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Abstract—As neural processing units (NPUs) for machine
learning inference have been incorporated into a wide range
of system-on-a-chips, NPUs are processing more and more
mission-critical computations such as autonomous driving.
With the increasing application scenarios, securing NPU opera-
tions from potential attacks has become crucial for the safety of
the entire system. To address the security challenges of NPU
operations, this study investigates how the trusted execution
technology can be extended to harden the NPU execution by
hardware supports. This paper proposes trusted NPU (TNPU)
which supports trusted execution for NPUs integrated in a
processor. For securing NPUs, a key performance challenge is
in the encryption and integrity protection for external memory.
This work proposes a novel tree-less integrity protection by
exploiting the data flow semantics of DNN computation. The
tree-less integrity protection maintains a version number for
each tensor or sub-tensor inside the CPU enclave which drives
the NPU computation. By exploiting the data flow of tensor
updates, a per-tensor version number can efficiently verify the
recency of the data in the tensor. The tree-less integrity protec-
tion eliminates performance losses by counter and hash cache
misses, which are major performance overheads of hardware-
based memory protection. Our evaluation with simulated NPUs
shows that the performance overheads for trusted NPUs can
be significantly reduced from the prior tree-based design,
improving the performance of a single NPU by 10.0% and
7.5% on average over the prior one with two different NPU
configurations. When the number of NPUs is increased to three,
the performance gains further improve, achieving on average
13.3% and 8.7% improvements.

Keywords-neural processing unit; trusted execution environ-
ment; memory protection;

I. INTRODUCTION

The wide adoption of machine learning (ML) applications

from edge devices to servers has been accelerating the

integration of neural processing units (NPUs) in computer

systems. For edge and mobile devices, recent SoCs (system-

on-a-chips) commonly include one or multiple neural pro-

cessing units along with conventional CPU and GPU cores

in a single processor [1], [2], [3], [4]. However, the concern

for the security of machine learning computing has been

growing as it has been adopted for more and more mission-

critical tasks including autonomous driving.

For such systems with critical machine learning tasks, the

protection of NPUs is important in three aspects: 1) The

results of inference tasks must be not maliciously altered by

attacks on the system software and hardware. 2) Input and

outputs can contain private data, and their confidentiality

must be protected. 3) The trained machine learning param-

eters are important intellectual properties to be protected

from stealing. However, the conventional software-based

security measures cannot provide such protections against

compromised operating systems or direct physical attacks on

the system memory. A promising solution for such security

requirements is to apply hardware-based trusted execution

environments (TEEs) to NPU-based computing.

Supports for TEEs in conventional CPU-based computing

have advanced with several available technologies such

as Intel SGX, ARM TrustZone, RISC-V Keystone, and

Sanctum [5], [6], [7], [8]. Intel SGX provides an isolated

execution environment called enclave, which is protected

by the CPU hardware mechanism. With the hardware-based

access control and memory protection, SGX enables trusted

computing even under compromised operating systems and

physical attacks on on-board interconnects and external

DRAM. The RISC-V Keystone project has also embraced a

similar enclave-based TEE. Recent studies have extended the

supports of trusted computing to GPU computation, when

a discrete GPU has its own memory not directly accessible

from CPU [9], [10], [11], [12].

However, although NPUs are integrated in a wide range

of systems, the secure execution of machine learning on

NPUs has not been investigated. In the recent SoCs with

NPUs, NPUs and CPU cores share the external DRAM,

posing a new challenge in the memory protection technique.

This paper proposes a trusted NPU (TNPU) architecture

which provides TEEs for NPUs integrated in a processor.

TNPU must provide 1) memory isolation for NPU TEEs

from the privileged software and other user applications,

as well as 2) confidentiality and integrity protection for

DRAM resident data. The memory isolation mechanism

must block unauthorized accesses to the memory region

of NPU TEEs. Against physical attacks, data from the

NPU TEE must be encrypted before they are written to

the external DRAM, and their integrity violation must be

detected. For performance, the key challenge of supporting

trusted NPUs is the protection of memory-resident data.

The hardware memory protection techniques designed for

CPUs commonly employ counter-mode encryption with a



counter tree for freshness verification. Each cacheline-unit

memory has an associated counter, and the counter value

is increased whenever a writeback of the memory block

occurs from CPU to DRAM. The counter-mode encryption

generates a one-time-pad (OTP) from a secret key, address,

and counter value for encryption. Fetching and decrypting a

memory block requires the correct counter to pre-compute an

OTP before data arrival. In addition, to verify the freshness

of each memory block for possible replay attacks, the

integrity of a counter is verified by maintaining an integrity

tree (counter tree) for counters, securely keeping the root

of the tree in the on-chip storage. To hide counter access

latencies, metadata caches are used to store recently used

counters and tree nodes of the counter tree.

However, the critical performance bottleneck for memory

protection is the counter tree traversal caused by counter

cache misses. Due to the cost of maintaining the counters

and the tree, SGX has been limiting the protected mem-

ory region, called PRM (Processor Reserved Memory) to

128MB. In addition, recent updates for server models (scal-

able SGX) provide only confidentiality by encryption, while

the hardware-based integrity protection is not supported

[13]. Furthermore, the integration of CPUs and NPUs can

exacerbate the pressure on the metadata caches, as they must

share the limited capacity.

To address the memory protection overhead problem for

NPUs, this paper proposes a novel semantic-based tree-less

replay protection for NPU computing, which does not use

the counter tree for replay protection. The computation on

NPUs can be decomposed into tensor or sub-tensor com-

putations driven by the software in CPU. Instead of using

the current hardware-based version tracking with counters,

our approach uses a software-oriented version validation

with tensor or sub-tensor granularity. Considering the limited

resources of edge devices, only a small region of physical

DRAM is protected by the conventional hardware counter

tree, which is used for the security metadata and enclave

code similar to SGX. The rest of the memory directly

accessed by NPUs is protected by counter-less encryption,

and tree-less integrity protection with per-block message

authentication codes (MACs) and tensor version numbers.

The proposed semantic-aware tree-less protection pro-

vides the same security level of memory protection as the

prior pure hardware-based approach protecting the entire

physical memory with a counter tree. While providing the

same level of protection, the proposed one can eliminate

counter access and validation overheads for the counter of

each memory block, which significantly reduces the burden

on the limited metadata caches for edge devices. As the

number of NPUs increases and they share the same metadata

caches, the tree-less protection can provide more scalable

performance as the limited capacity of the metadata caches

does not become a bottleneck.

We evaluate the trusted NPU with simulated NPU archi-

tectures. Our evaluation shows that the performance over-

heads for trusted NPUs can be significantly reduced from the

prior tree-based design adopted from the CPU memory pro-

tection. It achieves on average 10.0% and 7.5% performance

improvements over the prior design for small and large NPU

configurations respectively. When the number of NPUs is

three, the performance improvements are on average 13.3%

and 8.7% for the two configurations.

The main contributions of the paper are as follows:

• This paper proposes a TEE architecture for NPU inte-

grated in processors. It shows how the access control for

memory used by NPUs can be supported when NPUs

and CPU cores share the memory.

• This paper proposes a novel semantic-aware tree-less

integrity protection for the memory used by NPUs.

It can eliminate the need for tracking counters and

validating the integrity of counters for the part of the

memory.

• The paper showed that the tree-less protection can pro-

vide better scalability as the number of NPUs increases,

as the metadata caches are no longer the performance

bottleneck.

The rest of the paper is organized as follows. Section II

presents the background of hardware-based trusted comput-

ing and heterogeneous computing with NPUs. Section III

presents the motivation for challenges and opportunities of

NPU memory protection. Section IV presents the architec-

ture of trusted NPU, and Section V reports the experimental

results with simulation. Section VI presents the related work

and Section VII concludes the paper.

II. BACKGROUND

A. Trusted Execution

Hardware-based trusted execution has enabled the

hardware-enforced strong isolation of execution environ-

ments from malicious privileged software including the

operating system [14]. In the trusted execution environments

(TEEs), the trusted computing base (TCB) is reduced to

the processor chip and the software running on the pro-

tected environments. With the processor enforced isolation,

the privileged software cannot access the trusted execution

environments, and the data and codes resident in the external

memory are encrypted and integrity-verified by the hardware

engine. Such TEE technologies have become available in

commercial processors such as ARM TrustZone and Intel

SGX (Software Guard Execution). In Intel SGX, a user-

level isolated execution environment is called enclave, and

the protected memory region, EPC (Enclave Page Cache), is

secured by the hardware memory access control and memory

encryption engine [5]. The recent Keystone project provides

TEEs for the open-source RISC-V architecture. Keystone

has a similar enclave concept as SGX, and in this paper, we

will use the terminology in SGX.
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In SGX, the page table for a user process is still main-

tained by the vulnerable operating system. The protected

virtual address range (ELRANGE) of an enclave is mapped

to the EPC region of the memory by the page table. Since the

page table itself can be modified by the operating system, the

hardware maintains a reverse mapping table called EPCM

(Enclave Page Cache Map), which is indexed by physical

address for the EPC region. The EPCM entry contains per-

page security meta-data for the translation validation step.

For each TLB miss for the protected memory range, the

translation entry of the page table is validated by looking up

the EPCM entry. The security invariant for access control is

that the TLB must always contain only validated translation.

B. Memory Protection

In supporting TEEs, one of the most critical overheads

is to protect external memory with a hardware encryption

engine. Since the processor is the security boundary, any

data coming out of the processor must be encrypted. The

most popular encryption technique for hardware memory

protection is counter-mode encryption. Figure 1 describes

how counter-mode encryption generates ciphertexts. For

each cacheline unit of memory, a dedicated counter is

assigned. The counter value of a memory block is increased

whenever the memory block is updated by dirty eviction

from on-chip caches. The encryption of an evicted memory

block is done by XOR’ing the cacheline data with a one-

time-pad (OTP). The OTP is generated with a block cipher

by using the secret key, address, and counter value of the

memory block. Per-block counters ensure that each block is

encrypted with a different OTP whenever its value changes.

In addition to the confidentiality support by encryption,

the integrity of the memory block must also be protected

by the hardware engine. To detect any unauthorized change

of memory values, each memory block is attached with

a MAC (Message Authentication Code). Since MAC does

not protect against replay attacks, the integrity of per-block

counter values is also validated by a counter tree. The

counter for each memory block acts as a version number

to validate the recency of the block. Figure 1 shows the tree

organization of counters. The root node of the tree never

leaves the processor chip, and the counter value fetched from

the memory is validated using the counter tree [15], [16],

[17], [18].

For a last-level cache miss, the corresponding counter

value must be fetched before the actual ciphertext data

arrives, to prepare for the OTP construction. To reduce the

cost of counter fetching, a processor includes a counter
cache that stores recently used counter values. If the required

counter value does not exist in the counter cache, the counter

block must be read from the memory, and its integrity must

be validated by using the counter tree. Since a miss in the

counter cache causes a significant delay in decrypting the

data from the memory, high counter cache miss rates have

been known to be one of the critical performance bottlenecks

with the hardware memory encryption [12]. In addition to

the counter cache, the processor also caches the internal

nodes of the counter tree in a hash cache. The two caches for

counters and hashes can be combined into a single metadata

cache.

Memory encryption without integrity protection: Sup-

porting integrity protection with hardware causes significant

performance and area costs for efficiently handling counters

and the counter tree. In the original SGX (client SGX), only

128MB of physical memory is protected by the hardware

memory protection. A new model for SGX called scalable

SGX no longer provides hardware-based integrity protection,

but it widens the confidentiality support to the entire memory

region. Scalable SGX employs AES-XTS which does not

use per-block counters. Without counters and an counter tree,

the metadata caches for them are not necessary. However,

this new SGX memory protection does not provide data

integrity and replay protection against physical attacks.

In this paper, we will adopt total memory encryption

without tree-based integrity protection for NPU memory

protection. However, we will add the new semantic-based

version validation to support the integrity protection against

physical attacks, unlike scalable SGX.

C. Heterogeneous Computing with NPUs

NPU (Neural Processing Unit) is a computing device

designed to accelerate neural network computation. A typ-

ical NPU architecture uses a systolic array of processing

elements (PEs) [19]. PEs consist of the computational

component (multiplier and accumulator) and register file,

and PEs are arranged with grid networks to transfer data.

Based on the regularity of machine learning computation,

NPU uses scratchpad memory (SPM) instead of block-

granularity caches as an on-chip buffer. Data loading and

eviction are managed by machine learning software. For

common machine learning computations, a chunk of data

is loaded to SPM, and computations on the loaded data are

conducted. By using double buffering, the next chunk of data

is transferred to SPM, while PEs are busy with computation,

which parallelizes data transfer and computation [20].
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Integrated NPUs: One of the important trends in processor

designs is to incorporate multiple types of computing devices

in a single chip. For example, NVIDIA Xavier has 8 CPU

cores, one GPU, and two NVDLAs (NVIDIA Deep Learning

Accelerator) [1]. Samsung Exynos 990 has 8 CPU cores

along with a GPU, DSP, and dual-core NPU [2]. Recent

Apple M1 and Tesla FSD also include one CPU, one GPU,

and one or two NPUs [3], [4]. Although NPUs are also

used for server-class systems using discrete designs with

their own high bandwidth memory [21], this study is focused

on the integrated NPUs. As machine learning tasks become

common in many applications, it is expected that more and

more mobile and edge processors will embrace one or more

NPUs, as shown by recent the Apple M1 processor [3].

Based on the commercial designs, Figure 2 shows our

target integrated NPU architecture. In this paper, we use a

CPU-NPU interaction model used by Gemmini NPUs for

RISC-V processors [22]. Computations on NPUs are driven

by an application running in the CPU. Three key operations

on NPUs are mvin (move-in), mvout (move-out), and

compute. The mvin operation loads memory-resident data

to SPM in an NPU, and the mvout operation writes SPM

data back to the external memory. The compute processes

the SPM-resident data.

D. Machine Learning Security

Direct system attack: Acquiring the OS privilege by vari-

ous techniques for privilege escalation allows direct access

to all system resources. Since the traditional memory or

NPU is fully controlled by the OS, ML data and model

parameters can be extracted by the OS. In addition, the

integrity of computation can also be violated, producing

wrong results. Another type of direct system attack is the

physical attack. Unlike data center servers, edge accelerators

are easily compromised by physical attacks such as bus

snooping, tampering, and cold-boot attacks. A recent model

architecture extraction attack uses physical or side-channel

attacks to infer the ML model architecture [23], [24].

Table I
ATTACKS IN ML: CONFIDENTIALITY (C) AND INTEGRITY (I)

Attack Weak Spot C/I Ours
Malicious System Software Access Control C, I O

Bus snooping Memory Protection C O
Tampering Memory Protection I O

Cold-boot Attack Memory protection C O
Model Extraction Address Trace C X
Inversion Attack Algorithm C X
Poisoning Attack Algorithm I X

*O: supported protection, X: unsupported protection

Adversarial attack: Attacking the vulnerability of the al-

gorithm itself, rather than the existing system, is called

adversarial attack [25]. The model inversion and extraction

attacks extract the training data and model architecture

based on the result of designed queries [26], [27]. The

poisoning attack maliciously manipulates training data. The

evasion attack adds noises to input images to cause incorrect

classification [28].

E. Threat Model

The trusted computing base (TCB) is the SoC containing

CPU and NPU along with the application codes running in

the TEEs. The study also assume that the data generation by

sensors and transfer to the CPU TEE from the sensors are

secure as discussed by the prior work [29], [30]. Privileged

software such as OS and hypervisor can be compromised

by attackers. In addition, attackers can launch physical

attacks such as bus-snooping or modification of external

DRAM contents [16], [31]. However, this paper assumes

that side-channel attacks must be addressed by an orthogonal

separate measure. In addition, the availability of services

is not guaranteed, since the operating system controls the

scheduling of CPU and NPU.

Table I shows potential attacks on ML systems, and the

scope of the problem this study is addressing. This study

protects ML computation on NPUs from direct confidential-

ity and integrity attacks by privileged software or physical

attacks. Model architecture extraction via side-channel or

bus snooping [23] is beyond our scope. The protection for

such model extraction requires obliviousness support for

hiding data transfer patterns. In addition, adversarial attacks

on the ML algorithms are also out-of-scope in this study.

III. MOTIVATION

A. Trusted NPU Computing

NPUs process essential machine learning tasks, which are

part of the computation cycle from the generation of input

data to the final outcome. In such ML-oriented systems, the

computation cycle involves sensor devices, CPUs, NPUs,

and often remote clouds to complete the processing of data.

To support the end-to-end security from data collection to

output, the entire flow must be protected. Figure 3 shows

an example of an edge system that collects data from its
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sensors and processes the sensor data with NPUs. For the

security of the entire flow, each step must be designed to

support confidentiality and integrity.

Sensor data encryption and integrity protection: To

securely collect data, sensors encrypt the data and securely

transfer them to the CPU memory [29], [32]. The Waspmote

sensor device which is used in the Libelium IoT project

includes the AES encryption engine for confidentiality [29].

In addition, it can use the checksum method by using a

hash algorithm such as MD5 or SHA to protect the data

from integrity attacks. For sensor data, in addition to the

encryption, this paper assumes that the integrity of the

communication between sensors and CPUs is protected via

any type of integrity protection scheme such as message

authentication code (MAC).

Trusted CPU pre-processing: With the securely transferred

data from sensors, CPU must execute the pre-processing of

the input data in an enclave [30]. Once the pre-processing

is completed, the generated input must be securely passed

to the NPU. In the integrated NPU architecture, the CPU

enclave uses the memory region shared with the NPU for

the data transfer. In our proposed architecture, the shared

memory between CPU and NPU is protected by hardware

encryption and semantic-based integrity protection.

Trusted NPU processing: NPU must process ML tasks

for given inputs in a trusted execution mode. The output is

shared with the CPU enclave and post-processed by the CPU

code in the enclave. The CPU enclave can initiate further ML

tasks, or order the actuation of physical devices.

In the end-to-end security supports from sensors to NPUs,

this study is focused on trusted NPU processing. Although

we used the example scenarios with an edge device, this

study is applicable for any integrated NPU architecture with

vulnerable external DRAM.

B. Memory Protection for NPUs

For supporting TEEs, one of the key performance over-

heads is to provide the confidentiality and integrity of

memory-resident data [15], [16]. In this section, we in-

vestigate the performance impact of memory protection for

NPUs. For hardware-based memory protection, we evaluate

the counter-mode encryption and counter trees for confiden-
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Figure 5. Counter cache miss rates of the conventional tree-based memory
protection with two NPU configurations.

tiality and integrity supports. The design is based on the pro-

tection technique for CPU memory [15], [16]. We evaluate

two NPU configurations with different capabilities, Small
NPU, and Large NPU. The details of NPU configurations

are presented in Table II. We evaluate 14 machine learning

tasks. The NPUs use a 4KB counter cache and a 4KB hash

cache. Each 64B counter cache entry has 64 counters using

the split-counter mechanism (SC-64), and the arity of the

tree is 64 [33]. More detailed methodology is presented in

Section V. In the baseline design, the entire DRAM space

is encrypted and protected by the hardware encryption and

counter tree.

Performance overheads: We first evaluate the poten-

tial performance degradation by supporting hardware-based

memory protection for NPU. Figure 4 presents the execution

times with the two NPU types, normalized to those without

any memory protection (unsecure NPUs). As shown in the

figure, with a naı̈ve adoption of CPU-oriented memory

protection, the performance degradation is severe. For sent
and tf, Small NPU can suffer from 63.2% and 48.8%

execution time increases. On average, the performance

degradation for 14 workloads is 21.1% and 17.3% for the

Small and Large NPUs, respectively. Considering NPUs

are used for performance acceleration, the security features

must incur minimal performance degradation. The result

shows that the CPU-oriented technique needs to be further

optimized for NPUs.

Counter cache misses: The performance of tree-based

integrity protection depends on the counter cache misses.

When a counter cache miss happens, the integrity tree

recursively verifies the counter value and missed internal tree

nodes, adding significant costs. Figure 5 presents counter

cache miss rates in the evaluated models. As each counter

cache block can contain 64 entries with the 64-arity split-

counter scheme, the miss rates look low for the workloads

except for sent and tf. Although the counter cache has
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high spatial localities for those workloads, its temporal

locality is low because of streaming access to tensors. Even

for the seemingly low miss rates, the performance impact is

high as each counter cache miss incurs a high performance

penalty. Sent and tf have low spatial localities due to their

fine-grained access patterns.

Tree-based vs tree-less integrity protection: The conven-

tional integrity protection uses a tree-based verification for

per-block counters. Each memory block has an associated

counter as a version number and MAC. The left part of

Figure 6 shows the conventional memory protection with

a tree. For the entire counters covering the total physical

memory, a tree is constructed. The root of the tree is always

securely kept. To reduce the cost of the tree validation, on-

chip storage is required for caching counters and tree nodes.

Our approach is a semantic-aware tree-less verification, as

shown in the right part of Figure 6. NPU computation can be

decomposed into the data flow of tensors. For each tensor

or sub-tensor (tile) which is updated as a single unit, one

version number is assigned. The version numbers are stored

in the CPU-side enclave memory, which uses a small fully-

protected memory region in the memory. The NPU software

running on the CPU is responsible for tracking the version

number for each mvin or mvout operation. Since the tensor

data flow is statically known, the software can manage the

version numbers efficiently, unlike the per-block counters in

the prior hardware-based approach.

C. Tensor-based Computation

Our tree-less replay protection relies on the tensor-based

data flow of NPU computing. Figure 7 shows part of the

data flow from ResNet50. The update of each tensor can
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be identified in the data flow, and thus the software can

increment the version number of each tensor. When a tensor

is read from the memory to NPU SPM, its version number is

checked whether the tensor is the latest version. The correct

version number is securely stored in the CPU-side enclave

memory, which is fully protected by the hardware-based

integrity protection.

Figure 8 shows how the actual software handles the data

movement. In the execution model, mvin and mvout are

the only operations for transferring data between SPM and

the memory. For mvout, the software updates the version

number in the fully protected enclave memory, and passes

the version number to the NPU hardware component to add

it in the MACs of memory blocks for the tensor. For mvin,

the software supplies the correct version number to the MAC

verification unit of NPUs.

One complication is the tiling of tensors when necessary

tensors cannot fit in SPM. Figure 9 describes this situation

when a matrix multiplication ( A x B = C ) is computed.

In the case, two tensors are statically decomposed into tiles.

The unit for mvin and mvout is a tile. The software assigns
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A separate region is reserved for MACs.

a different version number for each tile. When tile-based

computations for a tensor are completed, each tile has the

same version number since the number of updates for tiles

in the same tensor is equal for matrix multiplication. After

merging, a single version number is used until tiling is

necessary again in later computation.

IV. ARCHITECTURE

A. Overview

TNPU (Trusted NPU) architecture provides hardware-

based trusted execution for NPU computation. To support

such NPU TEE, it extends the CPU-side trusted execution

environments to NPUs, isolating the context for NPU ex-

ecution. This study assumes that the baseline CPU TEE

provides a similar mechanism to SGX enclaves, and we

call TEEs enclaves. However, the idea is not strictly tied

to SGX enclaves. The processor maintains a fixed protected

memory region (PRM in SGX) in part of the memory with a

small capacity of 128MB. All security metadata are stored

in the protected region. There are three main components

for TNPU.

Protected NPU driver: The privileged software such as

the OS should be allowed to control the NPU. As proposed

by the prior GPU protection [10], the NPU driver which

controls NPUs must be running in a CPU driver enclave. The

OS can only send requests to the protected driver. Note that

supporting such driver enclaves for controlling I/O devices

requires the extension of the current SGX to access MMIO

regions, as suggested by the prior work [10].

Memory access control: The NPU context must be pro-

tected from OS or other user applications. Accesses to the

NPU address space must be verified by a similar way to the

validation step of SGX. For such validation, the processor

maintains an inverse page map, called Extended EPCM

(EEPCM) which is an extension of SGX EPCM to cover

the entire physical memory. EEPCM is a flat inverse map

indexed by physical page address. Each entry contains the

security metadata for the page. For a TLB miss, EEPCM is

consulted to validate the page table entry maintained by the

OS.

Access1
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…

Virtual
Address

…

Enclave 
ID

Permis
sion

… …
0x096… 0x748… 2 0
0x0FF… 0x426… 1 1

==?
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Enclave ID

IOMMU

Verification2

True

Validate
Signal3

EEPCM (Extended Enclave Page Cache Map)

Figure 11. Translation validation for an IOMMU miss. Translation entry
is verified by looking up EEPCM for the page.

Memory encryption and integrity protection: Since

physical DRAM is shared by CPU and NPU, the part of

DRAM used by the NPU must be encrypted and integrity

protected. As NPUs can use a large amount of memory, their

memory pages are not mapped to the fixed protected region

for CPU enclaves. Instead, the NPU memory is allocated

during the enclave initialization, and protected by our tree-

less memory protection mechanism.

NPUs are controlled by the NPU driver enclave, and the

user application sends a request to the NPU driver to get

permission to use the NPU. Once an NPU context is assigned

to a CPU enclave, the CPU enclave shares the non-EPC part

of its memory space with the NPU context and interacts

with the control commands such as mvin, mvout, and

compute. Both MMU and IOMMU consult EEPCM for

validation during TLB miss handling.

In our system, in the DRAM space, 128MB fixed region

is protected by the conventional tree-based scheme similar to

SGX PRM. We will call this region fully protected region.

The security metadata such as EEPCM are stored in the

region, and each CPU enclave allocates the security-critical

data in the region. The rest of the memory region accessed

by NPUs is protected by the new tree-less protection. Note

that a CPU enclave can access the tree-less region with

new memory instructions, and in that way, the CPU enclave

and NPU computation can share the memory. A separate

fixed region is used to store MACs of the entire DRAM

space. Figure 10 presents the memory space and protection

mechanism.

B. Access Control for NPU Context

The memory of a trusted NPU context must be protected

from any unauthorized access from other contexts or priv-

ileged software. Since the memory is shared between CPU

and NPU, such access validation must be maintained both

by CPU and NPU. For the entire physical memory, EEPCM

contains per-page security metadata, such as owner enclave

ID, virtual page number, physical page number, permission,

etc. For a TLB miss in CPU MMU or NPU IOMMU,

the EEPCM entry is accessed to validate the translation

and permission. The page table itself is maintained by the

OS, so the mapping information can be updated arbitrarily.
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Therefore, the system-wide page map must validate any

translation attempts to the NPU memory both from CPU

and NPU, since any privileged CPU process attempts to

access the protected NPU memory page by changing its page

table. Figure 11 shows how the access control is done with

EEPCM when an IOMMU miss occurs.

EEPCM is stored in EPC pages (residing in the fully

protected region), so it is protected from the OS or physical

attacks. In the virtual address space of an NPU context,

a contiguous region is designated as the protected address

range (NELRANGE). During the initialization of an NPU

context, NELRANGE is set, and pages are added to the

virtual address range. When a physical page is added, the

corresponding entry of EEPCM must be updated to record

the ownership of the page. However, the memory pages

accessible by NPUs are not mapped to the fully-protected

region but assigned to the region protected by the tree-less

protection. The next subsection explains how the memory

pages of an NPU enclave are protected by the hardware

encryption engine.

C. Tree-less Memory Protection

In the proposed architecture, the entire DRAM, except

for the fully protected region, is encrypted with AES-

XTS similar to Intel Total Memory Encryption [13]. The

hardware-based encryption provides confidentiality for all

memory blocks accessed by CPU, GPU, and NPUs. The

memory encryption does not use per-block counters and thus

it does not require counter and hash caches for performance.

In addition to the memory encryption, we add MAC for

each memory block for integrity. The per-block MAC is used

to authenticate the memory block contents. However, MAC

itself cannot detect a replay attack that replaces the latest

version of a data block and its MAC with an old version of

them. With semantic-aware tree-less replay protection, the

software tracks and assigns a version number for each mvin
and mvout operation. Figure 12 (a) shows the generation

of the MAC for a memory block when the memory block is

written from SPM to the external memory during an mvout

operation. For each 64B memory block, the content of the

block, its block address, and version number supplied by the

mvout operation are used to generate an 8B MAC. MAC

is written to the MAC region in the memory corresponding

to the block address. Note that MAC generation and verifi-

cation can be selectively turned on or off, depending on the

page status set in EEPCM.

Figure 12 (b) shows the verification of data when it is

fetched from the memory to the on-chip SPM. For an mvin
operation, the CPU-side software provides the expected

version number. For fetched data, the block content, address,

and the expected version number are used to generate the

correct MAC. If it does not match with the stored MAC,

at least one of the three inputs of MAC generation (block

content, address, and expected version number) is invalid.

By setting and verifying a version number for each memory

block, a replay attack can be detected. The version number

is assigned to a tensor or a tile, so the memory blocks

belonging to the same tensor or tile use the same version

number.

A small region of memory (fully-protected region) is still

protected by the hardware-based integrity tree, but NPUs do

not access the memory directly. The fully-protected memory

region is used to support CPU enclaves, as used by SGX.

The application software running in the CPU is protected

inside an enclave. Therefore, the codes and CPU-only data

including the version numbers of all tensors are stored in

the fully-protected memory region. Compared to the main

NPU data for tensors, the required data in the fully-protected

memory region is small.

Hardware changes: To support the tree-less replay pro-

tection, NPU APIs are extended. For each mvin or mvout
operation, a version number is added as a parameter. For

mvin, the version number is the expected version number

for the tensor data, and for mvout, the version number is

used to generate MACs. The user application running in a

CPU enclave is responsible for managing version numbers

for tensors. When it executes mvin or mvout, it supplies

an appropriate version number, which is stored in the fully

protected memory region.

The hardware mechanism is straightforward. For mvin,

the DMA engine will read data from the memory. The

expected version number is passed to the MAC verifier.

Since a single mvin can generate many 64B block accesses,

all blocks are verified by the MAC verifier with the same

supplied version number. For mvout, the MAC generator

uses the supplied version number to create new MACs.

MACs and data blocks are written to the external memory

via the DMA engine.

CPU-side accesses to tensors: A CPU enclave driving

NPUs also needs to access the tensor region with the

tree-less memory protection during the initialization of the

tensors and the finalization of NPU computation. To support

the CPU-side access to the region covered by the tree-less
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Figure 13. Software changes and version number management operations for a ResNet50 layer. The code is extended with version numbers in mvin and
mvout. In addition, the version number can be expanded and merged for tiled operations. The table for version numbers is stored in the fully protected
memory.

protection, special memory read and write instructions are

added. Memory accesses by the new instructions from CPU

must follow the encryption and tree-less integrity protection

scheme used for tensors, so that the data written by CPU

can be read correctly by the NPU, and vice versa. To do

that, the new memory instructions have a version number in

their parameters, which are similar to mvin and mvout. A

difference from mvin and mvout is that the granularity of

access is not a tensor or tile, but a block or word.

One important restriction for the new memory opera-

tions by a CPU enclave is that they need to bypass on-

chip CPU caches, since the caches cannot store version

numbers. If caching is allowed for the data, CPU caches

must carry the version number for each block, incurring

area overheads. In our design, we opted for forcing un-

cacheable writes with version numbers when CPU writes

to tensor data, since the initialization and CPU-side up-

date of tensors are infrequent. In addition, the streaming

nature of common tensor accesses by the CPU software

(for example, initialization) does not efficiently utilize the

caches due to its low temporal locality. To do that, the

tensor memory must be marked as uncacheable pages, as

supported by x86. Since a MAC is created for each block

unit of data, two small block buffers (64B) for read and

write are added to temporarily store data for each core.

For efficiency, two new instructions (ts_read_block and

ts_write_block) fetch and write tensor data between

the memory and the buffer at 64B block granularity. An

additional ts_read_byte reads specified bytes from the

read buffer filled by ts_read_block. A new instruction

ts_write_byte fills the write buffer, which will be

flushed to the memory by ts_write_block.

D. Tracking Version Number in SW

The compiler for NPUs and library writers add the code

for tracking version numbers. Since the data flow is statically

analyzed in the NPU software, the extra effort is minor and

it can be automatically inserted by the compiler. We use a

ResNet50 example from the Gemmini project to show the

required changes for the software. Figure 13 (a) shows part

of the code in ResNet50. In this example, mvin and mvout
are changed to new APIs with a version number. For the

CPU-side access for initialization, ts_write_byte and

ts_write_block operations are used.

Version number management: Version numbers are stored

in a table whose indices are tensor id and tile id. The table

for each NPU context is stored in the fully protected region.

To initiate mvin, the corresponding version number must be

read from the table, and passed as the instruction parameter.

When mvout is initiated, the CPU-side application code

updates the version number in the table, and the updated

value is passed as the instruction parameter.

Figure 13 (b) shows the version number management in

the fully protected region. As shown in Figure 9, since a

tile-unit version number must be maintained within a layer

operation, the tensor-unit version table is expanded. While

the input tensor uses a tensor-unit version number as it is

not updated, the version number of the output tensor is

divided into a set of tile-unit version numbers. After all

tile operations in a layer are completed, they are merged

into one entry as they have the same values in the end of

the operations. According to our analysis, the storage for

version numbers is only 1.3KB on average and up to 7.5KB

with the tf which is the most memory-intensive workload.

E. Initialization and Attestation

Initialization: With the integrated NPU with CPU, the

secure initialization is done by the CPU TEE mechanism.

The secure NPU execution always has an associated CPU

enclave. The CPU enclave initiates the secure NPU compu-

tation. During the initialization, the CPU enclave allocates

its own EPC memory page, and it also allocates non-EPC



memory for NPUs, which is access-controlled by hardware,

but protected by tree-less protection. System booting does

not need to be secure, since SGX and Keystone provide

dynamic enclave creation.

Remote attestation: Since NPU is integrated into the pro-

cessor, the remote attestation is provided by the CPU-side

enclave attestation mechanism. The processor chip itself

including CPU and NPU is validated by the CPU-side

(processor-wide) validation protocol similar to the SGX

remote attestation. The binary for the CPU enclave software

which includes NPU instructions is attested with the CPU

enclave attestation. The NPU driver enclave also needs to

be attested.

V. EVALUATION

A. Methodology

Simulation infrastructure: We use an in-house cycle-level

simulator, which is built upon the widely-used open-source,

SCALE-Sim simulator [34]. As SCALE-Sim provides layer-

wise modeling without the support for inter-layer connec-

tions, we added the support to our simulator. The simulator

contains the following NPU characteristics: 1) scratchpad

memory as on-chip memory, 2) double buffering for data

transfer, and 3) systolic array to utilize PE efficiently. To

reflect data transfer overheads between NPU and off-chip

memory, we use a simple memory bandwidth model, which

limits the maximum bandwidth. We assume 100 cycles

for DRAM latency based on the prior work [35]. The

simulator can process convolution, fully-connected, matrix-

matrix multiplication, and matrix-vector multiplication com-

putations. The simulated NPU has a hardware im2col block,

and thus it can perform im2col on the fly.

We augmented the necessary components for TNPU to

our simulator. For the baseline, we model counter-mode

encryption for confidentiality and MAC with a 64-arity split-

counter tree (SC-64) for integrity protection. The entire

memory of the baseline system is protected by the counter-

mode encryption and the counter tree. Creating an OTP takes

10 cycles with 1 cycle for XOR operation in counter-mode

encryption. We use a 4KB counter cache and a 4KB hash

cache. As SGX supports an 8-arity tree with a total 64KB

counter and hash cache, our setup with our 64-arity tree has

a similar data coverage to SGX. To reduce the overheads

of MAC accesses, an 8KB MAC cache is used to keep

recently accessed MACs. A 64B MAC block contains 8

MACs and the MAC cache reduces MAC read and write

traffic by exploiting the locality [36].

To simulate our tree-less mechanism, we reduce the

fully protected area to 128MB which includes the security

metadata such as version numbers. Except for the 128MB

region, the rest of the memory uses AES-XTS encoding and

HMAC with a version number. As AES-XTS requires 10

cycles for two parallel AES and 3 cycles for two addition

and one XOR operation, we simulate a latency of 13 cycles

Table II
SIMULATION ENVIRONMENTS [2], [37]

Small NPU (Samsung Exynos 990)
PE 32 x 32, systolic array
Bandwidth 11 GB/s with 4 channels
Frequency 2.75 GHz both processor/memory
Scratchpad Memory 480KB in total
Precision Float16, 2B per element

Large NPU (ARM Ethos N77)
PE 45 x 45, systolic array
Bandwidth 22 GB/s with 4 channels
Frequency 1 GHz both processor/memory
Scratchpad Memory 1MB in total
Precision Float16, 2B per element

Table III
EVALUATED BENCHMARK MODELS

Model Mem Footprint
Googlenet (goo), Mobilenet (mob) 15.2MB, 11.4MB
Yolo-tiny (yt), Alexnet (alex) 18.9MB, 11.7MB
FasterRCNN (rcnn), DeepFace (df) 29.3MB, 2.2MB
Resnet50 (res), MelodyExtractionDetection (med) 41.4MB, 34.8MB
Text-generation (tx), AlphaGoZero (agz) 21.7MB, 2.2MB
Sentimental-seqCNN (sent), DeepSpeech2 (ds2) 58.8MB, 15.6MB
Transformer (tf), NCF-recommendation (ncf) 75.6MB, 11.6MB

for confidentiality. To consider the cost of storing version

numbers in the fully protected memory, access requests to

the fully protected memory are generated, when the version

number is needed. TNPU also use an 8KB MAC cache.

Hardware configuration: As this paper targets edge-level

SoC platforms with integrated NPUs, we refer to the specifi-

cations of SoCs in the Samsung Exynos 990 and ARM Ethos

N77, and use the NPU architecture configurations of Exynos

990 (Small NPU) and Ethos N77 (Large NPU) [2], [37].

As shown in Table II, Small NPU is equipped with 1024

(32 × 32) PEs with 11 GB/s bandwidth, and Large NPU
comes with 2025 (45 × 45) PEs with 22 GB/s bandwidth.

The Small NPU and Large NPU configurations also have

480KB and 1MB of scratchpad memories, respectively. Both

configurations employ 16-bit data width.

Benchmarks: Table III lists the evaluated benchmarks,

which are selected from a wide range of machine learning

algorithm domains that include computer vision, speech

recognition, natural language processing, and computer

game [38], [39], [40], [41], [42], [43], [44], [45], [46],

[47], [48], [49], [50], [51], [52], [53]. Each benchmark

has compute-intensive and memory-intensive layers. The

convolution layer is the most compute-intensive layer and

the embedding layer is the most memory-intensive layer.

Therefore, sent and tf which have embedding layers are

more memory intensive than the others. The column, Mem
Footprint, reports the total size of memory footprint require-

ment, which includes ifmap, ofmap, and model parameters.
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Figure 14. Execution times for unsecure, baseline, and TNPU, normalized to the unsecure configuration.
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Figure 15. Data traffic volume normalized to the unsecure configuration.

B. Performance Improvement

Figure 14 presents the execution times of our tree-less

protection. Each result is normalized to the unsecure con-

figuration (Unsecure), which represents the execution of

NPU without any memory protection scheme. The second

bars (Baseline) of each model show the execution times

with the conventional tree-based memory protection. The

execution times of the proposed architecture are presented

at the rightmost bars (TNPU). The elimination of the counter

traffic and recursive integrity-tree processing reduces the

performance overheads significantly from Baseline to

TNPU.

For Small NPU, the tree-less protection (TNPU) im-

proves the performance of the baseline by 10.0% on average.

Compared to the unsecure run, the tree-less protection only

incurs 9.0% performance degradation, while the baseline

has 21.1% deterioration. For Large NPU, TNPU has 7.5%

performance improvement over the baseline, and TNPU has

8.6% performance degradation for memory protection over

the unsecure run.

The amount of data traffic partly explains the performance

improvement. Figure 15 presents the memory traffic from

the simulation, which matches the execution time trends.

Confidentiality support and integrity protection generate

significant extra memory traffics in the baseline. In this

result, we can infer the volume of security metadata traffic

based on the difference from the unsecure run. In Small
NPU, the amount of extra data traffic is reduced from 23.3%

in the baseline to 12.3% in TNPU, compared to the unsecure

run. Large NPU also shows similar trends.

Memory-intensive benchmarks, sent and tf, which con-

tain embedding layers, have high performance degradations

with the baseline, 52.2% and 44.0% respectively. Since these

embedding layers have multiple large one-hot vectors that

create many tiles, these tiles cause relatively sparse memory

accesses with low spatial locality, which prevents the effi-

cient caching of counters. TNPU reduces the performance

degradation to 9.4% and 10.2% for sent and tf.

The remaining overhead compared to the unsecure con-

figuration is due to the extra memory traffic generated for

MAC reads and writes. 8B MAC is used for each 64B

memory block, and thus 8B
64B = 12.5% of extra traffic occur

for the MAC accesses. Although the MAC cache reduces

the memory traffic, MAC accesses still cause non-negligible

overheads for secure DNN acceleration.

C. Scalability

As the number of NPUs sharing the counter and hash

caches increases, the performance of the baseline can further

degrade [54]. In this subsection, we perform the scalability

study by increasing the number of NPUs from one to

three. Figure 16 presents the execution times of the baseline

and TNPU, which are normalized to the unsecure run for

each NPU count. For example, for 3 NPUs, the baseline

execution time is normalized to the unsecure run with the

same 3 NPUs. In multi-NPU runs, each NPU has a separate

IOMMU while the memory controller and security engine

are shared, sharing memory bandwidth and the capacity of

metadata caches. The same inference models are running in

each NPU.

As shown in the Figure 16, as the number of NPUs

increases, the performance gap between the baseline and

TNPU increases. On average, for small NPU, TNPU im-

proves the baseline by 10.0% for 1 NPU, and the improve-

ments increase to 12.9%, and 13.3% for 2, and 3 NPUs,

respectively. The performance gain by TNPU increases over

the baseline since counter and hash cache misses increase

with the increasing NPU count in the baseline.
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Figure 16. Execution times when one to three NPUs are used. They are normalized to the unsecure run of the same NPU count.
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Figure 17. End-to-end execution time of unsecure, baseline, and TNPU, normalized to the unsecure configuration.

The performance gap between the baseline and TNPU is

smaller with Large NPU than Small NPU. It is due to

the bigger SPM capacity of Large NPU, which reduces

counter cache access. In med and tx with small NPU,

the baseline and TNPU do not have performance degradation

for 1 NPU, but more NPUs incur overheads due to counter

cache misses and metadata traffic. The performance gap

between the baseline and TNPU slightly reduced for yt,

alex, rcnn, res, and ncf with 3 NPUs compared to 2

NPUs in Small NPU. It is because the limited memory

bandwidth becomes the primary bottleneck for those cases.

D. End-to-End Performance

To evaluate the entire execution latency including the

CPU-side operation, we combine the Gemmini model [22]

with our simulator. With the evaluation model with CPU and

NPU interaction, the end-to-end latency is the time delay

from the completion of data transfer from the sensor, to the

return of the inference output from NPU to CPU. Except

for the NPU computation time, the dominant extra latency

is for the initial transfer of model parameters to the memory

region of the NPU context. As an NPU context commonly

processes many inference requests for a loaded model,

the amortized cost of the initialization can be significantly

reduced. However, in this result, for conservative evaluation,

the parameter initialization time is added for processing a

single request. Figure 17 shows the end-to-end execution

times for three configurations. While the baseline has 14.1%

and 12.6% performance overheads on average over the

unsecure run for Small and Large NPUs, TNPU has only

6.4% and 5.6% overheads over the unsecure run. Therefore,

even for the end-to-end evaluation, TNPU improves the

performance of the baseline by 8.2% and 6.2% for the two

NPU configurations.

E. Hardware Overhead

For TNPU, the memory encryption engine for tree-

less protection is added as an extra hardware component.

The memory encryption engine consists of AES-XTS and

HMAC hardwares. They need three AES-engines and 512B

small additional storage for a tweak value and intermediate

values. In addition, we use a 8KB MAC cache to exploit

MAC locality. The 8KB MAC cache is used for both of the

baseline tree-based design and the tree-less TNPU. Including



the MAC cache, TNPU requires 0.03632mm2 which is

only 0.035% of Exynos 990 and 17.73mW at the highest

performance point [55], [56].

VI. RELATED WORK

Secure ML execution on accelerators: There have been

several proposals to support TEEs on GPUs [9], [10].

Graviton modifies GPUs to isolate the critical operations on

GPU contexts within each GPU [9]. HIX isolates I/O paths

to GPUs to support trusted controls of GPUs from the pro-

tected GPU driver running in a CPU enclave [10]. HETEE

encapsulates GPUs and accelerators in a special hardened

chassis with a secure control module to serve computation

offloading from servers through PCIe fabrics [57]. It allows

to use any commodity GPUs and accelerators in the chassis.

Alternatively, instead of supporting full TEEs on GPUs or

NPUs, several studies adopted homomorphic encryption.

Cheetah optimizes homomorphic encryption for inference

with parameter tuning and operator scheduling [58]. It also

proposes changes in accelerator designs for better support

of homomorphic encryption. For an ML task, DarKnight

offloads linear operations with encrypted data to unsecure

GPUs, while processing the rest of the task in a secure

CPU enclave [59]. There have been recent studies to reduce

the security overheads of accelerators. SEAL proposes ML

optimized encryption techniques by skipping encryption

engine for partial data and co-locating data and coun-

ters [60]. GuardNN proposes a secure NPU architecture with

application-specific version number management [36]. It

exploits the static data-flow of DNN workloads to eliminate

per-block counters, sharing a similar application-managed

approach as TNPU.

Memory protection: For the confidentiality and integrity

protection of memory, there have been many studies to

mitigate the performance overhead of memory protection

in CPU and GPU systems [12], [18], [17]. Since integrity

verification is one of the major performance bottlenecks

for memory protection, the studies reduce the performance

overhead of integrity tree verification in CPU systems.

VAULT uses different arities in each level of the counter

integrity tree [18]. Morphable counters provides a compact

counter representation packing more counters per counter

node [17]. Common counters investigated the performance

overhead of supporting memory protection for GPUs and

proposed an efficient counter representation tuned for GPU

applications [12]. Lee et al. investigated the reduction of

bandwidth consumption for security metadata in multi-core

systems [54].

VII. CONCLUSION

Trusted NPU (TNPU) extends the trusted execution sup-

port to the integrated NPU architectures. It allows an appli-

cation in a CPU enclave to securely execute ML workloads

on NPUs. On top of the trusted execution support, the paper

investigated the hardware-based memory protection for NPU

computation. The study showed that a naı̈ve adoption of the

prior CPU hardware memory encryption for the NPU mem-

ory protection can degrade its performance significantly.

To address the performance degradation by the hardware

memory protection, the study proposed a novel semantic-

aware tree-less integrity protection. Our evaluation showed

that the support for NPU TEEs is feasible with a minor

extra area overhead and small performance degradation over

unsecure NPU execution.
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