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HAMMER: Hardware-friendly Approximate Computing for
Self-attention with Mean-redistribution and Linearization
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Abstract—The recent advancement of the natural language processing (NLP) models is the result of the ever-increasing model size and
datasets. Most of these modern NLP models adopt the Transformer based model architecture, whose main bottleneck is exhibited in the
self-attention mechanism. As the computation required for self-attention increases rapidly as the model size gets larger, self-attentions
have been the main challenge for deploying NLP models. Consequently, there are several prior works which sought to address this
bottleneck, but most of them suffer from significant design overheads and additional training requirements. In this work, we propose
HAMMER, hardware-friendly approximate computing solution for self-attentions employing mean-redistribution and linearization, which
effectively increases the performance of self-attention mechanism with low overheads. Compared to previous state-of-the-art
self-attention accelerators, HAMMER improves performance by 1.2−1.6× and energy efficiency by 1.2−1.5×.

✦

1 INTRODUCTION

In recent years, machine learning (ML) applications based on
deep neural networks (DNNs) have become widespread. Along with
the rapid growth of their applicability, natural language processing
(NLP) is one of the most promising domains. Especially, large-
scale pre-trained models (e.g. BERT, GPT, and MT-NLG) have
demonstrated their efficacy for NLP advancement. These models
adopt the Self-attention mechanism, which understands the
subtle differences in meaning between different contexts. However,
these advanced NLP models require huge computation and memory
requirements with recent models suffering from even higher overheads
due to their larger model architectures and their longer input sequences.

To mitigate this problem, there have been several prior works em-
ploying custom hardware-based acceleration for Self-attention
via approximate computing (e.g. A3 [1], ELSA [2], and SpAtten [3]).
These works, however, suffer from the following two limitations. First,
many of these prior studies [2], [3] incur additional training before
deployment, which causes large overheads in the order of a few minutes
to a few hours. Because this (re)training stage is required whenever the
target application changes, such overheads cannot be easily amortized.
Second, the implementation of approximation consumes non-negligible
portion over the overall accelerator area (e.g., the approximation units
take up more than 60% of the area for A3 [1], and 50% for ELSA [2]),
causing significant overheads.

To address the aforementioned challenges of prior approx-
imation based Self-attention accelerators, we propose an
algorithm-hardware co-design named HAMMER, a Hardware-friendly
ApproxiMate computing with MEan-Redistribution and linearization
for Self-attention based NLP models. As detailed in Section 3,
HAMMER requires a minimal extension to hardware resources for
approximation while incurring much smaller computation overhead.
To summarize our contributions:

1) We propose an efficient and hardware-friendly approximation
scheme that does not require additional training for approxi-
mation. This makes our hardware design more versatile and
easily accessible for deployment.

2) The proposed approximation algorithm demonstrates that the
efficient and hardware-friendly approximation and pruning
scheme can be adopted to the Self-attention mecha-
nism with negligible impact on accuracy.

3) We present HAMMER, an accelerator for self-attention which
is co-designed with the proposed approximation scheme. It
outperforms the state-of-the-art Self-attention acceler-
ators in terms of performance and area-efficiency.
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Fig. 1: End-to-end latency breakdown of BERT-Large based applications
[4], [5], [6], [7]. Dot-product, softmax, and weighted sum comprise the
Self-attention mechanism. Results are collected on NVIDIA A100.
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Fig. 2: Value distribution of
Prob, in RoBERTa with a sam-
ple sequence length of 512

The Self-attention mechanism
is at the core of the transformer
model. Because it computes the com-
binational relationships between in-
puts, the required computation scales
quadratically with the length of the
input [1], [2]. This quadratic scal-
ing makes Self-attention very
costly. Fig. 1 shows the latency break-
down of representative transformer-
based NLP model BERT-Base pro-
filed on a GPU system. The latency of Self-attention dominates
as the sequence length increases. Because recent NLP models tend to
adopt longer input sequences, accelerating Self-attention can
significantly help improve end-to-end performance.

Self-attention mechanism can be generally formulated as in
Eq. 1-3. It takes three matrices of inputs: Query, Key, and Value, with
the dimension of (Number of Inputs)×(Hidden Dimension). [1], [8].

Score = Query ·KeyT (1)

Prob = so f tmax(Score) (2)

Sel f Attention(Query,Key,Value) = Prob ·Value (3)

Prob in Eq. 2 reveals an interesting property as softmax function
maximizes the differences between input values in Score vector. We
plotted the values of the elements in multiple rows of Prob in Fig. 2
and observed that it follows a power-law distribution, i.e., most of the
Prob values are below 0.01. Considering that the range of softmax
function is between 0 and 1, the values smaller than 0.01 have little
impact on the final output of Self-attention mechanism, and
we demonstrate this in Section 5. However, unlike its little impact on
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Fig. 3: Heatmap of the value distribution of (a) Key and (b) Score in the
first head of the last six layers in BERT-Large.

the final output, these unimportant values possess the majority portion
(99%) in computation. Consequently, these unimportant near-zero
values can potentially be pruned out to reduce a significant amount of
computation while having a negligible impact on accuracy.

3 ALGORITHM

3.1 Pruning Unimportant Tokens
Based on our key observations in Fig. 2, we design a sparse version of
Prob as follows.

P̂robi j =

{
Probi j if Probi j > threshold
0 otherwise

(4)

Because the softmax function makes P̂rob very sparse, the
computation required for Eq. 3 can be reduced with the help of sparse-
dense matrix multiplication. Still, the overall computational complexity
is bounded by the computation of Eq. 1, whose time complexity is
O(N2). To tackle this problem, we can skip the computation for the
element in Score if the corresponding element in P̂rob will be zero
[1], [2]. Eq. 5 shows the modified version of Eq. 1. If an element
in Score of which the corresponding value in Prob is less than the
threshold, then instead of computing it, we mark it as negative infinity
and continue the following computations. Then softmax maps negative
infinity to zero, making the P̂rob sparse as in Eq. 4. The main challenge
here is that before we compute Ŝcore, we need to know in advance the
Prob, which again requires Score. To address this problem, we present
a hardware-friendly approximate scheme to compute the approximated
version of Score and predict the value of Prob before computing Eq. 5.
Following sections detail how we compute the approximation in terms
of mean redistribution (Section 3.2) and linearization (Section 3.3).

Ŝcorei j =

{
(Query ·KeyT )i j if Probi j > threshold
−in f otherwise

i, j = 1....N

(5)

3.2 Attention Score Approximation
We apply static quantization scheme on the input Query and Key values
to approximate the computation of Score (which is used for predicting
Prob). A key obstacle here is that the polarity distribution of input val-
ues keep changing dynamically, even within a single inference (Fig. 3).
This makes it challenging to choose a static reference for quantization.
An alternative measure will be to employ K-mean clustering style
dynamic reference quantization, but they generally incur heavy pre-
processing and latency overheads. HAMMER addresses such challenge
with a fast, lightweight static quantization with mean-redistribution
which can adapt to dynamic input distribution at runtime.

Input quantization. When computing the approximate Score to
predict the value of Prob, we use the aggressive quantization scheme
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Fig. 4: Accuracy comparison on SQuADv2 between exponential and
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for Query and Key with 2-bit representation in Eq. 6. It divides the
real number plane into four sections. If the absolute value of an input
is larger than 4, it is mapped to 8 or -8 depending on its sign bit. For
inputs of which the absolute value is smaller than 4, they are mapped
to 1 or -1 in the same manner. We empirically chose the weight factor
to 8 after carefully sweeping the factor from 1 to 32 in the power of 2.
This quantization scheme can represent a wider range of values than
simple binary quantization and can be implemented in hardware using
simple shifters without an area-hungry multiplier.

Quant(x) =

{
8 · sgn(x) if |x| ≥ 4
sgn(x) otherwise

(6)

Mean redistribution. Fig. 3a shows the values in Key in the first
head of the last six layers in the BERT-Large. The distribution of input
values is usually skewed from zero, which makes the quantization
result biased. To address this problem, we leverage the property of the
softmax function that it is invariant to the constant offset in Eq. 7.

so f tmax(xi) =
exp(xi)

∑
N
j=1 exp(x j)

=
exp(xi − c)

∑
N
j=1 exp(x j − c)

(7)

With this property, the mean values of each row in Key can be
subtracted across the row dimension as shown in Eq. 8, minimizing
quantization error without affecting the output value. It changes the
value distribution of Key to be properly quantized. With this zero-
centered Key, we can eventually have the equation to compute the
approximate score as Eq. 9. Because the quantized values are all power
of 2 (e.g. 1, -1, 8, -8), the approximated score can be computed
through only addition and shift operations without any multiplications.

(MeanKey) j = (
N

∑
i=1

Keyi j)/N (8)

Approx. Score = Quant(Query) ·Quant((Key−MeanKey)
T ) (9)

3.3 Softmax Linearization
There are several ways to implement the softmax function, such as
lookup tables, fixed-point approximation, piecewise linear approxima-
tion, etc. However, depending on target precision, these implementa-
tions can suffer from the large size of the on-chip buffer, or require
floating-point representation to cover a huge range of exponentials in
softmax. Such implementation overheads can be relatively large for our
target hardware-friendly lightweight approximation unit. Consequently,
a key objective of our approach is to emulate only the core property of
softmax with minimal hardware resources as detailed below.

Softmax can be viewed as a normalization function where an
exponential function is applied to its input values (Eq. 7). Instead
of applying exponential before normalization to compute softmax,
we may apply another alternative function that behaves similarly to
exponential. We characterize the properties of the exponential core
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Fig. 6: Overview of HAMMER architecture

to the softmax as follows; i) Exponential is a positive function ii)
Exponential is a monotonically increasing function.

ReLU function is the simplest candidate which mostly satisfies
these two properties: its non-negative and monotonically increasing
behavior for non-zero input values. In Fig. 4, we measured the accuracy
of Self-attention for each of the aforementioned alternative
functions to predict the value of Prob and approximate the Score as
proposed in Section 3. EXP is the exponential function used in the
original softmax function, so it’s effectively an upper bound for the
approximations. Not surprisingly, the quality of ReLU softmax is much
worse than EXP, degrading sharply for a high pruning ratio.

The distribution of Score which is the input of ReLU is mostly
skewed as in Fig. 3b. For the distributions skewed to negative values,
the behavior of ReLU, which cuts off negative values, causes lots of
information to be lost. Fortunately, our proposed mean-redistribution
approach described in Section 3.2 can mitigate this problem. Mean-
redistribution centers the resulting values of Score to zero, making
ReLU cut off about half of the non-important values in Score.

However, the accuracy still degrades compared to the baseline EXP
on a high pruning ratio. To address such limitation, we consider another
characteristic of softmax, “winner-takes-all”. Because exponential
function increases rapidly as the input value increases, the largest value
takes over the overall softmax output. To emulate such a property
of exponential, we modify the ReLU function as shown in Fig. 5.
We increase the slope of ReLU by shifting the output to the left by
1, 2, and 3 as input increases. This modification further improves
the approximation quality with minimal hardware overheads (i.e.,
lightweight shifters for implementation).

Our proposal differentiates itself from previous linear piecewise
approximations in that it has a much smaller range than the naive,
linear approximation of the exponential function. Specifically, our
shifted ReLU requires much less bit-width to store the results while
still preserving much more information.

4 HAMMER ARCHITECTURE

Fig. 6 shows HAMMER’s overall architecture and its key pipeline
stages, which consist of two parts: approximation and computation.
First, the approximation unit computes the approximated Score, and
with the user-defined threshold, it selects the important Query, and Key
pairs. These pairs are encoded as a pruning mask. The computation
unit takes this pruning mask and computes only the pairs marked by
the approximation unit.

Mean computation unit. Mean computation unit first accumulates
the input Key vectors sequentially and divides them by the inputs’
sequence length to attain the mean value. Then it subtracts this
mean from the input Key vectors for mean-redistribution. The cost of
this operation is amortized over multiple rows in Query and incurs
negligible overhead both for latency and area (detailed in Section 5).

Approximate score unit. Fig. 7 describes the architecture of the
approximate score and candidate selection units. The approximate
score unit takes the Query and Key to quantize them and compute the
approximated Score. First, it loads the input Query and Key vectors and
quantizes them into 2-bit. Then we compute the dot product between
them. Because they are quantized into a power of 2 (e.g. -8, -1, 1,
and 8), multiplication can be replaced with a few shift operations and
reduced with integer adders. Then we apply the proposed shifted ReLU
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function to the dot product result. The computed values are stored in
the score buffer and accumulated in the accumulation buffer for further
use in the following pipeline such as the candidate selection unit.

Candidate selection unit. Once each Score is approximately derived,
we compute the softmax and compare its value to the user-defined
threshold. We avoid the division operation in softmax by comparing
each element with the threshold multiplied by the accumulated Score
value. If it is greater than the threshold, we set the bit in the pruning
mask for further computation in the following computation unit.

Attention computation. Fig. 8 describes the architecture of the atten-
tion computation unit. First, the decoder unit scans the pruning mask
sequentially to find the marked bit. Then it loads the corresponding
input Query and Key vectors, computes the dot-product between them,
and applies an exponential function to its result. We use fixed-point
arithmetic units for dot-product and floating-point arithmetic units for
exponential. The result is then multiplied with the corresponding input
Value vector, and accumulated on the output buffer. The accumulated
vector on the output buffer is then multiplied with the reciprocal of the
sum of the exponential Score values for computing the final output.

5 EVALUATION

In our experiment, we use BERT-Large [9], ALBERT-Large [10],
and RoBERTa-Large [11], which represents NLP models using the
transformer architecture. We used the open-source implementation of
these models from Hugging Face and fine-tuned these models until
we achieved similar accuracies (≤ ±0.5%) reported in [2]. We run
these models on the datasets SQuAD 1.0 and 2.0 [4], [12], which are
representative datasets for question-answering tasks. As a baseline, we
use a single NVIDIA Titan Xp equipped with 12GB of GDDR5X and
Intel i7-6850k at 3.6GHz equipped with 128GB of DDR4. We also
use the state-of-the-art Self-attention accelerator ELSA [2] as
the baseline. We implement the algorithm of HAMMER with PyTorch
to report the algorithmic performance and cycle-level simulator to
report the hardware performance. The hardware microarchitecture
of HAMMER is implemented using Verilog and synthesized with
Synopsys Design Compiler with a commercial 65nm standard cell
library to report area and energy. For hardware performance evaluations,
to match the performance of the GPU (Titan Xp) with a peak
performance of 12 TFLOPS, 12 instances of HAMMER each with 1
TOPS of peak performance are used with batch-level parallelism.

Algorithmic Performance. Fig. 9 shows the accuracy of our
HAMMER algorithm compared to ELSA. We sweep the user-defined
threshold in the approximation to control the pruning ratio and report
the accuracy over the test set. Compared to ELSA, HAMMER achieves
a greater pruning ratio at iso-accuracy for all studied benchmarks.

Hardware Performance. Fig. 10a shows HAMMER’s performance
compared to GPU at 99% of the baseline accuracy and the accuracy
loss of 1% and 2.5% each. The HAMMER resulted in a larger speedup
than ELSA thanks to its higher pruning ratio at iso-accuracy. The
HAMMER outperforms ELSA 1.39× on average with an accuracy
drop of 1%, and 1.28× on average with an accuracy drop of 2.5%. The
overhead of computing mean-redistribution (not shown in the figure)
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Fig. 9: Accuracy (F1 score) comparison between ELSA and HAMMER evaluated on (a) SQuADv1 and (b) SQuADv2
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TABLE 1: HAMMER area breakdown.

Module Component
Area (mm2)

ELSA / 65 nm HAMMER / 65 nm
(estimated) (measured)

Approximation Mean Comp. - 0.044
Candid. Sel. 1.008 0.459
On-chip buffer 0.472 0.160
Total 1.480 0.651

Computation - 1.817 1.907

Total - 3.297 2.558

only takes account of the 8-16% in the overall performance. This is
because the processed Key values are reused across the multiple input
Query vectors, and the cost of computing means and subtracting them
from the Key values are amortized.

Energy. Fig. 10b shows the energy-efficiency of HAMMER over
ELSA. We compare the energy-efficiency when the accuracy loss
is 1% / 2.5%. Because HAMMER reduces energy consumed in the
computation unit (which takes up most of the total energy consumed),
it results in greater energy-efficiency by up to 1.5x and 1.3x on average.

Area. Table 1 reports the area of HAMMER and ELSA. Because
ELSA is synthesized with 40nm library, we scaled the number reported
by ELSA to 65nm node for a fair comparison. For ELSA, the
approximation unit accounts for 45% of the total area, which is a
significant overhead. With HAMMER, we reduce the area of the
approximation unit by 67% and the total area by 27%.

Ablation Study. Fig. 10c shows how each proposed method
contributes to reducing the area in the approximation module. With
quantization, we can remove the multipliers in the approximate score
units, reducing the overall area by 35%. With our proposed softmax
linearization, we can further reduce the size of on-chip buffers and
replace floating-point arithmetic units in the approximation module
with fixed-point ones, again reducing the overall area by 19%.

6 RELATED WORK

Recent literature explored various optimization strategies to accelerate
Self-attention using approximate computing. However, prior
work based on input sorting [1] and hashing [2] require large on-
chip memory, incurring high area overheads. There exists some prior
work employing lightweight approximation schemes but they either
require additional training [3] or huge approximation module [13] to
compensate for high accuracy loss. HAMMER presents a lightweight
approximation module that does not sacrifice algorithmic accuracy,
achieving 8.9x, 1.7x, 2.6x, and 4.0x higher performance/area vs. [1],
[2], [3], and [13], respectively, without requiring additional training.

7 CONCLUSION

Self-attention mechanism is the core of various modern
NLP neural networks. This paper presents HAMMER, the accel-

erator for Self-attention, which exploits the sparsity in the
Self-attention mechanism to prune unnecessary computations.
HAMMER effectively approximates the existing Self-attention
mechanism to spot unimportant computations beforehand. With low-
bit quantization, mean redistribution, and softmax linearization, our
proposed approximation scheme results in minimal overhead in
terms of power and area. Compared to the previous state-of-the-art
Self-attention accelerator, HAMMER achieves a 1.2− 1.6×
and 1.2− 1.5× improvement in performance and energy-efficiency
respectively.
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