (a)

shows the in-enclave monitor approach. It assumes that the monitor code can be completely isolated from the

function by a software coninement layer. However, the vulnerability in SW coninement may not guarantee the

protection of the monitor.

Second, the system call delegation approach relies on the underlying OS itself, thereby reducing TCB dras-

tically [79, 89]. It delegates system calls to the non-enclave mode and performs the system calls. Figure 3 (b)

shows the exo-enclave monitor approach. It assumes that the monitor code exists as a process in unprotected

environment accessible from the OS kernel. Therefore, this approach is vulnerable to attacks via privilege escala-

tion [12, 13, 43]. In addition, a malicious OS can leak the application secret or break the execution integrity by

manipulating return values of system calls [33]. To prevent such an attack known as Iago attack, return values

also need to be validated by trusted entity [53, 60].

ACM Trans. Arch. Code Optim.

8 • Park et al.

Service Invocations CPU Memory Storage Network

(Second) (GB-s) (GB) (GB)

AWS Lambda [25] ✓ ✗ ✓ ✓ ✓

Azure Functions [66] ✓ ✓ ✓ ✓ ✓

Google Cloud Functions [48] ✓ ✓ ✓ ✓ 3 ✓

IBM Cloud functions [56] ✗ ✗ ✓ ✗ ✗

✓: Included ✗: Not included 3 tmpfs

Table 1. Pricing policies for commercial serverless platforms

Note that the interaction among multiple enclaves and the monitor needs to be considered. Sandboxes using

system call delegation have to consider races between sandboxes [46]. Moreover, a prior study [41] observed

that Iago attacks can occur across multiple components, thus checking the return value within each enclave

individually is not enough to prevent such attacks.

As shown in Figure 3 (c), Cloister takes a diferent approach. To allow the controlled interaction between the

sandbox enclave and operating system, we propose to add a position-neutral monitor enclave that can be coupled

with one or more sandbox enclaves. In the approach, the monitor is protected both from the sandbox enclave and

OS kernel. The monitor can track global states among sandbox enclaves and thus can prevent Iago attacks. In

addition, the design helps developers not to add Iago attack protection in every sandbox enclave.

3.4 Challenge 3: Mutually Agreeable Resource Accounting

One of the requirements for the trusted cloud service is tamper-proof resource accounting [23, 24, 47, 57, 84].

For each developer, the system resource usage must be securely tracked and reported. In addition, to satisfy

service-level agreement (SLA), the cloud provider must allocate the contracted amount of resources in a veriiable

way. Table 1 shows the pricing policies for serverless platforms from major cloud providers. For enclave-based

cloud applications, recent studies investigated self-accounting techniques [23, 44, 47, 84]. They are designed to

measure the resource usage inside an enclave, which is protected from the cloud provider. The measuring code is

regarded as trusted entity and located in the same enclave.

However, the key problem of the current techniques is that it is a one-sided accounting mechanism. Service

developers are checking their resource usage within their enclaves. The cloud provider also tracks the resource

utilization with the system mechanism. However, how to achieve consensus when developers and cloud providers

have diferent accounting results remains an open problem. As the accounting code is running in an enclave, it

can be vulnerable from potential compromise by application codes within the enclave.

To support such tamper-proof accounting which can be trusted by both the cloud provider and developer, it is

necessary to track system resource usages by a mutually trusted entity. As a monitor enclave can be isolated

from both the developer enclave and OS, it can act as a neutral accountant, recording the utilization of CPU,

memory, and I/Os. File and network I/O operations can be tracked with system call interactions, visible to the

monitor enclave. However, the monitor enclave cannot directly measure CPU cycles and memory pages used by

a sandbox enclave, requiring hardware extensions to record the CPU and memory usages.

3.5 Challenge 4: Fast loading

To build scalable and responsive services, one of the essential requirements is fast function loading. To do so,

each function should be lightweight, and its loading process should be simpliied. However, for trusted serverless

computing, it is necessary to verify whether the function is correctly loaded without manipulation. The hardware

computes (measures) the hashed value from the memory contents of the function, and it veriies the loaded

function by comparing the measurement to the one made during its compile time.

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 9

0 20 40 60 80 100 120
Instance Loading Time (s)

1GB
256MB

64MB
16MB

108.6
27.8

7.5
2.5

EINIT(<0.1%)
ECREATE(<0.1%)

ECREATE EADD EEXTEND EINIT SW

Fig. 4. Enclave loading time breakdown with four diferent enclave sizes: 16MB, 64MB, 256MB, and 1GB.

Untrusted Context

Monitor Enclave

Sbx-enclave

Syscall

Return

Validator

allow:
open
read

deny:
write

Allowed

Syscall?

Yes

Sbx-

enclave

Sbx-

enclave

Access Permission Control TransitionProtected Communication

Policy
Monitor

Enclave

1

2

3

5

4

Untrusted Context

Accounting

System

No
Filtered

(a) Control flow (b) Syscall handling

X X

Fig. 5. Cloister architecture

A recent study raised the problem that trusted serverless instance loading is slow [64]. To alleviate the problem,

it introduces shareable enclaves. Rather than launching a heavy host function every time, it launches a minimized

host function and maps it to an already launched function to share its memory. Similarly, Cloister reduces

enclave sizes by decoupling and sharing monitor as a neutral enclave. However, the loading latency still needs to

be further improved for newly launched enclaves.

Figure 4 presents the breakdown of enclave loading time when the enclave memory size is 16MB, 64MB,

256MB, or 1GB. As shown in the igure, each loading procedure includes a series of SGX instructions, and other

software preparation. It shows EEXTEND, which measures each EPC content and relative position with SHA-256,

incurs the most signiicant overhead. On the other hand, ECREATE, EINIT cause less than 0.1% of the loading

overhead. Since EEXTEND occupies more than 65% of the loading time on average across enclave sizes, we focus

on improving the performance of EEXTEND.

4 ARCHITECTURE

4.1 Overview

Figure 5 presents the Cloister’s serverless computing model. In Cloister, a sandbox enclave called sbx-enclave

contains a function after its initialization procedure starting from a normal enclave. Once an sbx-enclave is

initialized, it never reverts to the original enclave during its lifetime. The code running in an sbx-enclave is

not allowed to read, write, or execute contents outside the sbx-enclave memory. In addition, the control of an

sbx-enclave cannot be directly transferred to the non-enclave context. Instead, the sbx-enclave must go through

the monitor enclave to interact with the rest of the system. Cloister allows the monitor enclave to communicate

with the operating system (OS).

ACM Trans. Arch. Code Optim.

10 • Park et al.

Page Fault

PA in PRM?

VA in ELRANGE?

Set XD attribute

on TLB entry*

PA in EPC?

Page

Fault

EID equals
owner’s EID

in EPCM entry

VA equals
owner’s VA

in EPCM entry

PA in PRM?

Insert new entry

in TLB

Page Fault

Insert

abort page

Sbx-

enclave?

EID equals
co-owner’s EID
in EPCM entry

Address

translation

EPCM entry
blocked?

Executing
enclave?

Page Fault

Insert new entry

in TLB

Insert

abort page

VA equals
co-owner’s VA
in EPCM entry

Insert new entry

in TLB

Page

Fault

(1)

(2)

YES

NO

NO

NOYES

YES

YES

NO NO

YES
NO

NO

YES

YES NO

YES NO

* XD = execution disable

YES

NO
YES

YES NO

Fig. 6. Access control flow for Cloister. Modification are marked in blue on the original SGX flow [38]

Themonitor enclave works as a proxy to communicate with the operating system. To interact with the operating

system, an sbx-enclave establishes a secure shared memory channel to the monitor enclave. For communication

with other enclaves, the same secure shared memory channel is supported. As shown in Figure 5 (b), to issue

a system call, the sbx-enclave must deliver a system call to the monitor, and the monitor enclave executes the

system call on behalf of the sbx-enclave. The monitor enclave veriies system calls based on a given proile and

validates the return values of system calls to prevent known Iago attacks.

In the Cloister model, a service consists of one or more mutually distrusting functions. Each function is

enclosed and protected by an sbx-enclave, andmutually distrusting functions do not reside in the same sbx-enclave.

To make the service scalable, both the sbx-enclave and monitor can have multiple threads in the protection

boundary. A common use scenario for mapping the monitor to sbx-enclaves is that a cloud application by a

service developer can create a monitor enclave and the sbx-enclaves constituting the application can share the

monitor enclave, as they have the shared security goal and accounting records. The monitor enclave can also

function as the trusted reporter of the resource utilization records of the sbx-enclaves connected to it. As the

monitor enclave is trusted by both its developers and the cloud provider, its resource usage reports are mutually

trusted by both parties.

4.2 Memory Protection for Sbx-enclave

Access validation: Cloister augments SGX memory protection features to enable bi-directional memory

protection. It protects the non-enclave memory context by preventing memory translation from an sbx-enclave.

Figure 6 is the hardware lowchart of Cloister’s address translation. (1) in the igure indicates the additional

memory protection added for Cloister. Cloister veriies whether an enclave is an sbx-enclave by checking the

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 11

lag set in SECS which is immutable by any software after initialization. When an enclave is not in the sbx-enclave

mode, memory accesses to a non-ELRANGE virtual address are allowed. Thus, Cloister inserts a new entry

to the TLB without execution permission in the same way as the original SGX. When the enclave is in the

sbx-enclave mode, the sandboxed code must not be allowed to access the outside memory. Therefore, Cloister

inserts an abort page to cause a failure in resolving the non-ELRANGE virtual address to a physical address. As

shown in the igure, the extra access control for sbx-enclaves does not require any signiicant hardware changes;

Cloister adds minor extra condition checks while handling a TLB miss.

Control transition: To execute the codes in non-enclave locations, an enclave needs to transfer its control to the

outside code. By calling ocall, an enclave performs a control transfer from the enclave to the non-enclave context.

During an ocall, a normal enclave saves its state in the protected memory, cleanses all internal CPU states to

prevent security leaks, and switches its mode into the non-enclave mode with EEXIT. However, EEXIT can be

exploited to jump to an arbitrary non-enclave memory location by setting the RCX register to the destination.

Unlike normal enclaves, Cloister isolates an sbx-enclave by disabling the EEXIT instruction. The hardware

modiication for EEXIT is straightforward since the only modiication is raising an exception in the sbx-enclave

mode. However, AEX is still allowed even for the sbx-enclave because the operating systemmust handle exceptions

such as page faults or interrupts. Cloister switches its execution mode to handle the exit events. The event is

handled by designated hardware exception handlers in the kernel. During AEX, it erases any context (secrets)

that may exist in the execution state [38]. Therefore, the software in an sbx-enclave cannot exploit AEX for

escaping the sandbox. Cloister does not modify the execution low of AEX from the SGX.

Sharing EPC: The current software-based encryption on the shared untrusted page is not only ineicient but

also must make a non-enclave page accessible by the sbx-enclave, which is inconsistent with the bi-directional

enclosure property. Cloister adopts the shared channel design using hardware supports from the recent secure

channel proposals for RISC-V TEEs [45, 93]. Cloister extends each EPCM entry to have mapping information

of the co-owner which includes SECS address, VA mapping, and permissions. Figure 6 (2) shows the hardware

extension for the ownership checking. When a memory access occurs to EPC, Cloister checks the corresponding

EPCM entry and veriies the ownership. The EPCM entry has at most one co-owner, thus only two diferent enclave

contexts can access the EPC. Based on the shared EPC, Cloister support both synchronous and asynchronous

communication between enclaves.

Advantages: Cloister does not require any extra SW layers or compiler-based validations for the coninement,

minimizing the performance overhead while providing hardware-enforced coninement. Moreover, Cloister

can support self-modifying code and JIT compilation in sbx-enclaves. Cloister keeps the critical meta-data in

the secure memory region (PRM). Therefore, the meta-data is protected from OS and DRAM attacks including

rowhammer because any bit lips in PRM are detected by the integrity validation of MEE.

4.3 Sandbox Monitor

An application using one or multiple sbx-enclaves needs to have a monitor enclave. The monitor enclave is

multi-threaded and it allocates a dedicated monitor thread to each sbx-enclave in the application. During runtime,

the individual state of each sbx-enclave is tracked by its monitor thread. Both SGX and Cloister do not allow

invoking system calls within an enclave. For system calls, an sbx-enclave calls the monitor enclave with the same

interface as ocall in SGX. Note that the monitor enclave is a conventional enclave, and thus it can jump to the

system call function in the untrusted region.

System call handling: As shown in Figure 7 (a), the monitor enclave executes a software reference monitor

which veriies system calls and returns values. For legitimate ones, the monitor enclave handles the system calls

on behalf of sbx-enclaves. If necessary, the monitor can request system calls to the kernel or can use SGX-provided

C standard libraries [16]. However, there are system calls that the sbx-enclave thread should execute by itself

ACM Trans. Arch. Code Optim.

12 • Park et al.

Sbx-

enclave

Monitor

Enclave

Kernel

App

Enclave

ocall

Sbx-

enclave

Monitor

Enclave

Monitor

App

Kernel

App

Enclave

ocallERESUME

syscall

(a) Syscall by onitor enclave (b) Syscall by sbx-enclave

Monitor

App

syscall

Signal

Handler

signal

syscall req.

syscall req.
signal

wait, verify and return syscall result

AEX

verify and return syscall result

iret

1

2

1

3

1

1
2

2

3
45

6

3

HW fault handler

Fig. 7. Two system call flows in Cloister

(e.g., sleep, exit, getpid). Figure 7 (b) shows how Cloister handles those system calls with signals. When such a

system call is requested, the monitor sends SIGUSR1 signal to the target sbx-enclave. It triggers AEX and invokes

a custom signal handler. The handler executes the requested system call, and returns the result through the

monitor. The design enables the monitor to let the sbx-enclave run the system call by itself securely without ocall.

Development: In Cloister model, The monitor enclave (and accounting program) is developed by the cloud

provider and open-sourced by them. Cloister keeps its design simple to reduce risks. Developers need to

inform the cloud provider the APIs to use in its policy ile. The cloud provider must trust the accounting in the

monitor enclave because they are utilizing their own code. As the code is open-sourced, the developer community

cross-veriies the code. For each service launch, the service developer performs remote attestation on the monitor

enclave to ensure its integrity and security.

The monitor veriies system calls from sbx-enclaves by its policy deinitions. It reads a policy deinition ile

for each sbx-enclave which is mutually agreed and shared in advance by the function developer and the cloud

provider. Furthermore, if needed, diferent enclaves can share the same monitor enclave policy templates. These

templates ought to be supplied by cloud providers and illed by developers. To verify that the policy ile is

correctly loaded, both an sbx-enclave and OS can query the monitor enclave to obtain the digest of the ile. The

sbx-enclave checks whether the digest value matches with its own policy digest to make sure that the ile is not

manipulated by the OS. The monitor enclave opens an up-call interface only for serving the digest query from

the OS. This is similar to the attestation service for SGX to verify an enclave.

Monitor as mediator: Similar to seccomp-bpf [37], the monitor enclave ilters each system call with the system

call ID and its arguments based on ine-grained privileges to system resources through an allowlist and a denylist.

To speed up the system call iltering, the monitor also adopts an action-based policy. If an action speciies KILL,

the monitor sends a request to the kernel to terminate the sbx-enclave. On TRAP, the monitor runs a customized

logic (e.g., sending a message).

When a system call returns, the monitor enclave veriies the return value from the kernel to prevent Iago

attacks. Similar to Panoply [79], Cloister checks the types of return values. System calls have three types of

return values: 0 or error, integer, and structure mostly with integer ields. Cloister’s monitor can examine the

range of return values for system calls, identifying if they are True or False or if they lie within a certain integer

range.

Cloister checks whether futex, locks, and semaphore are not shared between the sbx-enclave and untrusted

world. For a system call that returns a descriptor or reference (e.g., open, socket), the monitor keeps it in its

memory so that the returned descriptor is not substituted or reused. In addition, Cloister is resilient to pointer

misuses since the reference is not accessible by an sbx-enclave.

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 13

The monitor enclave mediates the secure channel establishment according to the policy deinition. When an

sbx-enclave tries to build a secure channel with the speciied sbx-enclave on the policy, the monitor allows the

connection. Otherwise, it refuses the channel establishment.

4.4 Trusted Accounting

When the cloud platform and the sbx-enclave perform accounting separately, problems arise when the two values

difer. To avoid such a conlicting accounting problem, in Cloister, a neutral accounting monitor is protected by

the hardware and trusted by both the cloud provider and service developer.

The monitor enclave securely collects the resource usage of the sbx-enclaves it is serving and can provide the

service developer and cloud provider with an authenticated report on the usage. Since the monitor is trusted by

both parties, its report provides a mutually agreeable accounting, unlike the current separate accounting either

by the developer or by the cloud provider. The monitor enclave can collect the ile and network usage directly as

all system calls pass through the monitor. However, it requires hardware extension for CPU and memory usage.

CPU and memory usage: The hardware extension will collect the information and write logs for the monitor

enclave. The monitor enclave reads the logs for the CPU execution time or the number of pages used by an

sbx-enclave. The log area is allocated as a shared page between an sbx-enclave and its monitor, similar to the

communication channel setup. One diference between the log area and communication channel page is that the

log page is only writable by the hardware. The sbx-enclave and monitor enclave can only read the data after it

is initialized. Therefore, the monitor and sbx-enclave can read the same log, but they cannot change that. The

required hardware modiications for this purpose are minimal. The existing SGX already provides the capability

to ofer multiple types of EPC with diferent read/write permissions. For CPU logs, we only need to add a new

page type that has read permissions but not write permissions. Therefore, when the logs are stored in memory, no

additional encryption is necessary as they are already securely stored with MEE and access control. On the other

hand, when logs are saved as iles, Cloister employs encryption through the Protected Filesystem to ensure

their security and prevent tampering during storage.

To track the usage of CPU cycles, the CPU hardware will trace the execution cycle between the start and end of

the execution period for an sbx-enclave. The starting time is measured at the execution of EENTER and ERESUME,

and the end time is measured at AEX and EEXIT. The execution cycle is accumulated to the CPU log when the

current execution period ends at AEX or EEXIT. One adjustment of the measured CPU cycle is the power state.

The hardware saves power state along with the CPU cycle. Note that manipulating Time Stamp Counter (TSC),

and CPU power state cannot be performed during enclave execution, since those need kernel privilege [17].

To track memory utilization, Cloister hardware updates the log for adding EPC (ECREATE, EADD) and

removing EPC (EREMOVE). When the memory is augmented (EAUG) or deallocated (EMODT) during the lifetime

of an enclave as supported by SGX2, the acceptance event (EACCEPT, EACCEPTCOPY) will also update the log. In

addition, Cloister tracks how many EPC pages reside in PRM. On EPC writeback (EWB), it decreases the number,

while EPC loading (ELDB, ELDU) increases the number. To avoid races, hardware logging for the log structure is

serialized. Note that an sbx-enclave never executes instructions or accesses memory outside of the enclave as

a sandbox, although minor untrusted housekeeping codes can be executed for signal handling. Therefore, its

non-enclave resource utilization is not tracked by the hardware.

Network and ile I/Os: To measure I/O usage of each sbx-enclave, the monitor enclave tracks the number of

invocations of the I/O APIs (e.g., open, connect). In addition, it counts the amount of data passed for APIs (e.g.,

read, write, fstat). The monitor enclave can record tamper-proof evidence for network and ile usage because all

accesses (system calls) to the resources must pass through the monitor enclave. Therefore, the monitor enclave

can log resource requests from each sbx-enclave, and neither the sbx-enclave nor the host OS can modify the log

contents.

ACM Trans. Arch. Code Optim.

14 • Park et al.

M

F

MRENCLAVE H Header (Incl. EPC Offset) D 512 Bit EPC data chunk

SHA-256 Hash function

256

(a) SGX (16 EEXTENDs) - 80 hash chain length

...

(b) Cloister - 18 hash chain length

Redundant

D

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

D

F

H

F

D

F

D

F

D

F

D

F F

M

Lock &

Update &

Unlock

M F

H

F

D

F

D

F

D

F

D

M F

H

F

D

F

D

F

D

F

D

Update &

Unlock &

Lock ...Lock

256

256

256

||

||

|| Concatenation

Fig. 8. Measuring an EPC page: SGX (a) vs Cloister (b)

4.5 Hardware Extension for Fast Loading

Measuring EPCs accounts for the majority of loading times for launching a new function instance. Figure 8 (a)

shows how SGX measures an EPC. SGX invokes EEXTEND 16 times for each EPC and each EEXTEND performs

SHA-256 hash function 5 times. With the hashing, EEXTNED measures the content and relative position of the

EPC. For each time, it accumulates the result on MRENCLAVE ield in SECS. The measuring process is serialized

incurring a signiicant slowdown in enclave loading. Furthermore, EEXTEND redundantly acquires and holds

a lock of SECS until it updates MRENCLAVE. To alleviate the overhead, Cloister suggests two optimizations,

eliminating redundant operations and parallelizing EPC measurement. Figure 8 (b) describes the optimized model

of Cloister with 4x parallelization.

First, Cloister eliminates repetitive hash operations for the MRENCLAVE and header values by performing

them in the last stage. It not only reduces the number of lock acquisitions and the holding time but also gets rid

of redundant inputs. The header includes location information for the EPC, and has the same content among

consecutive 16 EEXTENDs. The optimization reduces 18.75% of hash calculation and about 33% of input data

without a loss of information in the content and position. In this model, the measurement is performed atomically

at the 4k page level, rather than being atomic per 256 bytes. Similar to the original SGX, this model can still be

interrupted before each 4k measurement.

Second, parallelization can be done by locating extra hash modules. The more hash modules, the higher level of

parallelism can be achieved. Once Cloistermeasures an EPC, it splits an EPC, hashes the content in parallel, and

accumulates the results on MRENCLAVE. The parallelization does not compromise security because it preserves

the entire contents and order information in the MRENCLAVE. In a 4x parallelization with the optimizations,

Cloister can reduce 77.5% of the hash chain length from the original low. As with the original EEXTEND,

controlling the hash modules can be performed with microcode. Also, recent study shows Intel’s SHA-256 module

takes 4916.7��2 area in 14nm ASIC [94]. Using a faster hash function (e.g., keccack), or measuring multiple pages

at once may accelerate this process.

5 EVALUATION

We use two methods to evaluate the performance of Cloister. The irst method is to use a microarchitecture

simulator to assess the performance impact of the access validation mechanism of sbx-enclaves. The second

method uses an emulated SGX system to evaluate full application scenarios.

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 15

Benchmark (1000 iterations / sec) Hardware mode Emulation mode

NBench (geomean) [20] 6.0 6.4

SGX ecall / ocall (switchless) 2283.8 / 3748.5 3110.3 / 3783.7

Cloister inter-enclave call - 4930.5

Table 2. Performance comparison for the real SGX hardware and the emulated system

5.1 Microarchitecture Simulation

To measure the overhead from microarchitecture changes afecting TLB miss handling with Cloister, we model

the coninement mechanism in Zsim [72] with DRAMSIM2 [71]. This simulation-based method evaluates the

detailed architectural overheads caused by the bidirectional protection, which complement the full-system

emulated SGX evaluation framework which will be discussed in Section 5.2.

Modeled environment: We model TLBs, Paging Structure Cache [18], page tables, and EPCM in ZSim. The

simulated CPU is a 4-way out-of-order execution core with 32KB L1 data and instruction caches and 256KB

L2 cache. 8 cores share a 16MB L3 cache. L1 data and instruction TLBs have 64 entries, and L2 TLB has 512

entries. We use a smaller L2 TLB capacity than the latest Intel processor with 1.5K entries, to stress TLBs with our

benchmarks and to ind any performance degradation by the additional mechanism by Cloister. The external

memory is simulated with DRAMSIM2 with the DDR3-1600 coniguration.

Simulation: We simulate the modiied address translation by Cloister as shown in Figure 6. When a TLB miss

occurs, CPU brings security metadata for SGX into the caches [38]. We assume that an EPCM entry its in a

single cache line after adopting Cloister (350bits [38] + 100bits (Cloister)). Memory contention from data and

metadata accesses are also considered. In addition, to simulate the efect of communication channel, we set the

irst few consecutively accessed pages as the communication bufer and measure the overheads of the TLB miss

handler’s extra checks and EPCM entry reads. Since Cloister does not change MEE and EPC page swapping

from SGX, we added ixed latencies (40-80, 40K cycles) for each event as described in the prior work [54, 82].

Benchmarks: We select memory-intensive benchmarks from SPEC2006 and Biobench, and run 100 Million

instructions for each simulation point. Simulation points are selected with Simpoint [52] to simulate the rep-

resentative periods. We also run Redis with its own benchmark for 10,000 queries (redis-benchmark -q -n

10000). We assume that the entire application is running inside an sbx-enclave.

Results: The results demonstrate that Cloister introduces minimal overhead across all workloads, with the

impact being less than 0.1%. In other words, additional check for each L2 TLB miss has negligible performance

implications.

5.2 Emulation-based Full-system Evaluation

Environment: We use the simulation mode in Intel SGX Driver and SDK 2.6/2.2 to emulate our new instructions

and software model. The simulation mode supports SGX APIs, trusted libraries, and emulation for SGX instruc-

tions [7]. We evaluate Cloister in servers consisting of Intel CPU i7-7700, 64GB DDR4 DRAM with Linux kernel

5.4.0. There are 459 LOC modiications made on the SDK and driver. Table 2 shows the performance comparison

between the real hardware SGX mode and emulation mode. For a fair comparison between Cloister and the

current SGX, in the rest of this section, all experiments were run in the emulation mode.

Instruction emulation: To emulate sbx-enclaves, we modify the emulation code in SGX SDK (EINIT, EEXIT,

EREPORT). In addition, we add three new instructions (ESADD, ESACCEPT, EUNSHARE) to support the protected

communication channel. When the new instructions update the mapping information in EPCM, Cloister sends

We measure the SGX’s extra TLB miss penalty from SGX-enabled machine (<4.7 cycles) which is an additional latency for supporting SGX

access validation on top of conventional TLB miss handling.

ACM Trans. Arch. Code Optim.

16 • Park et al.

Remote

SSL

(b) Protected file system(a) Secure DB / ML query service

App

Monitor

sgx_fwrite (file)

FSFS

Monitor

SQL

ML

Least privileged Syscall

Client

Remote

512 clients

SSL

(c) FTPS Server

Monitor

fwrite(Enc_file),

fwrite(Enc_recovery) FTP

Fig. 9. Evaluation scenarios with serverless computing

������
���

����	�
�
�����
�

 ����	� �

 �����

 ����	�
 ���

���

���

���

���

�
�
��
�
��
�
�
�

 �
�
�

!
"�
�
#
$
��
� %&'()*

+,-./01
2.32-,

45.+-0-/ 635/0 2741,3.

8' %*9:(;*

<=>?@ABCD= E FGH IJD FK=LMDNO FGH P QC?RSKCT UVWXFY<Z

��[

��\

��]

��^

��_`

�
!
�
a
�
�
�
b

��
c
c
d�
�
�
�
�#

�
��

efghhijgklmn olpp

Fig. 10. Performance comparison for serverless query servers

an ioctl to the SGX driver and lushes TLB for the new mapping. The emulated overhead of EEXTEND has been

set based on the measured latency with the driver (7.2K Cycles).

Communication:We modiied Edger8r in SDK to generate inter-enclave call APIs from the Enclave Deined

Language format. The communication APIs are similar to ecall and ocall, but all the arguments are secured. The

generated APIs perform type and boundary checking for each parameter. Since sending a signal to enclave always

incurs AEX, Cloister prototype uses spinlock for synchronization, which is used in the Switchless Call by Intel

SGX [83]. The enclave enters the sleep state after 20,000 pauses in the loop to reduce wasted CPU cycles [83].

Signal handler: To allow the untrusted thread of an sbx-enclave to handle system calls by itself, we attach a

custom signal handler to each sbx-enclave before its control initially enters the sbx-enclave. On a system call

request, the monitor enclave writes required arguments to the bufer shared with the sbx-enclave’s untrusted

thread and sends SIGUSR1. The signal causes AEX to the sbx-enclave. After the signal handler executes the system

call, it returns the result to the shared bufer.

5.3 Application Performance

To evaluate Cloister with serverless computing scenarios, we build secure DB and ML query services. Figure 9

(a) describes the system; each service consists of multiple functions which are isolated in sbx-enclaves. The

functions are OpenSSL, Protected FS, SQLite, and LibSVM. The monitor enclave exposes the least privileged

system call interfaces to each function. Whenever a client sends security-sensitive data to DB/ML services via

SSL, SQLite and LibSVM ask the Protected FS to store or load the data. Protected FS has its own encryption key

which is not accessible from other functions. In this experiment, a client sends 10K queries from YCSB [36] for

DB, and various training sets from LibSVM [32] for ML.

Figure 10 shows the normalized execution times of the two serverless services, DB (SQLite) andML (ML Service),

over SGX without sandboxing (SGX). The igure also shows the number of required cross-domain calls per query.

The cross-domain calls include ecall/ocall, inter-enclave call, and IPC. For the baseline (SGX+Firejail), we use

Firejail [6] along with SGX. Firejail leverages Linux namespace and seccomp [37] for system call interposition. In

SGX and SGX+Firejail, communication among enclaves uses software encryption (AES128-GCM) on untrusted

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 17

qrs tuvsuwqswtus txs qrs tuvsuwqswtus txs
y

yz{

yz|

yz}

yz~

�zy

�
�
��
�
��
�
�
�

 �
�
�
�
�
� �
�
�
�
��
�

���� �������� ���� ¡¢£¤

¥¦§§¨©ª«¬ª¦© ®ª¯° ±² ³¦©ª¦´ µ¶· ¥¸²±µ¹º»

Fig. 11. Execution time breakdown in the file I/O scenario with chunk sizes from 64B to 1KB

memory, while Cloister relies on the hardware-protected shared EPC. In SGX+Firejail and CLOISTER, every

system call must be iltered by the monitor.

As a result, for I/O-intensive SQLite, CLOISTER shows 8.9% speedup over SGX and 44.1% speedup over

SGX+Firejail on average. The most signiicant overhead in SGX+Firejail is from additional communica-

tion of process-based sandboxing. Since the approach requires a process for each sandbox thread, it needs one

ecall, one ocall, and two IPCs for each inter-enclave call [89]. However, Cloister invokes 49.7% less cross-

domain call over SGX+Firejail by leveraging a pairwise connection. Furthermore, since SGX MEE performs

hardware encryption only when data leave on-chip last level cache, Cloister can skip most of the encryption

for frequent shared EPC accesses. For ML service, three systems show similar performance (<5%) because the

compute-intensive workload does not incur signiicant communications.

5.4 Protected File System as a Function

To evaluate the communication overhead between an sbx-enclave and the monitor enclave, we run the case study

with a protected ile system (FS) as depicted in Figure 9 (b). We deploy a function that runs a protected FS which

provides integrity and conidentiality protection of iles. The application uses the protected FS to secure ile I/Os.

Figure 11 presents normalized execution times with various chunk sizes. Each execution time is normalized to

when the chunk size is 64B of SGX. To isolate the performance cost of Cloister without the efect of long disk

I/Os, we perform ile I/Os on the mounted tmpfs (DRAM backend). We break down the execution time into the

followings. File I/O indicates the time taken for ile APIs, and Communication shows the execution time for all

communications between functions including message serialization and encryption. Monitor is the overhead

of the monitor. Cloister’s HW-based communication efectively saves the communication cost, amortizing

8.4% of monitoring overhead. As a result, CLOISTER shows up to 1.38-1.89× faster in read, 1.16-1.92× faster in

write compared to SGX when the chunk size is set between 64B-1KB. Fine-grained ile I/O operations cause more

frequent inter-enclave calls between functions, thus it ampliies the communication cost.

5.5 The Efect of Confinement

We evaluate the eiciency of hardware-based coninement by Cloister. As the baseline, we use Chancel [22],

a software-based binary instrumentation approach with SGX for bi-directional isolation. For this evaluation,

we run NBench [20] which consists of ten benchmarks exposing CPU and memory capabilities. Figure 12

shows the execution times normalized to SGX runs without any sandboxing. In NBench, Chancel shows 12.3%

performance degradations on average over the SGX runs without sandboxing. The overhead is from Chancel’s

binary instrumentation which adds additional instructions (+23.5%). However, Cloister runs NBench within an

eicient hardware-protected coninement and does not cause any performance degradation.

ACM Trans. Arch. Code Optim.

18 • Park et al.

¼½¾ ¿ÀÁÂ
¿ÂÁ ¿ÀÁÂ

ÃÄÂÅÄÆÇÈ
ÅÉ Æ¾½Ç

ÅÀ½ÁÄÆÁ
Ê¿¿ÄË¼

ÄÈÆÊ
Ì½ÅÅ¾Ê¼

¼Æ½ÁÊÇ ¼ÆÂ
Ç½ ÈÆÍÀ¾É ËÎÏÐÎÑÒ

ÓÔÓ

ÓÔÕ

ÖÔÓ

ÖÔÕ

×
Ø
ÙÚ
Û
ÜÝ
Þ
ß
à

 á
â
ß
ã
ä
åÝ
Ø
æ
ç
ÝÚ
ß

èéêëìí

îíïëìêð îñòóôõö÷

Fig. 12. Confinement eficiency compared to Chancel: execution times with NBench normalized to SGX runs without

sandboxing

1øùú øûùú 2üøùú 1ýú0

üþ

100

ÿ
�
�
�
��
�
��
�
�
	

�

2.� 2.2 1. 1.� 1.� ��� ��� ��� ��� ���
2��� 2���1���12.�10.�

10��
����

���
��������

�������� ����

�ý 1 !"#$#%%&% '"(2 !" û !") !"

Fig. 13. Cloister instance loading times compared to SGX

5.6 The Efect of Fast Enclave Loading

The enclave loading time is important for nimble deployments of serverless services on clouds. Figure 13 shows

the loading speed of Cloister in various enclave sizes. Compared to the baseline SGX, the other conigurations

indicate diferent set-ups of loading optimizations in Cloister. For example, 8X-P represents the simulated

loading time with 8 SHA-256 modules, assuming that EEXTEND takes time proportional to its hash operations.

Compared to SGX, Cloister shows 1.73, 2.27, and 2.64 times faster average loading speed with 2X-P, 4X-P, and

8X-P. In addition, even with 1X-P, Cloister shows 15.7% better performance over SGX on average, since Cloister

eliminates redundant hashing for MRENCLAVE and header, as described in Section 4.5.

We also measure the loading times of Cloister and Chancel with NBench. Cloister is 7.5-59.8% faster over

the SGX with 1-8x parallelization including the initial channel establishment. On the other hand, Chancel is 28.5%

slower than SGX due to its software binary veriication after loading.

5.7 Tamper-proof Accounting System

This section describes the tamper-proof accounting system scenario with FTPS server as shown in Figure 9 (c). To

show the efectiveness of the accounting capability, we set up an FTPS (FTP-SSL) server running in Cloister. This

coniguration is similar to the AWS Transfer Family setup where a server initiates a Lambda function equipped

with a specialized ile-processing logic. Such a logic can encompass operations like encrypting iles, scanning for

malware, or cross-checking ile types. Furthermore, it underscores that Cloister can tally various system call

metrics, including ile I/O accesses, network requests, and memory usages.

For the run, 512 clients are running, and each client sends a request for a 1MB ile to FTP server with SSL

protocol. Handling the requests, the monitor enclave logs per-request resource consumption in its secure memory.

Figure 14 shows the latency distribution of the requests with three systems: SGX, CLOISTER, and CLOISTER +

Accounting. The median latency of CLOISTER is only 2% slower than SGX. CLOISTER + Accounting shows

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 19

*+ ,- ,. ,, ,/
0123456 789:

-;-

<-;-

==;<

>
?
@A
?
B
CD
E?

==;<FG HIJKILFMNI

OPQRSTIUMVL

SWX CYZ[\]^_ CYZ[\]^_ ` aKKbcLFMLd

Fig. 14. Latency distribution of FTPS requests

0.64 0.66 0.68
Time (s)

0.64

0.66

0.68

CPU Time (s)

Total runtime
Measured

0.64 0.66 0.68
Time (s)

0

10

20

30 Memory (MB)

0.64 0.66 0.68
Time (s)

0

512

1024

File I/O (KB)

0.64 0.66 0.68
Time (s)

0

512

1024

1407
Network I/O (KB)

Fig. 15. Accounting results for handling an FTPS request

negligible overhead in median and tail latencies. This implies that trusted secure accounting can be achieved

without a large overhead.

Figure 15 shows the accounting results of a single request of the client. The measured CPU time is similar to

the total runtime measured by gettimeofday(), but with a 6.87% error. This is because the accounting system of

Cloister solely counts the sbx-enclave’s uptime. The memory graph shows that loading a 24MB FTPS server

takes 0.64s and the instance size is not changed. The ile and network I/O graphs show the behavior of the FTPS

server. Once the server reads a requested ile name from the network, it reads the ile and sends the contents to

the client through the network. We can observe the server sends more data than the actual ile contents due to

OpenSSL’s encryption and metadata.

5.8 The Efect of Cloister

In this section, we provide a summary of the impact of the Cloister in comparison to the identical conigurations

outlined in the preceding sections (see Sections 5.3, 5.4, 5.5, 5.6, 5.7). Figure 16 presents the combined results

across all scenarios, utilizing three setups: SGX (No Sandbox), SGX+Firejail, and Cloister.

The execution times are normalized to the SGX execution time. Each execution times are broken down to

four distinct categories: Loading, Execution, Encryption, and Monitor. The software organizations of the DB

Service, ML Service, and FTPS Server are depicted in Figure 9. Notably, for NBench, a solitary instance operates

within the sandbox, without any interconnected instance.

We conigure Cloister with 8X parallel hashing, and each enclave instance is allocated with a memory size of

256MB. In the scenarios characterized by computation-intensive workloads, such as ML Service and NBench,

the incurred costs of encryption and sandboxing remain marginal. Conversely, in the I/O-intensive workloads,

such as the DB Service and FTPS Server, SGX experiences encryption-related overheads of 17.8% and 8.4%,

ACM Trans. Arch. Code Optim.

20 • Park et al.

ef ghijklh mn ghijklh opqg ghijhi rfhslt
0.0

0.u

1.0

1.u

v
w
xy
z
{|
}
~
�

 �
�
~
�
�
�|
w
�
�
|y
~

��� ��� ������x� ��� � �������� ��������

Fig. 16. Performance comparison for all scenarios

respectively, in terms of execution time. Furthermore, the SGX+Firejail coniguration introduces overheads of

20.6% and 6.3% for sandboxing relative to SGX, due to frequent system calls from I/O operations.

One of the beneits of Cloister is its utilization of hardware-based encryption, which eliminates the need

for extra costs in communication between instances and the sandbox monitor. The igure shows that Cloister

consistently loads 2.64 times faster than both SGX and SGX+Firejail setups showcasing the loading acceleration

efect by Cloister.

In summary, Cloister demonstrates a 3.3% to 24.9% faster instance lifecycle than SGX owing to its loading

acceleration, and a 5.9% to 29.3% faster instance lifecycle over SGX+Firejail. Most importantly, Cloister

provides the hardware hardened two-way isolation and mutually trusted monitor with secure accounting in

this setup. These outcomes not only demonstrate the efectiveness of Cloister but also indicate its enhanced

security, particularly within the context of trusted serverless computing.

6 RELATED WORK

Sandbox enclave: There have been several prior studies for sandboxing within an enclave. Ryoan decomposes

a cloud application into distributed enclaves with the software sandboxing and SW-encrypted channels [55].

Chancel proposes a multi-client software fault isolation technique through binary instrumentation [22]. Occlum

leverages Intel MPX for multi-domain software fault isolation within an enclave [76]. SGXLock [34] conines an

enclave instance with MPK and make PKRU unchangeable within the enclave. Unlike the prior work, Cloister

does not increase software TCB within a sandboxed enclave and it does not prohibit the use of hardware features

to enable bidirectional protection.

Trustworthy accounting: Recent studies investigated the need for trustworthy accounting on clouds. HRA

irst proposed the hardware-based trusted resource accounting for virtual machines when the hypervisor is

untrusted [57]. AccTEE measures CPU usage by counting executed instructions [47]. For I/O usage, AccTEE

accumulates bytes in and out of the enclave through I/O functions. S-FaaS runs a dedicated thread executing

a for-loop to measure the CPU time [23]. To detect AEX, it uses Intel TSX technology in the thread. T-counter

measures CPU usage with static analysis and instrumented binary [44]. T-lease uses Time Stamp Counter (TSC)

to measure the execution time of an enclave [84]. To protect against TSC manipulation, it calibrates the clock with

an attacker-uncontrollerable instruction, RDRAND. A major diference between Cloister to the prior work is

Cloister does not measure resource usage inside the application enclave. To achieve mutual agreement between

the OS and application, Cloister proposes a neutral accounting model with the monitor enclave.

Enclave startup optimization: For nimble instance loading, Clemmys leverages dynamic memory management

of SGX2 to skip EADD during the startup of an enclave [85]. Plugin Enclave and Reusable Enclave propose reuse-

based fast instance loading techniques [64, 95]. By remapping already loaded plugin enclaves, a host application

ACM Trans. Arch. Code Optim.

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 21

can be loaded faster than cold launches. Unlike the prior studies, Cloister proposes hardware acceleration for

instance measurement.

TEE communication: To allow eicient communication, recent studies proposed hardware-protected shared

memory for RISC-V enclaves [45, 93]. The new communication architectures allow improved performance while

preventing intervention from attackers outside. They enable protection from race attacks (e.g., TOCTOU) through

ownership transfers or exclusive memory locks. On the other hand, Nested Enclave introduces a shared enclave

among enclaves called outer enclave to provide trusted shared memory [68].

7 CONCLUSION

This paper explored a new enclave extension model, Cloister, to support hardware-based trusted serverless

computing. Cloister proposed hardware-hardened sandboxing with sbx-enclave, protected OS interaction with

monitor enclave, trusted accounting with hardware logging, and accelerated enclave loading with parallelization.

The design not only reduces TCB within the protection boundary but also resolves security concerns that current

approaches have. Cloister minimizes hardware modiication by leveraging existing hardware features of SGX.

REFERENCES

[1] [n. d.]. An app may be able to execute arbitrary code out of its sandbox or with certain elevated privileges. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2021-33097. Mar, 2023.

[2] [n. d.]. An attacker with JavaScript execution may be able to execute arbitrary code. https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2021-33097. Aug, 2021.

[3] [n. d.]. Choosing an App Engine environment. https://cloud.google.com/appengine/docs/the-appengine-environments.

[4] [n. d.]. Comodo Antivirus versions up to 12.0.0.6810 are vulnerable to Local Privilege Escalation due to CmdAgent’s handling of COM

clients. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3969. Jan, 2019.

[5] [n. d.]. CVE lists. https://cve.mitre.org/.

[6] [n. d.]. Firejail. https://irejail.wordpress.com/.

[7] [n. d.]. How to Run Intel Software Guard Extensions’ Simulation Mode. https://software.intel.com/content/www/us/en/develop/blogs/

usage-of-simulation-mode-in-sgx-enhanced-application.html.

[8] [n. d.]. Instructions for RVS Sandbox Environment. https://developer.amazon.com/docs/in-app-purchasing/iap-rvs-setup-sandbox.html.

[9] [n. d.]. Mozilla Security/Sandbox. https://wiki.mozilla.org/Security/Sandbox.

[10] [n. d.]. Node.js custom inspect function allows attackers to escape the sandbox and run arbitrary code.. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2021-33097. Jul, 2023.

[11] [n. d.]. Possible seccomp bypass due to seccomp policies that allow the use of ptrace. https://nvd.nist.gov/vuln/detail/CVE-2019-2054.

May, 2019.

[12] [n. d.]. Process-injection: Ptrace System Calls. https://attack.mitre.org/techniques/T1055/008/. Jan, 2020.

[13] [n. d.]. Setting the environment occurs across a privilege boundary from Bash execution, aka "ShellShock". https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-6271. Sep, 2014.

[14] [n. d.]. Windows Kernel Local Elevation of Privilege Vulnerability. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17087.

August, 2020.

[15] 2013. Building Your Dev and Test Sandbox with Windows Azure Infrastructure Services. https://azure.microsoft.com/ko-kr/resources/

videos/build2013-dev-test-sandbox-with-windows-azure-infrastructure-services/.

[16] 2016. Intel(R) Software Guard Extensions SDK Developer Reference for Linux* OS.

[17] 2016. Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3C: System Programming Guide, Part 3.

[18] 2019. Intel 64 and IA-32 architectures software developer’s manual, Volume 3. (2019).

[19] 2021. Afected Processors: Transient Execution Attacks & Related Security Issues by CPU. https://software.intel.com/security-software-

guidance/processors-afected-transient-execution-attack-mitigation-product-cpu-model.

[20] 2022. SGX-NBench. https://github.com/utds3lab/sgx-nbench.

[21] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungyoung Lee. 2019. Obfuscuro: A Commodity Obfuscation

Engine on Intel SGX. In Network and Distributed System Security Symposium (NDSS).

[22] Adil Ahmad, Juhee Kim, Jaebaek Seo, Insik Shin, Pedro Fonseca, and Byoungyoung Lee. 2021. CHANCEL: Eicient Multi-client Isolation

Under Adversarial Programs. In Network and Distributed System Security Symposium (NDSS).

ACM Trans. Arch. Code Optim.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33097
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33097
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33097
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33097
https://cloud.google.com/appengine/docs/the-appengine-environments
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-3969
https://cve.mitre.org/
https://firejail.wordpress.com/
https://software.intel.com/content/www/us/en/develop/blogs/usage-of-simulation-mode-in-sgx-enhanced-application.html
https://software.intel.com/content/www/us/en/develop/blogs/usage-of-simulation-mode-in-sgx-enhanced-application.html
https://developer.amazon.com/docs/in-app-purchasing/iap-rvs-setup-sandbox.html
https://wiki.mozilla.org/Security/Sandbox
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33097
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33097
https://nvd.nist.gov/vuln/detail/CVE-2019-2054
https://attack.mitre.org/techniques/T1055/008/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17087
https://azure.microsoft.com/ko-kr/resources/videos/build2013-dev-test-sandbox-with-windows-azure-infrastructure-services/
https://azure.microsoft.com/ko-kr/resources/videos/build2013-dev-test-sandbox-with-windows-azure-infrastructure-services/
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://github.com/utds3lab/sgx-nbench

22 • Park et al.

[23] Fritz Alder, N Asokan, Arseny Kurnikov, Andrew Paverd, and Michael Steiner. 2019. S-faas: Trustworthy and accountable function-as-a-

service using intel SGX. In Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop.

[24] Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang. 2010. Conceptual SLA framework for cloud computing. In 4th IEEE

International Conference on Digital Ecosystems and Technologies.

[25] Amazon. [n. d.]. https://aws.amazon.com/lambda/pricing/.

[26] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran,

Dan O’Keefe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure

Linux Containers with Intel SGX. In USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[27] Adam Barth, Charles Reis, Collin Jackson, and Google Inc. [n. d.]. Google Chrome Team.

[28] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applications from an Untrusted Cloud with Haven. In USENIX

Symposium on Operating Systems Design and Implementation (OSDI).

[29] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2018. The Guard’s Dilemma: Eicient

Code-Reuse Attacks Against Intel SGX. In USENIX Security Symposium (USENIX Security).

[30] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand

Exposure: SGX Cache Attacks Are Practical. In USENIX Workshop on Ofensive Technologies (WOOT).

[31] Jo Van Bulck, Marina Minkin, Oir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval

Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order Execution. In

USENIX Security Symposium (USENIX Security).

[32] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support Vector Machines. ACM Transactions on Intelligent Systems

and Technology (2011).

[33] Stephen Checkoway and Hovav Shacham. 2013. Iago Attacks: Why the System Call API is a Bad Untrusted RPC Interface. In International

Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

[34] Yuan Chen, Jiaqi Li, Guorui Xu, Yajin Zhou, Zhi Wang, Cong Wang, and Kui Ren. 2022. SGXLock: Towards Eiciently Establishing

Mutual Distrust Between Host Application and Enclave for SGX. In USENIX security symposium (USENIX Security).

[35] Yueqiang Cheng, Zhi Zhang, and S. Nepal. 2018. Still Hammerable and Exploitable: on the Efectiveness of Software-only Physical

Kernel Isolation. ArXiv (2018).

[36] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010. Benchmarking Cloud Serving Systems

with YCSB. In ACM Symposium on Cloud Computing (SoCC).

[37] Jonathan Corbet. 2009. Seccomp and sandboxing. LWN. net, May 25 (2009).

[38] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained.. In IACR Cryptology ePrint Archive.

[39] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanctum: Minimal hardware extensions for strong software isolation. In USENIX

Security Symposium (USENIX Security).

[40] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2015. Thwarting Cache Side-Channel Attacks

Through Dynamic Software Diversity. In Network and Distributed System Security Symposium (NDSS).

[41] Rongzhen Cui, Lianying Zhao, and David Lie. 2022. Emilia: Catching Iago in Legacy Code. In Network and Distributed System Security

Symposium (NDSS).

[42] Pubali Datta, Isaac Polinsky, Muhammad Adil Inam, Adam Bates, and William Enck. 2022. {ALASTOR}: Reconstructing the Provenance

of Serverless Intrusions. In 31st USENIX Security Symposium (USENIX Security 22).

[43] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy. 2010. Privilege Escalation Attacks on Android. In

International Conference on Information Security (ICS).

[44] Chuntao Dong, Qingni Shen, Xuhua Ding, Daoqing Yu, Wu Luo, Pengfei Wu, and Zhonghai Wu. 2022. T-Counter: Trustworthy and

Eicient CPU Resource Measurement using SGX in the Cloud. IEEE Transactions on Dependable and Secure Computing (2022).

[45] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu Zang, and Haibo Chen. 2021. Scalable Memory Protection

in the PENGLAI Enclave. In USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[46] Tal Garinkel, Ben Pfaf, and Mendel Rosenblum. 2004. Ostia: A Delegating Architecture for Secure System Call Interposition.. In

Network and Distributed System Security Symposium (NDSS).

[47] David Goltzsche, Manuel Nieke, Thomas Knauth, and Rüdiger Kapitza. 2019. AccTEE: A WebAssembly-Based Two-Way Sandbox for

Trusted Resource Accounting. In International Middleware Conference (Middleware).

[48] Google. [n. d.]. https://cloud.google.com/functions/pricing.

[49] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giufrida. 2018. Translation Leak-aside Bufer: Defeating Cache Side-channel

Protections with TLB Attacks. In USENIX Security Symposium (USENIX Security).

[50] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript.

In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).

[51] Jinyu Gu, Bojun Zhu, Mingyu Li, Wentai Li, Yubin Xia, and Haibo Chen. 2022. A {Hardware-Software} Co-design for Eicient

{Intra-Enclave} Isolation. In 31st USENIX Security Symposium (USENIX Security 22).

ACM Trans. Arch. Code Optim.

https://aws.amazon.com/lambda/pricing/
https://cloud.google.com/functions/pricing

Hardware Hardened Sandbox Enclaves for Trusted Serverless Computing • 23

[52] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. 2005. Simpoint 3.0: Faster and more lexible program phase analysis. Journal

of Instruction Level Parallelism (2005).

[53] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett Witchel. 2013. InkTag: Secure Applications on an

Untrusted Operating System. In International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS).

[54] Ruirui Huang and G Edward Suh. 2010. Ivec: of-chip memory integrity protection for both security and reliability. ACM SIGARCH

Computer Architecture News (2010).

[55] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016. Ryoan: A Distributed Sandbox for Untrusted

Computation on Secret Data. In USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[56] IBM. [n. d.]. https://cloud.ibm.com/functions/learn/pricing.

[57] Seongwook Jin, Jinho Seol, Jaehyuk Huh, and Seungryoul Maeng. 2015. Hardware-Assisted Secure Resource Accounting under a

Vulnerable Hypervisor. In ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE).

[58] Mustakimur Rahman Khandaker, Yueqiang Cheng, Zhi Wang, and Tao Wei. 2020. COIN Attacks: On Insecurity of Enclave Untrusted

Interfaces in SGX. In International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

[59] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,

Rafal Kolanski, Michael Norrish, et al. 2009. seL4: Formal veriication of an OS kernel. In ACM Symposium on Operating systems principles

(SOSP).

[60] Youngjin Kwon, Alan M. Dunn, Michael Z. Lee, Owen S. Hofmann, Yuanzhong Xu, and Emmett Witchel. 2016. Sego: Pervasive Trusted

Metadata for Eiciently Veriied Untrusted System Services. In International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS).

[61] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn Song. 2020. Keystone: An Open Framework for Architecting

Trusted Execution Environments. In European Conference on Computer Systems (EuroSys).

[62] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon

Kang. 2017. Hacking in darkness: Return-oriented programming against secure enclaves. In USENIX Security Symposium (USENIX

Security).

[63] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado. 2017. Inferring Fine-grained Control Flow

Inside SGX Enclaves with Branch Shadowing. In USENIX security symposium (USENIX Security).

[64] Mingyu Li, Yubin Xia, and Haibo Chen. 2021. Conidential serverless made eicient with plug-in enclaves. In International Symposium

on Computer Architecture (ISCA).

[65] Weijie Liu, Hongbo Chen, XiaoFengWang, Zhi Li, Danfeng Zhang, WenhaoWang, and Haixu Tang. 2021. Understanding TEE Containers,

Easy to Use? Hard to Trust. arXiv preprint arXiv:2109.01923 (2021).

[66] Microsoft. [n. d.]. https://azure.microsoft.com/en-us/pricing/details/functions/.

[67] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar. 2020. CopyCat: Controlled {Instruction-Level} Attacks

on Enclaves. In USENIX Security Symposium (USENIX Security).

[68] Joongun Park, Naegyeong Kang, Taehoon Kim, Youngjin Kwon, and Jaehyuk Huh. 2020. Nested Enclave: Supporting Fine-grained

Hierarchical Isolation with SGX. In International Symposium on Computer Architecture (ISCA).

[69] Weizhong Qiang, Zezhao Dong, and Hai Jin. 2018. Se-lambda: Securing privacy-sensitive serverless applications using sgx enclave. In

International Conference on Security and Privacy in Communication Systems.

[70] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital Side-Channels through Obfuscated Execution. In USENIX

Security Symposium (USENIX Security).

[71] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle accurate memory system simulator. IEEE computer

architecture letters (2011).

[72] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microarchitectural simulation of thousand-core systems. ACM

SIGARCH Computer architecture news (2013).

[73] David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022. Jenny: Securing Syscalls for PKU-based Memory Isolation

Systems. In USENIX Security Symposium (USENIX Security).

[74] Mark Seaborn and Thomas Dullien. 2015. Exploiting the DRAM rowhammer bug to gain kernel privileges. https://googleprojectzero.

blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html.

[75] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin, Dongsu Han, and Taesoo Kim. 2017. SGX-Shield: Enabling

Address Space Layout Randomization for SGX Programs.. In Network and Distributed System Security Symposium (NDSS).

[76] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan. 2020. Occlum: Secure and Eicient

Multitasking Inside a Single Enclave of Intel SGX. In International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS).

[77] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX: Eradicating Controlled-Channel Attacks Against Enclave

Programs. In Network and Distributed System Security Symposium (NDSS).

ACM Trans. Arch. Code Optim.

https://cloud.ibm.com/functions/learn/pricing
https://azure.microsoft.com/en-us/pricing/details/functions/
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

24 • Park et al.

[78] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. 2016. Preventing your faults from telling your secrets. In

ACM on Asia Conference on Computer and Communications Security (Asia CCS).

[79] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. 2017. PANOPLY: Low-TCB Linux Applications with SGX Enclaves. In

Network and Distributed System Security Symposium (NDSS).

[80] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep Torrellas, and Christopher W Fletcher. 2019. Microscope:

Enabling microarchitectural replay attacks. In International Symposium on Computer Architecture (ISCA).

[81] Jakub Szefer. 2019. Survey of Microarchitectural Side and Covert Channels, Attacks, and Defenses. Journal of Hardware and Systems

Security (2019).

[82] Meysam Taassori, Ali Shaiee, and Rajeev Balasubramonian. 2018. VAULT: Reducing Paging Overheads in SGX with Eicient Integrity

Veriication Structures. In International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS).

[83] Hongliang Tian, Qiong Zhang, Shoumeng Yan, Alex Rudnitsky, Liron Shacham, Ron Yariv, and Noam Milshten. 2018. Switchless Calls

Made Practical in Intel SGX. In Workshop on System Software for Trusted Execution (SysTEX).

[84] Bohdan Trach, Rasha Faqeh, Oleksii Oleksenko, Wojciech Ozga, Pramod Bhatotia, and Christof Fetzer. 2020. T-Lease: A Trusted Lease

Primitive for Distributed Systems. In ACM Symposium on Cloud Computing (SoCC).

[85] Bohdan Trach, Oleksii Oleksenko, Franz Gregor, Pramod Bhatotia, and Christof Fetzer. 2019. Clemmys: Towards secure remote execution

in faas. In Proceedings of the 12th ACM International Conference on Systems and Storage (SYSTOR).

[86] Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical Library OS for Unmodiied Applications on SGX. In

USENIX Annual Technical Conference (ATC).

[87] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler, Peter Druschel, and Deepak Garg. 2019. ERIM: Secure,

eicient in-process isolation with protection keys (MPK). In USENIX security symposium (USENIX Security).

[88] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul Strackx. 2017. Telling Your Secrets without Page Faults:

Stealthy Page Table-Based Attacks on Enclaved Execution. In USENIX Security Symposium (USENIX Security).

[89] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss. 2019. SGXJail: Defeating Enclave Malware via Coninement. In

International Symposium on Research in Attacks, Intrusions and Defenses (RAID).

[90] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One Bit Flips, One Cloud Flops: Cross-VM Row Hammer

Attacks and Privilege Escalation. In USENIX Security Symposium (USENIX Security).

[91] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel Attacks: Deterministic Side Channels for Untrusted

Operating Systems. In IEEE Symposium on Security and Privacy (S&P).

[92] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar. 2009. Native Client: A Sandbox for

Portable, Untrusted x86 Native Code. In IEEE Symposium on Security and Privacy (S&P).

[93] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carlson, and Prateek Saxena. 2022. Elasticlave: An Eicient Memory Model for Enclaves.

In USENIX security symposium (USENIX Security).

[94] Xiaoyong Zhang, WU Ruizhen, Mingming Wang, and Lin Wang. 2019. A high-performance parallel computation hardware architecture

in ASIC of SHA-256 hash. In 21st International Conference on Advanced Communication Technology (ICACT).

[95] Shixuan Zhao, Pinshen Xu, Guoxing Chen, Mengya Zhang, Yinqian Zhang, and Zhiqiang Lin. 2023. Reusable Enclaves for Conidential

Serverless Computing. In 32nd USENIX Security Symposium (USENIX Security 23).

ACM Trans. Arch. Code Optim.

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless computing
	2.2 Intel Software Guard Extensions (SGX)
	2.3 Sandboxing
	2.4 Threat model

	3 Motivation
	3.1 Requirement of trusted serverless computing
	3.2 Challenge 1: Bi-directional Isolation
	3.3 Challenge 2: Secure Interaction with OS
	3.4 Challenge 3: Mutually Agreeable Resource Accounting
	3.5 Challenge 4: Fast loading

	4 Architecture
	4.1 Overview
	4.2 Memory Protection for Sbx-enclave
	4.3 Sandbox Monitor
	4.4 Trusted Accounting
	4.5 Hardware Extension for Fast Loading

	5 Evaluation
	5.1 Microarchitecture Simulation
	5.2 Emulation-based Full-system Evaluation
	5.3 Application Performance
	5.4 Protected File System as a Function
	5.5 The Effect of Confinement
	5.6 The Effect of Fast Enclave Loading
	5.7 Tamper-proof Accounting System
	5.8 The Effect of Cloister

	6 Related Work
	7 Conclusion
	References

