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Abstract—Hybrid memory has become a promising new solu-
tion for meeting ever growing memory capacity demands in a
cost-effective way. In hybrid memory systems, the fast and high
bandwidth memory is used to store performance-critical data,
while the slow and low bandwidth memory provides capacity
backup. In supporting such hybridization, virtual memory is
the key mechanism, which can combine different memory com-
ponents to a single memory view. For efficient translation for
virtual memory, page size has been growing. However, the hybrid
memory support requires fine-grained migration to quickly move
only necessary memory portions to the precious fast memory.
To address the challenges posed by the conflicting goals in the
hybrid memory support based on virtual memory, this paper
investigates decoupling of address translation into a two-step
process. With the two-level translation, the critical core-side TLBs
perform the translation to an intermediate address space, and
the memory-side translation provides the actual physical location
in memory devices. As the second-level translation handling page
migration across different memory types, is decoupled from
the first-level translation, it allows dynamic adjustment of its
mapping granularity to improve the efficiency of translation and
data reuse in the fast memory. This paper proposes a hardware
architecture which identifies the memory access behavior of an
application online and selects the best mapping granularity for
the second-level translation.

I. INTRODUCTION

To address growing memory capacity challenges while

satisfying bandwidth and latency requirements, hybrid mem-

ory has become a promising cost-effective alternative to the

traditional homogeneous memory [5], [10], [14]. In such

hybrid memory, the small fast memory serves critical data,

while the backing slow memory provides a large capacity. The

advent of capacity-oriented non-volatile memory, new memory

extension technologies such as CXL [1], and hardware-based

compressed memory [17] has accelerated the hybridization of

memory systems.

From the perspective of operating systems, such hybrid

memory raises a new problem of page placement. A general

approach for supporting the hybrid memory has been relying

on the virtual memory and page allocation by the operating

system [2], [10]. The operating system detects hot pages with

assistance from the processor architecture, and hot pages are

migrated to the fast memory by updating the mapping in page

tables.

Meanwhile, another challenging problem in high capacity

memory systems is efficient translation from virtual to phys-

ical addresses. Modern processors rely on caching of page
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table entries in TLBs for fast translation. The limited TLB

capacity in MMU (memory management unit) has been caus-

ing significant performance degradations for large memory

applications [4], [8]. To mitigate the adverse effect of TLB

misses, a common recent solution is to increase the coverage

of translation entries with huge pages. In commercial x86

systems, 2MB and 1GB huge page sizes have been added, and

the Linux kernel employs 2MB page size whenever contiguous

2MB free pages are available.

In hybrid memory, the address translation in MMU handles

the page placement in different types of memory as well

as the traditional memory capacity allocation and permission

validation. However, for better management of hybrid memory,

flexible fine-grained page mapping is preferred to capture a

more precise working set in the fast memory, and not to waste

the page migration bandwidth.

Therefore, supporting hybrid memory systems incurs a new

trade-off in page sizes. For efficient address translation via

TLBs, larger page sizes are preferred. For efficient utilization

of precious fast memory capacity, finer-grained memory man-

agement is necessary. Figure 1 presents the potential trade-

off caused by page size in hybrid memory systems. Each

workload has a different preferred page size for efficient

utilization of fast memory (red curves), which depends on the

locality characteristics of the workload. On the other hand,

more efficient address translation prefers larger pages (blue

curves). Under the trade-off, the support for hybrid memory

needs to balance between the conflicting goals.

To mitigate the overheads of supporting hybrid memory,

this paper advocates a hardware-assisted two-level translation



technique for hybrid memory, called decoupled translation.

The two-level translation decouples page placement from

the capacity allocation and permission checking. It adds an

additional layer of translation done after last-level cache (LLC)

misses. At each core, a virtual address is translated into a

unified address. After an LLC miss, the unified address is

translated to a real address, which is the location in the phys-

ical memory consisting of different types of hybrid memory.

The two-level translation opens a new opportunity to employ

a different mapping granularity in each layer. For the critical

core-side translation, a huge page can be used to significantly

reduce TLB misses, as TLB misses in core-side translation

cause significant performance degradation. It relieves the hy-

brid memory system from the overheads of virtual memory

supports. For the new memory-side translation, depending on

the memory access patterns of workloads, the best mapping

granularity (frame size) can be chosen independently from the

core-side translation.

To utilize such adjustable frame size, this paper proposes a

technique to use the best frame size for each workload. The

proposed mechanism chooses the mapping granularity of the

memory-side translation, selecting the best size to improve

the memory-side TLB performance while supporting effective

page mapping for heterogeneity. To find the best frame size for

each workload, the paper proposes a dynamic frame size selec-

tion mechanism based on workload memory access patterns.

Our simulation result shows that a single fixed frame size does

not produce the best performance across diverse applications.

With the dynamic frame size selection, the performance of the

proposed technique with two-level translation is 22% higher

than the prior hybrid memory approach with the conventional

single-layer virtual memory.

II. BACKGROUND

A. Hybrid Memory

Emerging memory technologies such as non-volatile mem-

ory, hardware compressed memory [17], and disaggregated

memory enable co-existence of different memory compo-

nents with diverse characteristics. Recent advancements of

new memory extension technologies such as CXL [1] are

accelerating the adoption of hybrid memory. In such hybrid

memory systems, data are migrated between fast and slow

memory components, to keep more performance-critical data

in the fast memory. If locality exists in workloads, such hybrid

memory can effectively provide performance close to the fast

memory while the overall capacity is greatly increased by the

backing slow memory.

There are primarily two approaches to manage the data

placement in the hybrid memory: (1) HW-managed mecha-

nism [5], [7], [11], [14], and (2) OS-managed mechanism [10],

[16]. The HW-managed mechanism treats the fast memory

as either the HW-managed DRAM cache [7], [11], or a

subregion of global memory space [5], [14]. The HW-based

approach allows fine-grained page management and provides

transparency to OS, although the flexibility of mapping and

migration is limited due to the HW-based mechanism.

OS Management of Hybrid Memory: In OS-managed

approaches, the operating system manages the virtual memory

system and page allocation for the entire hybrid memory [2],

[6], [10], [16]. The operating system is in charge of identifying

the hotness of pages and placing hot pages in the fast memory

while putting cold pages to the slow memory. Both of the fast

and slow memory are in the physical address space visible to

the operating system. With the conventional virtual memory

support, in MMU of a core, a virtual address is translated

to a physical address, which can be either in the fast or

slow memory. The OS-managed approaches have become a

dominant mechanism for the current hybrid memory systems.

However, another challenging problem in the high capacity

memory system is the efficient translation from virtual to phys-

ical addresses. Modern processors rely on the caching of page

table entries in TLBs for fast translation. The limited TLB

capacity often cannot cover growing memory working sets

of large memory applications. To mitigate such performance

loss by TLB misses, employing huge pages has become a

common technique used in current systems. However, such a

trend in virtual memory incurs a critical conflict with the OS-

based hybrid memory support. In the hybrid memory systems,

a flexible fine-grained page size is preferred to capture precise

working sets in the fast memory and not to waste page

migration bandwidth for unnecessary part of huge pages.

B. Challenges

Conflicting objectives with page sizes: OS-managed hybrid

memory suffers from conflicting objectives with page sizes.

For efficient page placement, a small page size is preferable

so that the operating system migrates pages at finer granularity

to the right location based on their hotness property. Migrating

only the necessary data across the heterogeneous memory

components also minimizes bandwidth waste on both fast and

slow memory sides. Furthermore, each application has a differ-

ent preferred migration granularity, depending on its memory

access locality characteristics. On the contrary, for minimizing

address translation cost, a huge page size is favorable so that

the the limited TLBs can cover large translation footprints.

In this work, we aim to achieve the conflicting objectives by

introducing a novel address translation scheme, which will be

discussed in the following section.

Nimble hot page detection and efficient migration: Another

challenge in supporting hybrid memory with the conventional

virtual memory is its relatively high costs for detecting hot

pages and migrating them. It involves the execution of OS

codes to check access status stored in page tables and to

identify hot pages with a certain hotness selection policy.

Once hot pages are selected, they are migrated by coping

data from slow to fast memory. In addition, a slow TLB

shootdown step must be taken to update the necessary page

tables synchronously. Due to the high cost of page migration,

the promotion of hot pages can occur only infrequently.

For example, a prior software approach periodically checks

hotness status of pages and migrate them [10]. The period is

set to 0.1 seconds in the trace-based evaluation [10]. Recent
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studies with real system evaluation used longer periods of 5

seconds [16], and 30 seconds [2]. Such slow promotion is

unable to respond to the fast changing behaviors of workloads,

losing potential data reuse opportunities.

III. TWO-LEVEL DECOUPLED TRANSLATION

A. Two-level Translation for Hybrid Memory

This study explores a new HW-SW cooperative architecture

for hybrid memory, which embraces the advantages of the

HW-oriented approach in the SW approach based on virtual

memory. Challenges of supporting hybrid memory with virtual

memory stem from the conflicting goals of efficient translation

and fine-grained page placement. To address the conflict,

this paper employs a two-level translation technique, which

decouples the page placement from the conventional capacity

allocation and permission checking. Such two-level translation

were adopted in the hardware-based compressed memory, to

address dynamically determined compressed page sizes [9],

[17]. Unlike the compressed memory, we advocate to use the

decoupled translation for general hybrid memory as a solution

to mitigate the conflicting goals of virtual memory between

translation efficiency and fast memory efficiency.

Figure 2 presents the baseline two-level translation archi-

tecture. An additional address space is the unified address

(UA) space, which is an intermediate address space between

the virtual address space and real physical address space.

The unified address space is a logical-physical space, which

hides the actual placements of pages in the real memory. The

capacity of the unified address space is bounded by the real

address space. If the page allocation in the hybrid memory

space is exclusive across different memory types, the unified

space size is equal to the sum of all real memory devices. By

the conventional translation at the core-side TLB, denoted as

core-TLB in the rest of the paper, a virtual address is translated

to a unified address.

All caches are addressed with the unified address, and they

are accessible after the core-TLB translation. If an LLC miss

occurs, the unified address must be translated to a real physical

address, denoted as real address in this paper. For the trans-

lation, an extra unified page table (unified frame table), and

memory-side TLBs called mem-TLBs are added. When a mem-

TLB miss occurs, a HW page walker access the unified frame

table. Coherent DMAs are done by unified addresses too. By

using a unified address, DMAed data become consistent with

the cached data. To access the real memory, the DMA engine

must translate the address to a real address via the mem-TLBs.

Memory-side Translation: The granularity of memory-side

translation is a frame, and its size can differ from the page

size of the core-side translation. To support the memory-side

translation, the OS setups a unified frame table. The unified

frame table is a system-wide translation table, and thus only

one instance exists in a system. For fast accesses to the

unified frame table, the table is organized as a simple linear

table. Note that unlike the virtual address space with 48 bits

or more in 64-bit architectures, the unified address space is

bounded by the installed physical memory size. Therefore,

organizing the frame table as the linear flat table provides a

fast single memory access to retrieve the final translation entry,

in opposite to four step page walks in the tree-based page table

for x86 systems.

HW migration engine: For more efficient migration, we use a

HW-based migration engine. Based on the hotness threshold, a

frame is migrated between the fast and slow memory. The HW

engine also updates the unified frame table for the placement

changes. Since a frame migration is done silently by changing

the mapping between the unified and real spaces, the migration

does not affect the core-TLBs and data in the on-chip caches.

Therefore, the migration does not require costly core-side TLB

shootdowns and the cached data are still accessible via their

unified addresses. The mem-TLBs are organized similar to

the core-TLBs. The mem-TLBs are shared by all cores, and

to provide translation bandwidth for multiple cores, the TLBs

are multi-banked and banks are statically assigned by unified

address.

Hotness identification and migration: Frames are promoted

to the fast memory based on the hotness selection. In this

study, since our focus is on the decoupled translation archi-

tecture, we employs a variant of hotness selection proposed by

the prior study [10]. The mechanism uses an access counter

for each frame. When the access counter is increased beyond

a threshold, the frame is promoted to the fast memory. The

access counters are cleared periodically. However, with the

hardware-assisted migration engine, as soon as the counter of

a frame exceeds the threshold, it is migrated to the fast memory

without any involvement of OS. Unlike the prior approaches

with the conventional virtual memory [2], [10], [16] which

use a periodic batch-oriented migration scheme to reduce the

costs, once the threshold is reached for a frame, the hardware

engine can immediately promote the frame to the fast memory.

Such nimble migration improves the hit rates of fast memory

significantly.

OS support: The mem-TLBs are based on a HW managed

mapping. However, the OS needs to initialize and assign the

memory space for the system-wide unified frame table. The
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Fig. 3: Speedups with various frame sizes and the best frame size (ideal frame), compared to 4KB frame size.

OS sets aside a contiguous memory region for the unified

frame table, and initializes the table as specified by the ISA.

Once the unified frame table memory is set up, the pointer to

the beginning of the table is provided to the HW. Afterwards,

the management of the unified frame table is done by the HW.

All mapping modifications are done by the HW for efficiency.

The benefits of decoupled translation are as follows: 1) The

performance critical core-TLBs can reduce misses effectively

with huge pages or even range-oriented translation [4]. 2) The

large on-chip caches can reduce the translation burden on the

mem-TLBs, since the mem-TLBs are accessed only after the

LLC miss. 3) The migration incurs less overheads without any

OS involvement and TLB shootdown for the core-TLBs and

cached data are still valid after migration. 4) The frame size

can be fine-grained to capture the working set of applications

and to use the precious fast memory capacity more efficiently.

B. Analysis

To analyze the effect of decoupled translation, we first show

the performance in terms of IPC (instructions-per-cycle) with

various frame sizes. The simulation methodology is presented

in Section V-A. Figure 3 presents speedups of each workload

with five different frame sizes, compared to that with 4KB

frame size. The last bar (ideal frame) of each workload is

the speedup when the best frame size is applied out of 10

possible frame sizes from 4KB to 2MB. Note that the figure

shows only selected five frame sizes out of the 10 frame sizes.

It represents the potential benefit when the best frame size can

be selected for each workload.

In the figure, the first important message is the need

for choosing a right frame size for each workload. For a

given workload, if the mem-TLB hit rate can be significantly

improved with larger frame sizes, or the workload has a large

amount of spatial locality, larger frame sizes are preferred.

Otherwise, smaller frame sizes can provide better performance

with its more efficient fine-grained migration. For tiger, the

best frame size is 4KB, providing 15.8% better performance

than the worst frame size, 256KB. For mumm, mcf, and

cactusB, the differences between the best and worst frame

sizes are high with 26.2%, 25.4%, 21.6% respectively. The

performance result implies the importance of dynamically

applying a right frame size for each application. In addition,

when selecting the best frame size, multiple factors, such as

translation cost and spatial locality, must be considered.

IV. DYNAMIC FRAME SIZE SELECTION

A. Translation for Dynamic Frame Size

Although the performance degradation by mem-TLB misses

is lower than that by core-TLB misses, mem-TLB misses still

increase the LLC miss handling times for walking the unified

frame table. The principle of reducing mem-TLB misses is

similar to the conventional TLBs. Increasing the frame size

reduces mem-TLB misses, but it can potentially increase the

cost of migration and waste the limited fast memory capacity.

However, for some workloads, large frame sizes can reduce

both fast memory misses and mem-TLB misses, if spatial

locality is strong for the workloads. An important observation

is that different workloads have their preferred frame sizes.

To address the trade-offs in the frame size, we propose

dynamic frame size selection. Depending on the preferred

frame size of the current workload, the frame size is adjusted

dynamically. It supports a dynamic frame size selected from

five candidate frame sizes, 4KB, 16KB, 64KB, 256KB, and

2MB.

B. Frame Size Selection

A key mechanism for supporting the dynamic frame size is

to find the best frame size for the current workload. To select

the best frame size, we should consider two factors: 1) how

many fast memory accesses occur with each frame size (fast

memory hit rates), and 2) how many mem-TLB hits occur with

each frame size (mem-TLB hit rates). The biggest challenge in

the dynamic frame size selection is the difficulty of predicting

the mem-TLB and fast memory hit rates for all candidate

frame sizes. During the runtime, the system is running with a

single frame size at a time. However, to decide the best frame

size, the selection algorithm uses fast memory and mem-TLBs

hit rates estimated for 5 candidate frame sizes.

Figure 4 shows the flow of frame size selection in the

proposed architecture. In general, the mem-TLBs have low

miss rates with larger frame sizes. However, the shapes of

miss curves vary by applications, because each workload has

a different access pattern. For fast memory hit rates, the frame

size is a unit of migration and hotness tracking. Since the

fast memory hit rates can change sensitively by the hotness

selection of the migration policy, the estimation mechanism

should also incorporate the behavior of the migration policy.

We propose the two estimation techniques for mem-TLB and
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fast memory hit rates, shadow mem-TLB and hit filters. The

two techniques construct estimated hit rate curves for mem-

TLBs and fast memory for five possible frame sizes.

Shadow mem-TLBs for estimating mem-TLB misses:

Shadow mem-TLBs mimic a small sampled set of mem-

TLBs with different frame sizes. Five segments of shadow

mem-TLBs estimate the mem-TLB hit rates with the pre-

selected five frame sizes. Each segment has 32 entries, or-

ganized as 4 sets and 8 ways for each set, which is the

same associativity as the original mem-TLBs. Shadow mem-

TLBs have only tags without translated target addresses, since

they only check whether an access is hit or not with the

corresponding hypothetical frame size. The shadow mem-

TLBs trace hit/miss status for sampled sets from the mem-

TLBs. The fixed sampled sets are different for different frame

sizes.

The objective of this shadow lookup is to generate the

hit rate curve with a range of frame sizes. On an access

for the sampled sets, the address goes through the shadow

mem-TLBs for candidate frames. Each shadow mem-TLB

segment corresponds to a different frame size, so its index

bits are different for the same address. At the end of epoch,

the hardware extracts hit rates for all shadow mem-TLB

segments to generate the estimated hit rate curve, and uses it

for dynamic frame size selection. It requires shadow lookups

for every address translation which belongs to the sampled

sets. However, it is not on the critical path of L3 miss handling,

since it does not return the translated result.

Hit filters for estimating fast memory hit rates: Estimating

hit rates of fast memory for hypothetical frame sizes is more

difficult than the hit rates of mem-TLBs. Mem-TLBs is filled

by a single miss for a page number, but fast memory migration

is done only when accesses to a frame exceeds a threshold.

The estimation mechanism must also consider the threshold-

based promotion policy to reflect the behavior of migration. To

mimic the migration decisions, the hit estimation mechanism

tracks sampled frames both in the fast and slow memory. The

total size of the sampled region for each frame size is 16MB,

which are distributed randomly across the unified address

space. For example, with 4KB frame size, 4096 frames are

sampled, while for 2MB frame size, 8 frames are sampled.

Since the number of sampled frames can be large for small

frame sizes, we employ a simple counting bloom filter for each

frame size, not to store the tags. The bloom filter reduces the

accuracy, but it can reduce the area overhead significantly. In

each entry of a bloom filter, one bit is used to mark whether

the frame is in the fast or slow memory hypothetically for

the frame size. Extra bits are used for each entry to count

the number of accesses to the entry. The extra bits differ by

the frame size, as the promotion thresholds are different. For

example, for 4KB frame size, a hit filter has 4096 entries, and

each entry contains 3 bits (one for fast/slow memory status,

and two bits for counter).

For every LLC miss, if the miss address (in the unified

address space) is one of the sampled addresses, the corre-

sponding entry of a hit filter is accessed. If the miss address

is sampled by more than one filter, multiple hit filters are

accessed for different frame sizes. In each hit filter, fast

memory hits are counted, depending on the status bit. In

addition, the access counter of the entry can be incremented.

Final decision making: When selecting the best frame size,

the scores of each candidate sizes is calculated based from the

fast memory and mem-TLB hit rates estimated for the frame

size. Among five frame sizes, the size with the highest score

is selected. The score is a weighted sum of the estimated hit

rates of mem-TLBs and fast memory. Note that the hit rates of

mem-TLBs and the hit rates of fast memory tend to change in

opposite directions when the frame size is increased. However,

each application has a different curve shapes for the two hit

rates. The controller selects the frame size of the point that two

curves meet to minimize the miss overhead from two factors.

The effect on the performance from each factor may vary,

depending on the configuration of heterogeneous memory, as

the cost of mem-TLBs and fast memory misses can change

by the configuration. In this paper, we get the best coefficient

by experiments, and use the frame size with the maximum



score reflecting relative weights between mem-TLB and fast

memory hit rates. The score for each frame size F is as follows:

score[F ] = hit ratememTLB [F ]+(α×hit ratefastMem[F ]) (1)

hit ratememTLB and hit ratefastMem are the hit rates of

mem-TLBs and fast memory for a given frame size. α is

tuned for the current fast and slow memory latencies. For the

evaluation, α was set to 5.

C. Per-class Frame Size Selection

A limitation of the global frame size is that multiple

workloads in a system can be heterogeneous and they prefer

different frame sizes. To support such multi-workload scenar-

ios, we extends the global frame size with multiple workload

classes. The administrator can set a workload class for a given

application, and a frame size is selected for each class. To

support per-class frame sizes, the per-class frame size for

each 2MB region is encoded in the first unified table entry

of the 2MB region. The operating system initializes the frame

size information in the unified frame table. Once the sampled

period is done, a new frame size for each class is encoded in

the page table entries for 2MB-aligned addresses.

The translation step for the dynamic frame size requires two

accesses to the mem-TLBs, as it must retrieve the per-class

frame size information from 2MB entries before accessing the

actual translation entry. First, an LLC miss accesses the mem-

TLBs as a 2MB frame size. The retrieved 2MB entry has the

frame size information in addition to the real frame number

of the entry. If the frame size of the 2MB region is smaller

than 2MB, an additional access to the mem-TLB occurs to

retrieve the TLB entry for the requested frame. This translation

mechanism requires a two-step translation when the frame

size, smaller than 2MB. However, it provides the flexibility

of providing per-class frame sizes. As the 2MB granularity

entry covers a large 2MB region, its hit chance in the mem-

TLBs is very high. Therefore, the translation requires two TLB

accesses, but the first access at the 2MB entry is mostly a hit

in the mem-TLB.

To select the best frame size for each class, hit filters are

replicated for each class. Therefore, to provide 8 classes, 8 hit

filter sets are necessary. However, as mem-TLBs are shared,

the shadow mem-TLBs are also shared by all classes.

D. Area Overheads

Shadow mem-TLBs have 32 entries and operate on the

sampled sets, and each entry has only a tag for hit rate

measurement. A hybrid memory system has five showow

mem-TLBs with 32 entries, correspoding to five candidate

frame sizes. For 4KB frame size, an entry requires 52 bits

tag area, and the total area for 32 entries is 208B. The total

area overhead for five candidate framesizes is about 1KB.

Each hit filter is a bloom filter with multiple bits in each

entry. With 16MB sampled region, 4096, 1024, 256, 64, and

8 entries are used for 4KB, 16KB, 64KB, 256KB, and 2MB

frame sizes, respectively. For 4KB frame size, a 2-bit counter

Component Configuration

CPU 8 cores, x86-64 ISA, 3.2GHz

L1 cache 32KB private, 8-way set-associative (SA)

L2 cache 256KB private, 8-way SA

L3 cache 8MB shared, 16-way SA

core-TLB
1024/512 entries per core (conv/two-level)
4-way SA, miss latency 50 cycles

mem-TLB 4096 entries, 8-way SA, miss latency 200 cycles

DRAM
256MB, 8 channels, DDR4-1600
tCAS = 11, tRCD=11, tRP= 11, tRAS = 28

PCM 4 channels, read/write latency = 150/300ns

TABLE I: Configuration of the simulated system.

and a status bit are used for each entry, and the number of

counter bits increases as the threshold doubles with doubling

frame sizes. The total area for five frame sizes is about 3KB.

To support 8 classes, 24KB is necessary.

V. EVALUATION

A. Methodology

Our evaluation uses an execution-driven simulator that com-

bines ZSim [13] and DRAMSim2 [12]. Table I presents the

detailed simulation parameters for cores, cache hierarchy, and

hybrid memory configurations. We use core-TLBs with 1024-

entries for the baseline system. For the decoupled translation

system, we configure 512-entries 4-way set-associative core-

TLBs and 4096-entries 8-way set-associative mem-TLB. For

fair comparison, the number of total entries of core-TLBs and

mem-TLBs in the decoupled translation is identical to that of

core-TLBs in the baseline system. We set the minimum frame

size to 4KB and maximum to 2MB for dynamic frame size

selection. Our fast and slow memory components are based

on the DDR4 and PCM technology. We provision 32MB of

fast memory per core, and 512MB of fast (DRAM) memory

is used for 8 cores.

For workloads, we use memory-intensive benchmarks from

the SPEC CPU 2006, SPEC CPU2017, Biobench, and NAS

Parallel Benchmark (NPB) [3]. With the 8-core configura-

tion, we execute eight copies of each workload. After fast-

forwarding a workload for 50 billion instructions, we collect

the results by running 500 million instructions except for two

workloads (mcf and tiger) that have very low IPCs. For

these workloads, we run 100 million instructions to limit the

simulation time.

Our baseline system uses a software-managed page mi-

gration technique, which employs the conventional virtual

memory system with a single address translation layer. Its

hotness detection is based on the prior HMA system [10]. The

two baselines, conv 4K and conv 2M, periodically measure

the access count for each page and classify a page as hot when

the access count exceeds a specific threshold. Conv 4K uses

4KB page size, and conv 2M uses 2MB huge page size only.

B. Results

Performance with dynamic frame sizes: Figure 5 presents

speedups normalized to the conv 4K run. The figure shows
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Fig. 5: Speedups normalized to the baseline with 4KB page

size (conv 4K).
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Fig. 6: Improvements of fast memory hit rates compared to

the baseline with 4KB page size (conv 4K).

three bars. Conv 2M uses 2MB page instead of 4KB with

the conventional single translation. Dynamic frame uses

our dynamic frame size mechanism with five candidate frame

sizes. Ideal frame represents an ideal selection of the best

frame size for each workload. For the results with dynamic

frame and ideal frame, the core-TLBs use 2MB page

size.

Dynamic frame provides performance close to ideal

frame, showing that our estimation mechanism performs

effectively. Its average performance is lower only by 1.7%

compared to the ideal frame size. On average, dynamic

frame achieves 23.7% speedup compared to conv 4K.

Compared to the two baselines, dynamic frame consis-

tently outperforms both conv 4K and conv 2M. Several

workloads have much higher speedups with conv 2M than

with conv 4K. There are two reasons they perform better

on conv 2M: (1) Performance degradation from core-TLB

misses is greatly reduced by using huge pages, and (2) fast

memory hit rates are also increased by high spatial locality.

For tiger and omnet, even if the fast memory hit rates of

conv 4K are higher than conv 2M, conv 2M has better

performance, since the gain from the high fast memory hit

rates is offset by the high core-TLB misses in conv 4K.

Note that decoupled translation mitigates such a conflict as

the core-TLBs use 2MB pages, when the mem-TLBs chooses

to use a small page size.

Figure 6 presents the improvements of fast memory hit

rates compared to conv 4K. On average, dynamic frame

improves hit rates by 83% from conv 4K, and it is close

to ideal frame which has 88% improvement over conv

4K. It shows that using larger frame sizes than 4KB not only

improves translation efficiency, but also has prefetching effects

when applications have strong spatial locality. However, for

Workloads

mix1 milc, tiger

mix2 cactusBSSN, sp

mix3 mummer, ua

mix4 xalancbmk, roms

mix5 omnetpp, xalancbmk, soplex, mcf

mix6 tiger, ua, sp, mcf

TABLE II: Mix scenarios for multi-class evaluation.
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Fig. 7: IPC improvements compared to conv 4K.

applications with low spatial locality, such as tiger, large

page sizes can reduce fast memory hit rates, but our dynamic

frame size selection chooses a small frame size for such

workloads.

Performance with multi-class dynamic frames: For multi-

class evaluation, we run different applications in a system with

multiple classes. Table II shows the workload selection for six

mix scenarios. For each scenario, an equal number of instances

of each application run on 8 cores. Figure 7 presents IPC (in-

structions per second) improvements compared to conv 4K.

In the mix scenarios, dynamic frame perform effectively,

close to ideal frame within 4.3% difference. In some

workloads, inaccurate selections occur during execution, since

mem-TLB hit rate estimation can be affected by co-running

workloads. Nevertheless, dynamic frame achieves 19.8%

performance improvement compared to conv 4K on average.

Compared to conv 2M, the performance gain is smaller, since

the mix selection contains many 2MB-favoring applications.

Fairness: In addition, we investigate how fairness among

workloads is affected by different hybrid memory schemes.

Strict fairness (StrictF ) is defined as follows [15]:

StrictF =
minirIPCi

maxirIPCi

, where rIPC =
IPCMT

IPCST

rIPC is a relative IPC, and MT denotes for multi-

programmed runs while ST for single runs. Figure 8 shows

the fairness result. In the figure, conv 4K shows a good

fairness since it can provide fine-grained assignments of fast

memory across applications. However, conv 2M exhibits a

much worse fairness result, as it can often cause unbalanced

assignments due to the coarse-grained allocation. Although

conv 2M can improve the throughput, it can potentially

degrade fairness. However, dynamic frame provides the

best of the two conventional ways, and it allows similar

fairness to conv 4K and better performance than conv 2M.

TLB misses and fast memory hit rates: Table III presents

TLB Misses Per Million Instructions (MPMI) and fast memory

hit rates of the conventional single-level translation and the
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conv. (Single-level) Two-level Trans.
core-TLB fast mem. mem-TLB fast mem. ideal

MPMI hit rates MPMI hit rates frame
Workloads 4K 2M 4K 2M dyn. dyn. size(B)
ua 227.6 0.4 0.06 0.09 11.7 0.33 256K
tiger 194607.2 3.0 0.24 0.05 179979.9 0.27 4K
sp 324.9 0.5 0.13 0.27 83.9 0.42 16K
milc 1289.8 0.6 0.05 0.07 78.5 0.09 2M
mumm. 16278.2 0.4 0.13 0.15 0.4 0.28 1M
omnet. 5197.0 0.2 0.27 0.21 10173.0 0.37 4K
xalan. 1786.0 0.2 0.91 0.75 803.5 0.91 128K
roms 686.9 0.09 0.82 0.80 262.7 0.86 32K
mcf 28604.9 84.1 0.69 0.68 1188.2 0.71 1M
soplex 1110.9 0.2 0.85 0.37 1.8 0.81 16K
astar 18928.3 0.3 0.22 0.20 937.3 0.28 1M
Gems. 1274.9 0.01 0.04 0.14 782.5 0.32 16K
cactusB. 54.1 0.2 0.34 0.40 53.5 0.77 32K

TABLE III: TLB MPMI and fast memory hit rates of con-

ventional single-level systems and two-level translation with

dynamic frame size.

two-level translation. For the two-level translation, since the

core-TLB MPMI is almost identical to that of the conventional

2MB page size, only the mem-TLB MPMI is shown. The last

column shows the ideal frame size. The table shows that the

the ideal frame size depends on the combined impact of the

mem-TLB and fast memory hit rates. For example, for tiger,

4KB frame incurs many mem-TLB misses, but it can provide

the best fast memory hit rate. As the improved fast memory

hit rate is more important for tiger, the ideal frame size is

4KB. Note that the core-TLB uses 2MB page size, hiding the

overhead of core-side address translation. For mcf, the ideal

one is 1MB, if all 10 frame sizes are considered. In that case,

the reduced mem-TLB miss rate is the most critical factor.

VI. CONCLUSIONS

This paper proposed a technique to dynamically find the best

frame size for a workload to reduce the overhead of memory-

side address translation for hybrid memory. Although two-

level translation can reduce the overheads of page migration

for hybrid memory, the paper showed that it is important to

select an appropriate frame size. The proposed dynamic frame

size selection mechanism can almost match the performance

of an ideal frame size for each workload.
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