Tunable Memory Protection for Secure Neural
Processing Units

Sunho Lee, Seonjin Na, Jungwoo Kim, Jongse Park and Jachyuk Huh
School of Computing, KAIST
{myshlee417, sjna, jwkim, jspark}@casys.kaist.ac.kr, jhhuh@kaist.ac.kr

Abstract—One of the key security supports for neural pro-
cessing units (NPUs) is the hardware-based memory protection
to provide confidentiality and integrity of NPU data. How-
ever, adopting the memory encryption and integrity protection
techniques developed for CPUs do not fully utilize the NPU
characteristics, incurring a significant performance degradation.
To address the performance challenges, this paper proposes new
improvements of memory protection for NPUs based on the
unique property of NPU computation. The design first proposes
a context-based memory protection which imposes the hardware
memory protection only for the critical memory region of NPUs.
Second, it allows adjusting the counter granularity for NPU
memory to reduce the overheads of common counter-mode
encryption. In addition, it exploits the read-only property of
machine learning parameters, and adds a trusted communication
channel between the CPU and NPU. Our evaluation with a
simulated NPU shows that the performance overhead of memory
protection for NPUs can be significantly reduced from the state-
of-the-art CPU-oriented design, improving the performance by
13.5%.

I. INTRODUCTION

As neural processing units (NPUs) integrated in CPUs
process more and more mission-critical tasks in edge devices,
protecting the data used by NPUs has become important.
Considering the environments where edge devices are used,
the memory-resident data of NPUs must be protected not only
from compromised privileged software but also from direct
physical attacks. For CPUs, hardware-based memory protec-
tion guarantees the confidentiality and integrity of memory-
resident data even from physical attacks. For such hardware-
based protection, counter-mode encryption is commonly used.
Per-block counters guarantee the freshness of the data, and a
counter tree is maintained to verify the counter values for their
integrity.

However, simply adopting the mechanism designed for
CPU applications does not provide optimized performance
for NPUs. To overcome the limitation of applying the CPU-
oriented memory encryption schemes to NPUs, this study
proposes techniques to improve the performance of secure
memory accesses. First, this study proposes virtual integrity
tree supporting the context-based memory protection tech-
nique to secure only the critical memory region accessed by
NPUs, instead of applying costly hardware protection to the
entire physical memory. By protecting only the memory region
used by the NPU context, its counter tree height is reduced
significantly, shortening the latencies of handling hash cache
misses.

Second, it investigates the performance overheads of
counter-mode encryption for NPUs and proposes to support
multi-granular counters to match the memory access patterns
of NPUs. NPUs frequently access the memory at much larger
granularities than a typical CPU cacheline size, as they bring
the parameters and inputs from the memory to the internal
Scratch Pad Memory (SPM) at a large chunk unit. Instead
of fixing the counter granularity to a cacheline unit, our
design allows each machine learning task to use an appropriate
granularity.

This study further improves the efficiency of caching coun-
ters by exploiting read-only pages containing model parame-
ters, as proposed by the prior work for GPU [1]. In addition, a
secure communication buffer is added between CPU and NPU
to avoid costly encryption. Our evaluation with a simulated
NPU shows that the overhead of memory protection for
NPUs can be significantly reduced from the baseline design
using the start-of-art CPU-oriented techniques, improving the
performance by 13.5%.

II. BACKGROUND
A. Hardware-based Security

Trusted execution environment (TEE): TEE provides an
isolated execution environment from the operating system. In
Intel SGX, TEE is combined with hardware-based memory
protection to defend against physical attacks on the TEE
memory. Recently, TEE has been extended to support trusted
execution in GPU and NPU [2]-[4].
Memory protection: Hardware memory protection uses en-
cryption and integrity validation for memory-resident data.
When a data block leaves the trusted processor chip, its content
is encrypted. To bring the data from the memory, it needs to
be decrypted and its integrity is validated. The counter mode
encryption and integrity protection are commonly used for
memory protection. A dedicated counter is allocated to each
memory block (cacheline) and its value is increased when a
memory block is updated. The encryption module generates a
One-Time-Pad (OTP) using the address and allocated counter.
A plaintext block is XORed with OTP, and the encrypted
data is evicted to the off-chip memory. Additionally, MAC
(Message Authentication Code) is written to the memory, to
detect whether the value is modified when it is read later.
However, attackers can bypass MAC verification by replac-
ing the memory contents with stale values used in the past. To
prevent such replay attacks, a counter-based tree is commonly

used [5]. The counter value of a cacheline is verified by
recursively traversing toward the root, which does not leave
the processor. For efficiency, the processor maintains two on-
chip metadata caches called counter cache and hash cache to
store counters and intermediate nodes of the counter tree in
the on-chip area. The metadata in the counter cache or hash
cache are already integrity-verified and do not incur additional
validation costs. Therefore, counter and hash cache hits reduce
the encryption and integrity protection latency significantly.
Memory protection for accelerators: There have recent
studies to optimize memory protection techniques for GPUs
and accelerators. For GPUs, Common Counter increases the
utilization of a counter cache by merging multiple counters
into one [1]. Since NPU workloads have even more regularity
than GPU workloads, recent papers introduce software-based
memory protection for NPU. Recent two studies, TNPU
and MGX, set the granularity of counter into compile-level
determined tensors or tiles [4], [6]. Unlike the two studies,
this study relies on the hardware-based method for transparent
support with the existing CPU techniques.

B. Threat Model and Baseline Architecture

Threat model: We target an edge-level NPU-integrated SoC
(System-on-a-Chip) architecture that has CPU and NPU with
shared memory. In this study, the trusted computing base
(TCB) is the SoC chip itself and software executed in the
trusted context of NPU. We assume that system software
can be compromised by attackers and physical attacks are
possible. We leave a side-channel attack, availability attack,
and adversarial attack out of scope.

Baseline architecture: We assume CPU-side TEE support
and TEE extensions for NPUs from the prior work [4]. We
use the same NPU access control mechanism, and this study
focuses on the hardware-based memory protection technique.
We use page tables for TEEs, called protected page table, are
isolated from the operating system [7]. Similar to the prior
approach [7], untrusted and trusted parts of an NPU context
use separate page tables, one in the untrusted memory, and
the other in the trusted memory. Additionally, metadata for
protected page table such as the base address of a trusted
page table is stored in the hardware protected region. Only
the security monitor and MMU can access it by comparing
address ranges.

III. MOTIVATION
A. Memory Protection for NPUs

This section presents the performance costs of the naive
memory protection with NPUs. More details of the simulation
and workload setups are described in Section V.
Performance impact: Compared to the nonsecure configura-
tion, the baseline secure design incurs a 21.5% increase of the
execution time on average, requiring optimized techniques for
NPUs.

Protecting part of memory: In the baseline design, the entire
physical memory is protected by the counter-mode encryption
using a single counter tree. As the depth of the counter tree
increases, the latency of handling a hash cache miss can

I Full Tree M Selective Tree ¢, [J64B[1288 MM 2568 Il 5128
=8 L21.0
= Eos
(o) O 06
. ©od
@ 2 Eo2
Fo So0

Fig. 1. Average counter tree heights: Fig. 2. Average counter cache miss
full tree vs selective tree. rates from 64B to 512B chunks.

increase. An optimization is to protect only the NPU TEE
part of the memory instead of covering the whole DRAM.

Figure 1 shows how much height can be reduced by the
selective integrity tree. For 4GB off-chip memory with a
64-arity tree, the height of the full memory counter tree is
1+ [logg, (AGB/64B)| = 6. If a selective integrity tree for
each NPU TEE context is used, the height of tree declines by
40.9%, reducing the latency for handling hash cache misses.
Counter granularity: The baseline uses a CPU-oriented
design, which has a counter for each 64B unit of memory.
However, for NPU, memory accesses occur at a chunk unit
with software-managed scratchpad memory (SPM). The chunk
size may vary by ML models with different layer types and al-
gorithms. If a counter can be assigned for each chunk, instead
of a cacheline, it can improve the efficiency of the counter
cache. Figure 2 shows counter cache miss rates with various
counter granularities. As the granularity increases, counter
cache misses decrease significantly, and 512B granularity has
only 21.8% of misses compared to 64B one.

IV. ARCHITECTURE
A. Overall Architecture

Our architecture allows only the necessary part of the
memory to be protected to minimize the cost. It maintains
a small CPU protected memory similar to PRM (Processor
Reserved Memory) in SGX. The CPU protected region is used
for CPU TEEs and the metadata for NPU TEE contexts.

Figure 3 shows the overview of our architecture. The
memory region used by NPUs can be scattered in the physical
address space, but it is protected by the virtual integrity tree
for the application. A counter region is allocated for each
secure NPU context, and metadata for calculating the counter
address, counter_base, is stored in the part of the context.
Secure communication is supported with a 2KB SRAM buffer
to transfer data between CPU and NPU. In our design,
the protected page table entry has additional read_only and
granularity bits. read_only is set if the corresponding page is
read-only and granularity stores the best-fit granularity. In this
paper, every granularity for an NPU TEE is fixed to a single
value. Nevertheless, we maintain it in page table entries for
the future extension for per-page granularity.

B. Virtual Integrity Tree

In prior memory protection, the entire physical memory
is protected by the integrity tree [1], [5]. To mitigate the
overheads of the integrity tree (counter tree), this study uses
a selective counter tree called virtual integrity tree covering
only memory regions used by an NPU TEE. A virtual integrity
tree is created for each NPU TEE. The virtual integrity tree

SoC CPU
Secure Communication LLC NFU
N Driver
l l 5 Direct
cPU o o o NPU § [Pl
| Privilege
2KB SRAM

NPU SPM

Protected
Data

DRAM
e v
CTR
Base Read Only Granularity
’ I:l CPU Protected I:l NPU Protected - Additional Component

Protected Page Table
Fig. 3. Overview of proposed NPU memory protection schemes

of a TEE is based on the virtual address space, unlike the
counter mapping based on physical addresses as used in the
prior work for CPUs [8]. Constructing a tree based on a virtual
address allows flexible allocation of the NPU TEE memory
region while supporting a counter tree selectively covering
only the NPU TEE memory region. Such a virtual integrity
tree is possible in our design since the NPU TEE page table
is isolated from the OS. PENGLALI proposed an integrity tree
design covering only a TEE for CPU [9]. However, it requires
mapping information for mounted tree nodes, as it is based on
physical addresses.

Each NPU TEE has a protected virtual address region which
is contiguous in its virtual memory space. For the region, the
corresponding counters and internal nodes are created in a con-
tiguous physical location for the TEE. Note that the physical
pages for the NPU TEE memory can be allocated anywhere.
Only the counter tree locations are in a contiguous region.
The starting address of the counter region (counter_base) is
recorded in the control structure of the NPU TEE. When
the NPU TEE is scheduled and being executed in an NPU,
the memory encryption engine must store counter_base in a
dedicated register, called counter_base_register. For a memory
access request, its virtual address is used to compute the
address of the corresponding counter based on the starting ad-
dress of the protected virtual address region, and counter_base.
Once the counter address is computed, the counter cache is
accessed. Since counters of an NPU TEE are allocated in
contiguous physical memory, the address of the parent or child
counter node is easily computed.

C. Multi-granular Counters

In this study, we decouple the unit of the counter from
the physical memory interface. So, a counter is assigned to a
chunk of memory instead of a cacheline. For example, if the
chunk size is determined to be 512B for a machine learning
application, a contiguous 512B is always moved together
between the SPM and external memory.

Profiling-based chunk size selection: We assume that the best
chunk size for a trained machine learning model is determined
during the profiling phase. The user tries several different
chunk sizes with the model and chooses the best-performing
one. The best chunk size is delivered to the NPU driver during

512B 64B

D@ ORI -~ - 0x300

. . o A
O®[otPT----- E AES o 0x140
0x100

O (o Y
CTR T

Fig. 4. Encryption for a multi-granular counter with 512B chunk size.

the initialization. Although this paper limits the scope of the
profiling method to a simple trial-and-error method, improving
the method will be our future work.

Multi-granular encryption: Figure 4 presents how per-chunk
counter is used for encryption. Assuming the memory interface
is 64B, 8 OTPs are generated to transfer 512B data. To
generate an OTP for 64B, the counter (shared for the 512B
chunk) and address of 64B data are used as seed, and thus
each 64B has a different OTP.

D. Others

Read-only optimization: For read-only pages, we use a simi-
lar optimization proposed by the prior work [1]. The counters
for an NPU TEE are reset during the context initialization.
Therefore, if a page is read-only, data access to the page does
not access the counter cache. Instead, it uses a fixed initial
counter value of 1. To support it, the protected page table
stores the read-only status and it is used when data moved
into SPM.

Protected channel: The baseline communication channel
between the CPU and NPU is the shared memory, encrypted
by the software on both sides. However, since both CPU and
NPU are in the same processor, our design establishes an 2KB
SRAM buffer channel, called channel buffer, to be used for
CPU-NPU communication without using the external DRAM.
2KB buffer is sufficient for intermediate channel as memory
footprints of 30% layers in our workloads are smaller than
2KB and they show streaming characteristic. To protect the
channel buffer from the OS, the control of channel buffer is
given only to the NPU driver TEE. When a user TEE initializes
an NPU TEE, it can request the allocation of the channel buffer
between itself and the created NPU TEE.

V. EVALUATION
A. Methodology

Simulation infrastructure: We simulate the proposed ar-
chitecture using a cycle-accurate in-house simulator. It is
an extended version of SCALE-Sim [10]. We augmented
the necessary components for secure NPU, which constitute
counter-mode encryption, Bonsai merkle tree with 64-arity [5].
Hardware configuration: We use an NPU configuration
similar to the NVDLA architecture. It consists of a 1GHz
16 x 16 systolic array, a 192KB SPM with 8-channel 5GB/s
memory bandwidth. Additionally, 512B and 2KB are allocated
for counter and hash cache.

Benchmarks: As shown in Table I, We evaluate 14 bench-
marks from MLperf and DeepBench. The column, Selected
Chunk, shows the memory chunk size selected by the multi-
granular counter technique, the same as optimal granularity.

TABLE I
EVALUATED BENCHMARK MODELS.

Model

Selected Chunk

Googlenet (goo), Mobilenet (mob) 256B, 256B
Yolo-tiny (yt), Alexnet (alex) 256B, 512B
FasterRCNN (rcnn), DeepFace (df) 128B, 128B
Resnet50 (res), MelodyExtractionDetection (med) 128B, 512B
Text-generation (tx), AlphaGoZero (agz) 512B, 512B
Sentimental-seqCNN (sent), DeepSpeech2 (ds2) 64B, 512B
Transformer (t £), NCF-recommendation (ncf) 64B, 256B

© [_1Baseline
£ I +R/O

[+Virtual Tree
I +Communication

[+Granularity

Fig. 5. Execution times normalized to the nonsecure run.

B. Performance Improvement

Figure 5 shows the execution time reduction as we in-
crementally augment the four optimization techniques from
the baseline, which represents the NPU with naively adopted
CPU-oriented memory protection. It is normalized to the
execution time of the nonsecure version. The virtual tree
optimization is the most influential factor causing an 8.9%
reduction in execution time, followed by multi-granularity with
3.5%, read-only with 0.5%, and communication with 1.1% in
series. With these four optimizations combined, the execution
time reduces from 21.5% in the baseline secure NPU to 5.1%.

Figure 6 presents counter cache miss rates when the first
three optimizations are applied, except for communication,
which does not affect counter cache misses. On average, the
combined techniques can reduce counter cache misses by
67.4%. The virtual tree can also reduce hash cache misses
by 27.4%.

C. Scalability Study

We perform the scalability study by increasing the number
of NPUs. The execution time is normalized by each baseline
when one, two, and three NPUs are used. As the counter
cache is evenly split and statically assigned to each NPU, it
shows the similar performance to the case where the %-sized
counter cache is used. Figure 7 shows the speedup compared
to each baseline which applies the traditional integrity tree.
As the number of NPU increases, our optimization techniques
reduce the burden on counter and hash caches. On the other
hand, more requests cause high traffic to a memory controller.
Because of the balancing of the above two phenomena, the
speedup ratio of 3-NPU is similar with a small improvement. It
implies that our study creates more performance improvement
enough to eliminate the overhead from traffic increment.

VI. CONCLUSION

This study proposed improvements of hardware-based mem-
ory protection for NPUs. It utilized the characteristics of
neural computation in the integrated NPUs, reducing the

@ [JBaseline [+Virtual Tree [+Granularity [l +R/O
-=1.00,

S 0.75
©0.50
£0.25

S0.00
z O F O3 2 DT &
SETFST TS

OC‘; |

Fig. 6. Counter cache miss rates by applying optimizations.

2 NPUs I 3 NPUs

oRrPrRRPE
QCORrNWA
I
L
[]
L
[+ 1
I
L

Norm. Speedup
Comp. Each Base

I o [THT] [T "
& % N
SIS \é\o > & @@6 5 & & & &0
Fig. 7. Normalized speedups compared to each baseline when one, two, and
three NPUs are used.

cost of counter cache misses and integrity validation. The
experimental results showed that such memory protection can
be supported for NPUs with minor overheads.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF-2022R1A2B5B01002133) and Institute
of Information & communications Technology Planning &
Evaluation (IITP) grants funded by the Ministry of Science
and ICT, Korea (IITP2017-0-00466). This work was also
partly supported by Samsung Electronics Co., Ltd. (10201209-
07864-01).

REFERENCES

[1] S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common counters: Com-
pressed encryption counters for secure GPU memory,” in International
Symposium on High Performance Computer Architecture (HPCA), 2021.

[2] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on GPUs,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2018.

[3] I Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heterogeneous
isolated execution for commodity GPUSs,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2019.

[4] S. Lee, J. Kim, S. Na, J. Park, and J. Huh, “TNPU: Supporting
trusted execution with tree-less integrity protection for neural processing
unit,” in International Symposium on High Performance Computer
Architecture (HPCA), 2022.

[5] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and Bonsai merkle trees to make secure
processors OS-and performance-friendly,” in International Symposium
on Microarchitecture (MICRO), 2007.

[6] W.Hua, M. Umar, Z. Zhang, and G. E. Suh, “MGX: Near-zero overhead

memory protection for data-intensive accelerators,” in International

Symposium on Computer Architecture (ISCA), 2022.

V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware ex-

tensions for strong software isolation,” in USENIX Security Symposium

(USENIX Security), 2016.

[8] C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. prvulovic, “Im-
proving cost, performance, and security of memory encryption and
authentication,” in International Symposium on Computer Architecture
(ISCA), 2006.

[9]1 E. Feng, X. Lu, D. Du, B. Yang, X. Jiang, Y. Xia, B. Zang, and

H. Chen, “Scalable memory protection in the penglai enclave,” in

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2021.

A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and

T. Krishna, “A systematic methodology for characterizing scalability of

DNN accelerators using SCALE-Sim,” in International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2020.

[7

—

[10]

