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Abstract
As machine learning (ML) techniques are applied to a

widening range of applications, high throughput ML infer-
ence serving has become critical for online services. Such ML
inference servers with multiple GPUs pose new challenges
in the scheduler design. First, they must provide a bounded
latency for each request to support a consistent service-level
objective (SLO). Second, they must be able to serve multi-
ple heterogeneous ML models in a system, as cloud-based
consolidation improves system utilization. To address the
two requirements of ML inference servers, this paper pro-
poses a new inference scheduling framework for multi-model
ML inference servers. The paper shows that with SLO con-
straints, GPUs with growing parallelism are not fully utilized
for ML inference tasks. To maximize the resource efficiency
of GPUs, a key mechanism proposed in this paper is to exploit
hardware support for spatial partitioning of GPU resources.
With spatio-temporal sharing, a new abstraction layer of GPU
resources is created with configurable GPU resources. The
scheduler assigns requests to virtual GPUs, called gpulets,
with the most effective amount of resources. The scheduler
explores the three-dimensional search space with different
batch sizes, temporal sharing, and spatial sharing efficiently.
To minimize the cost for cloud-based inference servers, the
framework auto-scales the required number of GPUs for a
given workload. To consider the potential interference over-
heads when two ML tasks are running concurrently by spa-
tially sharing a GPU, the scheduling decision is made with
an interference prediction model. Our prototype implemen-
tation proves that the proposed spatio-temporal scheduling
enhances throughput by 61.7% on average compared to the
prior temporal scheduler, while satisfying SLOs.

1 Introduction

The wide adoption of machine learning (ML) techniques
poses a new challenge in server system designs. Traditional
server systems have been optimized for CPU-based computa-

tion for many decades. However, the regular and ample par-
allelism in widely-used deep learning algorithms can exploit
abundant parallel execution units in GPUs. Powerful GPUs
have been facilitating the training computation of deep learn-
ing models, and the inference computation is also moving to
the GPU-based servers due to the increasing computational
requirements of evolving deep learning models with deeper
layers [11, 38, 45].

However, the GPU-based inference servers must address
different challenges from the batch-oriented processing in
ML training servers. First, inference queries must be served
within a bounded time to satisfy service-level objectives
(SLOs). Therefore, not only the overall throughput is impor-
tant, but bounded response latencies for processing inference
queries are also critical to maintain consistent service qual-
ity [15, 38, 45]. Second, to improve the utilization of server
resources, many heterogeneous models are served by con-
solidated cloud-based systems. As even a single service can
include multiple heterogeneous ML models [38], multiple
models with different purposes coexist in a system. The het-
erogeneity of ML models raises scheduling challenges to
map concurrent requests of heterogeneous models to multiple
GPUs. Incoming queries for different ML models with their
own computational requirements, must be properly routed
to the GPUs to meet the SLO, while improving the overall
throughput. In addition, the number of required GPU nodes
must be dynamically adjusted to reduce the cost of serving
inferences for cloud-based systems.

While the demands for GPU-based ML inferences have
been growing, the computational capability of GPUs with
many parallel execution units has been improving precipi-
tously. Such ample parallel execution units combined with
increasing GPU memory capacity allow multiple ML models
to be served by a single GPU. In a prior study [38], more than
one model can be mapped to a GPU, as long as the GPU can
provide the execution throughput to satisfy the required SLO.
However, unlike CPUs which allow fine-grained time sharing
with efficient preemption, GPUs perform only coarse-grained
kernel-granularity context switches. Such coarse-grained time



sharing incurs inefficient utilization of enormous computa-
tional capability of GPUs, as a single batch of an ML inference
may not fill the entire GPU execution units.

However, the recent advancement of GPU architecture
opens a new opportunity to better utilize the abundant ex-
ecution resources of GPUs. Recent GPUs support an efficient
spatial partitioning of GPUs resources (called MPS mecha-
nism in NVIDIA GPUs [12]). The partitioning mechanism
supports the computational resources of a GPU to be divided
to run different contexts simultaneously. Such a unique spa-
tial partitioning mechanism can augment the limited coarse-
grained time sharing mechanism, as the GPU resource can be
spatially partitioned to serve multiple ML tasks concurrently.
This unique spatial and coarse-grained temporal resource al-
location in GPUs calls for a novel abstraction to represent
partitioned GPUs and a new scheduling framework targeting
high throughput ML servers under SLO constraints.

To address the emerging challenges of ML scheduling in
partitionable GPUs, this paper proposes a new abstraction
for GPUs called gpulet, which can create multiple virtual
GPUs out of a single physical GPU with spatial and temporal
partitioning. The new abstraction can avoid the inefficiency
of coarse-grained time sharing by creating and assigning the
most efficient GPU share for a given ML model. Such a
new abstraction of GPU resources allows latencies of ML
execution to be predictable even when multiple models are
concurrently running in a GPU, while achieving improved
GPU utilization.

Based on the gpulet concept, we propose an ML infer-
ence framework prototyped with the PyTorch interface. It
can serve concurrent heterogeneous ML models in multi-
GPU environments with auto-scaling support. Figure 1 illus-
trates the extended search space of our scheduling mecha-
nism. Our framework aims to find a global optimum by con-
sidering both temporal and spatial scheduling for enhanced
performance. The search space for scheduling becomes three-
dimensional with spatial and temporal shares of GPU re-
sources in addition to batch size adjustment, unlike the prior
work with two-dimensional searches [17, 38]. In the exper-
imental results for SLO-preserved throughput presented by
Figure 13, time scheduling and spatial scheduling yield on
average 1,023 and 1,076 requests-per-second (RPS), respec-
tively. The spatio-temporal scheduling significantly improves
the SLO-preserved throughput to 1,584 RPS.

For each ML model, its computational characteristics are
measured and registered to the framework. Based on the pro-
filed information of each ML model, the scheduler routes
requests to where the throughput would be maximized while
satisfying the SLO constraints. One necessary mechanism for
spatial and temporal partitioning of GPU shares is to iden-
tify the potential performance overheads when two models
are concurrently running on a GPU. Our scheduling frame-
work incorporates the interference estimation mechanism to
consider the effect of concurrent execution.

Local Optimum Global Optimum

Spatial Temporal

Batching

(a) Temporal scheduling
with batching

(b) Spatial scheduling
with batching

(c) Temporal and spatial
scheduling with batching

Figure 1: Multi-dimensional search space for providing glob-
ally optimal performance.

We evaluated the proposed ML inference framework on
server systems with four and eight GPUs. The evaluation with
four GPUs shows that the proposed scheduling technique with
gpulets can improve the throughput with SLO constraints for
seven ML inference scenarios by 61.7%, compared to the one
without partitioning GPU resources.

This study explores a new resource provisioning space of
GPUs for machine learning inference serving. The contribu-
tions of this paper are as follows:

• It proposes a new GPU abstraction named gpulet, to
support virtual GPUs with partitions of resources out of
physical GPUs. It allows heterogeneous ML models to
be mapped to multiple gpulets in the most cost-effective
way.

• It proposes a scheduling framework for gpulets, which
searches the most cost-effective schedule by multi-
dimensional search considering batch sizes, temporal
sharing, and spatial sharing. It adjusts the number of re-
quired GPUs for a given set of heterogeneous models,
supporting auto-scaling.

• For accurate performance prediction, the scheduling
framework considers the effect of interference among
gpulets for concurrent ML inference execution on parti-
tions of a single GPU.

The rest of the paper is organized as follows. Section 2
describes the background of ML computation on GPUs and
prior scheduling techniques. Section 3 presents the motiva-
tional analysis of heterogeneous ML tasks on multiple GPUs.
Section 4 proposes our design to efficiently utilize GPU re-
sources for heterogeneous ML tasks, and Section 5 presents
experimental results. Section 6 presents related work, and
Section 7 concludes the paper.

2 Background

2.1 Batch-Aware ML Inference Serving
As high throughput ML inference serving has become widely
required for online services, an increasing number of service
vendors are adopting GPUs [9, 13, 15, 24, 25, 32, 38, 41,
42, 45, 46] or even hardware accelerators such as TPUs [3,



7, 18, 19]. While GPU-based systems offer low latency for
ML inference, obtaining high utilization is a challenging task,
unlike ML training. The key difference between training and
inference in terms of GPU utilization is the suitability for
batching. For training, since the input data is ready, the system
can batch a large number of input data, which allows GPUs to
effectively leverage the massive parallelism. On the contrary,
the ML inference server underutilizes GPUs as it is an on-
demand system where inference tasks can be assigned to the
compute engines once the requests arrive.

One scheduling option is to wait until the desired number
of inference requests to be accumulated and then to initiate
the execution for the large batch. However, the applications
cannot indefinitely wait to collect a batch, due to the service-
level objective (SLO) requirements. Prior work [15, 36, 38,
45] have adopted adaptive batching, where a batch size is
decided adaptively with estimated times to build and execute
a batch of the selected size. By using the profiled latencies
and observed incoming rates, the effective time for a batch is
estimated, and adaptive batching chooses the maximum batch
size that does not violate the SLO.

2.2 Temporal Scheduling for ML on GPUs

Temporal scheduling allows sharing of a GPU where each
inference takes up the entire GPU resource one at a time with
time sharing. With multiple models with different execution
characteristics and SLO requirements, guaranteeing SLO is
challenging for the temporal scheduling of the heterogeneous
models. The ML inference scheduling problem on GPU-based
multi-tenant serving systems resembles the traditional bin
packing problem. The capacity constraints of bins are the
available resource on the GPUs, and an item weight is the
necessary GPU resource to handle a given inference request.

An inspiring prior work, Nexus [38], has tackled this prob-
lem and proposed a novel variant of bin packing algorithm,
namely squishy bin packing (SBP). The term, squishy, is orig-
inated from the property that the required resource for pro-
cessing a task (i.e., item) and its latency vary as the batch size
changes. The SBP algorithm takes a set of models as input,
each of which comes with a given request rate. It assigns the
inferences tasks across GPUs with a selected batch size, and
may map multiple models to a single GPU with time sharing,
if one task does not fully utilize a GPU.

Figure 2 illustrates an example of how the SBP algorithm
is applied. In this scenario, the server handles two models,
A and B, by building and executing the per-model batches
simultaneously. The SLO violation occurs when the summa-
tion of batch building time and batch execution time exceeds
the SLOs. Therefore, the SBP algorithm heuristically finds
a maximum possible duration for batch building, called duty
cycle, and the corresponding batch sizes in such a way that
all the consolidated models would not violate the SLOs. The
SBP algorithm repeats the duty cycles in a pipelined fashion

Batch Building

Batch Execution

Model A Model B

Duty Cycle

Time

Figure 2: Round-based execution of SBP for two models
consolidated on a GPU. Duty cycle is the interval for a round.

Temporally Shared GPU Spatially Shared GPU

1 Find Required GPU Resource (Temporal / Spatial)

2 GPU Mapping with Temporal / Spatial Sharing

GPU 1 GPU 2 GPU 3 GPU 1 GPU 2 GPU 3

(a) Temporal scheduling
(squishy bin packing)

(b) Spatial scheduling
(greedy best-fit)
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Figure 3: Temporal scheduling (SBP) vs. spatial scheduling
(greedy best-fit partitioning).

until there is a significant change in the request rates, which
would require rescheduling.
Baseline temporal scheduling algorithm: We use SBP as
our baseline temporal sharing algorithm. Figure 3 (a) presents
temporal sharing with batch adjustment by the SBP algorithm.
The algorithm finds individual duty cycles and batch sizes
for ML models with given request rates, and maps them to a
minimum number of GPUs with temporal sharing. To map
ML models to GPUs, it compares all eligible pairwise com-
binations. If a pair is eligible for temporal sharing, the pair
will share one GPU and the batch size is further adjusted to
ensure the SLO when both tasks are interleaved. The process
continues until no more pairs can be temporally shared.

2.3 Spatial Sharing on GPU
Spatial sharing is a resource partitioning technique that splits
a GPU resource into multiple pieces, as recent server-scale
GPUs offer hardware-supported spatial sharing features to
users. While temporal scheduling may potentially cause a
GPU underutilization problem when the batch size is not
sufficiently large to leverage all resources on a GPU, spatial
sharing improves GPU utilization allowing high throughput
without SLO violation.

With these resource partitioning features, the users can split
the given resource of a GPU into a set of GPU partitions, each
of which is assigned to a fraction of GPU resource1. Note

1In this paper, we only use the computation resource partitioning tech-
nique since we have at our disposal 2080 Ti GPUs, the microarchitecture of



that GPU partitioning is available on both NVIDIA MPS and
Multi-Instance GPU (MIG), which has been featured since
Ampere architecture GPUs. MIG provides physical partition-
ing with multi-GPU abstraction, while MPS provides logical
execution resource partitioning by percentage. With physical
partitioning, MIG allows partitions of memory capacity, mem-
ory bandwidth, and caches to be dedicated to each instance,
in addition to execution cores.

A prior work, GSLICE [17], leverages GPU partitioning
to increase throughput and utilization of GPUs. GSLICE em-
ploys a self-tuning algorithm for adjusting the amount of GPU
resources per partition based on performance feedback. After
adjusting the amount of resources, the batch size is heuris-
tically decided by the SLO for the given task. However, the
solution provided in GSLICE uses only spatial sharing and is
limited to a single GPU.
Baseline spatial scheduling algorithm: As a baseline spa-
tial sharing algorithm for our multi GPU framework, we
use the greedy best-fit algorithm. Greedy best-fit algorithm
chooses the minimum required partition size for each model
to handle a given request rate with SLO constraint. It allocates
the partitions of multiple ML models to GPUs through best-fit
searching. Figure 3 (b) presents the spatial scheduling used by
the greedy best-fit algorithm. Unlike the SBP or greedy-best
fit algorithm, our scheduling scheme aims to simultaneously
employ both temporal and spatial scheduling to maximize
utilization and minimize the number of required GPUs.

3 Motivation

3.1 Optimal Batch Size and Partition
To understand the performance implications of batching and
GPU partitioning, we perform an experimental study, using
four ML models: GoogLeNet, ResNet50, SSD-MobileNet-V1,
and VGG-16. The detailed descriptions for the ML models
and GPU server specifications are provided in Section 5.1.

Figure 4 shows the batch inference latency results as the
batch size increases from 1 to 32. For each batch size, we
sweep through the increasing fractions of GPU resources,
ranging from 20% to 100% to observe how the batch size
and computing resource utilization are correlated. When the
batch size is large, the latency significantly drops as more
resource is added. The large slope of the curves implies that
the inference execution for the particular batch size can use
the additional resource effectively to reduce the latency. On
the contrary, with a small batch, the latency is not largely
affected by the amount of GPU resources, which implies that
the GPU resource becomes underutilized when larger frac-
tions are assigned. Hence, both batch size and amount of GPU
resource must be considered as a joint factor when making
cost-effective scheduling decisions.

which is Turing, an older generation than Ampere that offers the memory
bandwidth isolation feature.
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Figure 4: Batch inference latency as the fraction of computing
resource assigned to the model inference changes from 20%
to 100%, for the four ML models. Each curve represents a
different batch size, and bn is a batch size of n.
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Figure 5: Number of schedulable scenarios when the SBP
algorithm performs the scheduling without (left) and with
(right) a fixed 1:1 GPU partitioning scheme.

3.2 Schedulability and GPU Partitioning

For a given set of SLO latencies for ML models, if incoming
request rates are beyond the level that an inference server can
cope with, the SLO will not be met as requests cannot be
served on time. We define schedulability as the capability of a
scheduling algorithm for serving the given request rates while
not violating the SLO. A scheduler can improve schedulability
by having better GPU utilization and in turn, having higher
throughput with SLO satisfaction. To investigate the potential
of GPU partitioning on the schedulability improvement, we
evaluate a large number of possible multi-model inference
serving scenarios. A schedulable scenario is the one in which
the scheduler can successfully make a decision for the given
rate while preserving SLO.

For the evaluation, we use nine models, and each corre-
sponding SLO latency is listed in Table 3. For each scenario,
models have one of the following request rates: 0, 100, and
200 requests per second (req/s). Since the zero req/s is in-
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Figure 6: Comparison of SLO preserved throughput for tem-
poral (SBP), spatial (greedy best-fit), and static ideal scheduling,
normalized to spatial scheduling.

cluded in the set of possible request rates, we assume that a
subset of the nine models may not be served at all. Excluding
the scenario where all the models have zero request rate, we
obtained total 19,682 (= 39−1) scenarios for the experiment.

Figure 5 reports the number of schedulable scenarios when
we use the two different scheduling algorithms: 1) the default
SBP algorithm without GPU partitioning support, and 2) the
SBP algorithm with GPU partitioning. In this motivational re-
sult, a GPU is split into two partitions with the same resource
in each partition, although our scheduler later will use a wider
range of partitioning of GPUs. With the fixed 1:1 GPU par-
titioning, schedulable scenarios increased significantly from
5,772 with SBP to 19,682 by SBP with two partitions. Even
though the GPU is partitioned with a fixed 1:1 ratio, the results
show that GPU partitioning is capable of putting wasted GPU
compute power to use, enabling higher resource utilization.

3.3 Performance of Effective Partitioning
To demonstrate how a cost-effective partitioning scheme af-
fects performance, we compare SLO preserved throughput
of three scheduling schemes: temporal (SBP), spatial (greedy
best-fit), and ideal scheduling. The SLO preserved throughput
is the maximum throughput sustainable by a system while
supporting SLOs for all models running in the system. Fig-
ure 6 presents the normalized SLO preserved throughput with
the three scheduling schemes. We use two GPUs for this ex-
periment, and a pair of ML models are scheduled. The models
are selected from Table 3. The pair used for the experiment
are (1) ssd/be, (2) res/vgg, (3) goo/mob, and (4) nas/den.

The first scheme, temporal scheduling, does not partition
GPUs, but schedules tasks in a time-sharing manner with the
SBP algorithm. The second schemes partitions GPUs by our
baseline spatial scheduling algorithm (greedy best-fit) intro-
duced in Section 2.3. The last scheme, static ideal exhaustively
searches all possible GPU partitioning ratios among (2:8),
(4:6), and (5:5) for two GPUs. For each pair of tasks, it uses
a GPU partitioning option which yields the highest perfor-
mance. For these selected sets of ML models, the spatial
scheduling (greedy best-fit) outperforms the temporal schedul-
ing (SBP) by 51% on average, proving the performance bene-
fits of spatial sharing. The static ideal scheduling shows 23%
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Figure 7: Cumulative distribution of latency overhead when
pairs of inference executions are consolidated on a GPU.

improvements on average, compared to greedy best-fit. This
experiment shows only limited example scenarios, but the
results imply that partitioning can potentially improve the
GPU utilization for certain scenarios, and better scheduling
can further improve spatial scheduling.

3.4 Interference in Consolidated Executions

Cost-effective GPU partitioning allows enhancing the schedu-
lability of SBP significantly. However, one important down-
side is the performance interference caused by multiple infer-
ence executions concurrently running on a GPU. One com-
mon cause of such performance interference is the bandwidth
sharing for the external memory, but other contentions on on-
chip resources may engender performance degradation too.
To identify the interference effects, we perform an additional
preliminary experimental study using a set of scenarios with
ML models running together on a GPU. The model pairs
were chosen among five models from Table 3: GoogLeNet,
LeNet, ResNet50, SSD-Mobilenet, and VGG-16 (i.e., C(5,2)
= 10). Each pair runs with five different batch sizes (i.e., 2, 4,
8, 16, 32) creating 250 unique pairs in total. We also partition
a GPU into two partitions using five different ratios: (2:8),
(4:6), (5:5), (6:4), and (8:2). Then, we map the ML model
pairs to the different partition pairs to observe the interference
effects in various settings.

Figure 7 presents the cumulative distribution function
(CDF) of latency overheads due to the consolidated inference
executions, in comparison with the case where the models
are run independently. As noted in the figure, for 90% of
the scenarios, the interference-induced overhead is modest
(lower than 18%). However, the CDF reports the long tail,
suggesting that the interference effect could be severe in cer-
tain circumstances. In such cases, the interference may cause
incorrect scheduling decisions, and the interfered task would
experience latencies that are largely off from the expected
range. Motivated by the insight, we devise an interference
model and leverage it to make the scheduling decisions more
robust, which reduces SLO violation rates.
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4 Design

4.1 Overview

The goal of this study is to devise a scheduling framework
for multi-model ML inference serving, which aims to as-
sign incoming inference requests to the minimal number of
GPUs while maximizing their utilization. The scheduling of
ML inference workloads with SLO requirements must con-
sider three aspects: batching, temporal scheduling, and spatial
scheduling. Unlike the prior approaches which consider a
subset of the three dimensions [17, 38], we propose a sched-
uler that fully explores all three dimensions to find the most
effective point for scheduling.

In this study, using the spatial sharing capability of GPUs,
we introduce an abstraction of GPU partition, called gpulets.
Multiple gpulets can utilize a GPU by both temporal and
spatial sharing. For each trained ML model, a minimal per-
formance profile is collected offline. Based on the profiles
of models, the scheduler distributes tasks to gpulets across
multiple physical GPUs. Our scheduling framework mini-
mizes the number of required physical GPUs while satisfying
the current request rates with the SLO requirements. Also,
our framework auto-scales the number of GPU servers by
adapting to the changes in request rates.

Figure 8 presents the overall architecture of our proposed
scheduler. The scheduler is composed of a frontend server
responsible for making scheduling decisions, and multiple
backend servers for executing the decisions. The scheduler
on the frontend decides and sends batched requests to the
backend servers, and the executor in each backend server dis-
patches requests to GPUs The scheduling decision is made by
utilizing profiled information of each model (e.g., SLO and
inference latency for a pair of batch size and partition size)
and incoming request rates. The request monitor tracks the
number of newly arrived requests per second for each model.
Based on the tracked request rates, the gpulet scheduler de-
cides whether a new organization of partitions is required if
the change of request rates is significant enough to update
scheduling decisions. If a reorganization is necessary, the new
partition ratios are sent to the backend server responsible for

the GPU which needs reorganizing. The partition manager
in the backend server prepares the partitions on the GPUs
so that they can serve requests with the new partition ratios.
The scheduling period is empirically determined based on the
GPU partitioning latency to make the overhead of partitioning
hidden by the scheduling window.

4.2 Search Space Challenge
The challenge of the three-dimensional scheduling space
(batching, temporal, and spatial sharing) for gpulets is that the
scheduling decision is affected by several variables dependent
on each other. The best size of GPU partition depends on
the computational requirement of the model and batch size.
Also, the batch size is dependent on the amount of allocated
resource and how it is temporally shared with other models to
ensure SLO. Therefore, the most cost-effective configuration
would sit on the sweet spot in the search space built upon the
three dimensions, which creates a huge search space.

To represent the search space, let P be the number of possi-
ble GPU partitioning options on a GPU, N be the number of
GPUs to schedule, and M be the number of models to serve.
Therefore, there are total PN possible options to partition N
GPUs. The M models can be placed on a partition, possibly
having all the M models on a single partition. Since we need
to check if the consolidation of multiple models violates the
SLO, we must evaluate at most M2 model placements per par-
tition to assess schedulability. As we have NP partitions on
the system, the possible mappings of M models to the GPUs
is NPM2. The complexity of search space is as follows:

Total Search Space = O(PNNPM2)

As the search space is prohibitively large, it is impractical
to exhaustively search and pick a solution. To address the
problem, we take a greedy approach, which effectively re-
duces the search space by allocating partitions to gpulets on
GPU incrementally.

4.3 Elastic Partitioning Algorithm
This section discusses our scheduling algorithm called elastic
partitioning which finds an efficient set of gpulets for given
ML inference tasks.
Elastic partitioning: Algorithm 1 describes the overall pro-
cedure of scheduling ML models to gpulets. Table 1 lists the
variables used in the algorithm. The algorithm receives the fol-
lowing inputs for each model: (1) L (b,p): profiled execution
latency of batch size b on partition size p, (2) intf : interfer-
ence function, (3) SLO: per-model SLO in latency, and (4)
gpulet.size: size of partition allocated for gpulet. For every
scheduling period, the server checks the request rates of each
model. If rescheduling is required, the scheduler performs
elastic partitioning with provided inputs (line 1).



Name Description
L(b,p) Latency function of batch size b and partition size p
int f Interference overhead function
SLOi SLO (in latency) of model i

gpulet.size Actual partition size of gpulet

Table 1: Definitions of variables for Algorithm 1.

Algorithm 1: Gpulet Scheduling Algorithm
ELASTICPARTITIONING(L(b,p), int f , SLO):

1 for each period do // If rescheduling is required
2 Sort every model by ratem×SLOm in ascending order
3 for each model m do
4 while ISREMAINRATE() and ISREMAINGPULET()

do
5 rate← Remaining rate of model m
6 peff ← MAXEFFICIENTPARTITION()
7 preq ← MINREQUIREDPARTITION(rate)
8 pideal ← MIN(peff, preq)
9 gpulet ← FINDBESTFIT(pideal, SLOm, int f )

10 Apply gpulet to system
11 end
12 end
13 end

FINDBESTFIT(pideal, SLOm, int f ):
14 Sort every remaining gpulets by size in ascending order
15 for gpulet in GETREMAINGPULETS() do
16 if gpulet.size ≥ pideal then
17 if gpulet is unpartitioned then
18 Split and allocate gpulet to pideal size partition
19 end
20 b← argmaxk∈N(L(k,gpulet.size) + int f ≤ SLO)
21 if b exists then
22 TEMPORALSCHEDULING(gpulet)
23 return gpulet
24 end
25 end
26 end

Each model is sorted in ascending order by rate× SLO,
which corresponds to the amount of work needed for the
model (line 2). We allocate starting from the model with the
least amount of work to the model which requires the most
amount of work as a heuristic optimization for allocating
resources. For each model m, the scheduler allocates one or
more gpulets until the incoming rate can be satisfied or no
more gpulet is left in the system (line 3-4).

Determining the most effective gpulet size: Based on the
observation from Section 3.1, the scheduler maximizes the
system-wide throughput by allocating the most cost-effective
size for gpulet.

peff is the partition size that yields the highest performance
per resource, which is the knee point in Figure 4. It is deter-
mined during profiling. preq is the partition size satisfying
SLO with the batch size that can handle the input rate. When
request rates are low, preq can be smaller than peff.
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Figure 9: Max efficient partition (peff) and min required parti-
tion (preq).

The scheduler chooses peff as the best partition size unless
preq is smaller than peff. If preq is smaller than peff, preq is
chosen for the partition size, not to overprovision the GPU
resource. Note that for a given model, a matching batch size is
fixed for the peff of the model. Figure 9 presents two cases of
peff and preq. In the algorithm, MAXEFFICIENTPARTITION
calculates a sweet spot of profiled gpulet size and uses the
gpulet size at the knee as peff (line 6) . MINREQUIREDPAR-
TITION examines the minimum size of gpulet, preq, which is
necessary to support the SLO on under the given request rate
(line 7). The scheduler picks the minimum of peff and preq as
the ideal partition size pideal to ensure cost-effective gpulet
size (line 8) .
Incremental allocation with best-fit: After finding pideal,
FINDBESTFIT performs a best-fit search. First, the scheduler
sorts the remaining gpulets by partition size in ascending
order (line 14). The algorithm searches through remaining
gpulets until a gpulet.size is greater or equal to pideal (line 16).
Since the gpulets are sorted in ascending order, the sweeping
naturally guarantees the best-fit. If the partition of gpulet can
be split, which means the chosen gpulet has a size of 100%,
the gpulet is split into two gpulets, each with a size of pideal
and 100−pideal (line 17-19). The maximum batch size b is
decided and checked whether it can meet the SLO when there
is additional interference-induced overhead (line 20). If a
valid batch size exists, then the gpulet is chosen (line 21).
Temporal scheduling for gpulets: After a gpulet is chosen,
elastic partitioning attempts temporal scheduling between
the returned gpulet and previously allocated gpulets in the
system (line 22). Temporal scheduling for gpulets follows the
same rules which is introduced in Section 2.2: 1) adjust the
duty cycle and batch size accordingly, and 2) check whether
the SLO can be guaranteed for all models. We introduce
an additional rule to consider gpulet.size when calculating
the batch size and duty cycle. For every pair of gpulets, the
aforementioned rules are applied to see if temporal sharing
is available. If a pair of gpulets has a different size, the larger
size will be chosen to check if the SLO can be successfully
guaranteed or not. If successful, two gpulets are merged to
a single gpulet, thus reducing the total number of required
gpulets. The scheduler updates the remaining and allocated
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Figure 10: Cumulative distribution of relative error rate. Pro-
posed analytical model can predict up-to 95% of cases with
less than 13.98 % error rate.

gpulets with the result of FINDBESTFIT (line 10).
Reduced Search Space: Because the cost of iterating
through every possible strategy is not required, the search
space introduced in Section 4.2 is reduced as follows.

Reduced Search Space = O(NPM2)

Instead of searching every case of P possible partitioning,
for every N GPU in the system, each GPU is partitioned
incrementally and the cost of checking temporal scheduling
for M models still remains. Our search algorithm practically
approximates the ideal one and removes PN from the full
search complexity. As a cost of the approximation, it may
not always produce a theoretical optimal result. However, our
evaluation shows that the algorithm performs closely to the
ideal one as presented in Figure 16 (Section 5).

4.4 Modeling Interference
A key challenge in interference handling is to predict latency
increases when multiple inferences are executed in different
gpulets of the same GPU. As shown in Figure 7, the inter-
ference effects are modest for the majority of consolidated
executions, yet the overhead could be significant in a few
cases.

To confine the interference effect, we provide a simple yet
effective interference-prediction model based on two key run-
time behaviors of GPU executions. The interference effects
of spatial partitioning are commonly caused by the bandwidth
consumption in internal data paths including the L2 cache and
the external memory bandwidth. To find application behaviors
correlated to the interference effects, we profile the GPU with
concurrent ML tasks with an NVIDIA tool (Nsight-compute).
Among various execution statistics, L2 utilization and DRAM
bandwidth utilization are the most relevant factors correlated
to the interference.

Based on the observation, we build a linear regression
model with the two parameters (L2 utilization and DRAM
bandwidth utilization) as follows:

inter f erence_ f actor = c1× L2m1 + c2× L2m2 + c3×memm1 +

c4×memm2 + c5

L2m1 and L2m2 are L2 utilization of model m1 and m2, when
they are running alone with a given percentage of GPU re-

Algorithm 2: GPU Scaling Algorithm
SCALING(GPU_LIMIT ):

1 for each period do
2 N ← The number of used GPUs in previous period
3 result ← ELASTICPARTITIONING with N GPUs
4 while result is fail and N < GPU_LIMIT do
5 N ← N +1
6 result ← ELASTICPARTITIONING with N GPUs
7 end
8 if result is fail then
9 Report an unschedulable event

10 end
11 end

source. memm1 and memm2 are memory bandwidth consump-
tions of model m1 and m2. Parameters (c1, c2, c3, c4, and c5)
are identified by running the linear regression.

We have profiled total 1,250 pairs (total 2,500 data) of
inference interference and recorded how much interference
each inference task has received. Among 2,500 data, we have
randomly selected 1,750 data of execution as training data
and 750 data for validation. Figure 10 presents the cumula-
tive distribution of the prediction error with our interference
model. The proposed model can predict up to 90% of cases
within 10.26% error rate and up to 95% if 13.98 % of error is
allowed.

Linear regression is chosen for its relatively high accuracy
and low model construction complexity, so it satisfies our
purpose in scheduling. Several prior studies have also used
such linear models for predicting interference overheads [5,
43, 47].

4.5 Scaling GPUs for Request Rate Changes

During a scheduling period, the monitor tracks the request
rates of all ML tasks. If the rates change, it triggers the
rescheduling procedure. The rescheduling procedure checks
whether the changed rates can be sustained by the current
number of GPUs. If not, it tries to increase the number of
GPUs to support the SLOs for the new rates. Algorithm 2
presents the rescheduling procedure. It first attempts to use
the same number of GPUs of the previous scheduling period
(line 2-3). If the result fails due to the insufficient number of
GPUs, the elastic partitioning is repeated with one additional
GPU. However, when the number of required GPUs exceeds
the given limit, it reports that an unschedulable event occurs.

4.6 Implementation

SW prototype: The SW prototype of our scheduler was de-
veloped in C++ and the approximate lines of code is 20.7K.
We have chosen PyTorch for implementing ML inference due
to its wide adoption in ML communities, in addition to the
readiness to use C++ interfaces.
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Figure 11: Illustration of dynamic partition reorganization.

Dynamic partition reorganization: NVIDIA provides the
MPS control daemon, which allows users to control the pro-
portion of computing resource reserved for processes spawned
by the user. The amount of reserved resources is fixed when
a process is created. Therefore, To change the proportion of
reserved resource. a new process must be created with a new
designated amount. This limitation affects our rescheduling
procedure with a high cost of adjusting gpulets.

Our scheduling prototype controls gpulet partition size, by
spawning a new proxy process to allocate a different amount
of partition to gpulet. Preparing a new partition includes
spawning a new process, loading kernels used by PyTorch,
loading required models, and warming up. As illustrated in
Figure 11, to hide the overhead of preparing new partitions
when reorganizing is necessary, we overlap the procedure of
preparing new partitions with serving the current partitions.
The scheduling period for reorganization is 20 seconds which
is a conservative estimate of time required for preparing a
new partition.

5 Evaluation

5.1 Methodology

Inference serving system specifications: Table 2 provides a
detailed description of the evaluated inference system and the
used GPU specification. We use two identical multi-GPU in-
ference servers, each of which is equipped with two NVIDIA
RTX 2080 Ti GPUs supporting post-Volta MPS capabilities.
The table also provides the versions of the operating system,
CUDA, NVIDIA drivers, and machine learning framework.

Each GPU server operates as a backend server responsible
for executing inference queries on two GPUs. One server addi-
tionally generates inference requests while the other server as-
sumes the role of a frontend server to manage backend servers
and make scheduling decisions. Both servers are network-
connected, imitating inference serving system architecture,
with 10 Gbps bandwidth.
Baseline scheduling algorithms: For our baseline, we have
ported the Squishy bin-packing (SBP) algorithm (from
Nexus [38]) and greedy best-fit introduced in Section 2. We
evaluate two versions of our proposed algorithm, gpulet +int

System Overview
CPU 20-core, Xeon E5-2630 v4
GPU 2 × RTX 2080 Ti
Memory Capacity 192 GB DRAM
Operating System Ubuntu 18.04
CUDA 10.2
NVIDIA Driver 440.64
ML framework PyTorch 1.10

GPU Specification
CUDA cores 4,352
Memory Capacity 11 GB GDDR6
Memory Bandwidth 616 GB/sec

Table 2: The evaluated system specifications.

Model Input Data (Dimension) SLO (ms)
GoogLeNet (goo) ImageNet (3x224x224)) 66
LeNet (le) MNIST (1x28x28) 5
ResNet50 (res) ImageNet (3x224x224) 108
SSD-MobileNet (ssd) Camera Data (3x300x300) 202
VGG-16 (vgg) ImageNet (3x224x224) 142
MnasNet (nas) ImageNet (3x224x224) 62
Mobilenet_v2 (mob) ImageNet(3x224x224) 64
DenseNet (den) ImageNet(3x224x224) 202
Base Bert (be) Rand. Index Vector(1x14) 22

Table 3: List of ML models used in the evaluation.

considers interference overhead while gpulet does not.
We do not provide a direct comparison to Nexus [38] due to

the following reasons: 1) Nexus deploys optimizations that are
orthogonal to our work, and 2) several benchmarks that Nexus
used in evaluation were not interoperable with our prototype
server, as the models are not supported by PyTorch. However,
we deploy the same type of video processing models that
Nexus used to evaluate the system and show how spatially
partitioning GPUs can further enhance performance.
ML models: Figure 12 delineates the detailed dataflow graph
of the applications that contain ML models as well as the in-
put/output data. The game application analyzes the digits and
images from the streamed video games by using seven models
in parallel. The traffic application is a traffic surveillance anal-
ysis with two phases, which are object detection and image
recognition. The SLO latency is set as 108 ms and 202 ms for
game and traffic, respectively. Each SLO latency is calculated
by doubling the longest model inference latency.
Deeper look into particular request scenarios: We choose
five model-level scenarios to take a deeper look into the multi-
model inference serving. These five scenarios are character-
ized by the member of models and each respective memory
footprint. Table 4 shows the details of each scenario.
Request arrival rate: We sample inter-arrival time for each
model from a Poisson random distribution, based on previ-
ous literature [48] claiming real-world request arrival rates
resemble a Poisson distribution.
Evaluation of request scenarios and applications: For a
given scenario or application, we evaluate the scheduling
decisions by deploying scheduling results on our prototype
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Figure 12: Two multi-model applications: game and traffic.

Name Group Composition by Memory Footprint
<1GB 1GB - 2GB >2GB

scen1 mob,be nas,goo -
scen2 - den vgg
scen3 mob res vgg
scen4 ssd nas,den -
scen5 le ssd,nas vgg

Table 4: Five request scenarios, each of which represents a
particular composition of multiple models based on memory
footprint. The amount of requests per model in a group is
equal across the models in the group.

servers and measuring the throughput under SLOs and SLO
violation rates. To consider the unpredictable performance
variations, we iterate the experiment three times for each
scenario and application, and pick the median result.

5.2 Experimental Results

SLO preserved max throughput: We first evaluate the
throughput implications of our schedulers. The SLO preserved
max throughput is defined to be the maximum achievable
throughput while 99% of requests are processed within the
SLO latency. We measure the SLO preserved max throughput
of the schedulers by gradually increasing the request rate until
SLO violation rate exceeds 1% of total requests.

Figure 13 reports the SLO preserved max throughput for the
two multi-model applications and five scenarios for four differ-
ent scheduling algorithms. Our proposed gpulet +int scheduler
offers higher throughput than both algorithms SBP and greedy
best-fit by an average of 61.7% and 81.2%, respectively. Addi-
tionally, considering interference yields 7.5% better through-
put on average. Although the benefit may seem marginal, we
argue that such caution is necessary since a scheduler must
be able to guarantee SLO at all times.

The low performance of greedy best-fit is caused by the
lack of effective temporal sharing. In Figure 4, models show
diminishing returns (over increasing GPU partitions) beyond
a knee point. Note that different batch sizes can have different
knee points. The greedy best-fit chooses the maximal batch
size which satisfies SLOs and sets the partition for the batch
size. The spatio-temporal scheduling can select the batch size
and partition to better utilize GPU by considering smaller
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Figure 13: SLO preserved max throughput of the two multi-
model applications (game and traffic) and five scenarios.

batches with temporal sharing across models. The limitation
of greedy best-fit is clearly shown in game. Its flow has many
small parallel tasks (LeNets), which cannot fill even a small
GPU partition efficiently. Note that batch sizes cannot be
increased arbitrarily as request rates and SLO limits it.

The reported throughput improvement is achievable merely
through the MPS features already available in the most server-
class GPUs and scheduling optimization in software, using
the same GPU machine. Thus, by utilizing otherwise wasted
GPU resources, the proposed scheduling scheme would be
able to virtually offer cost savings for the ML inference ser-
vice providers. For instance, gpulet +int achieves 1,650 req/s
throughput for game while SBP does 690 req/s, utilizing the
identical physical system, which can be translated into 58.2%
effective cost saving (= {1− 690

1650}×100).
The effect of interference model: This analysis shows how
the interference model can avoid SLO violations by correctly
incorporating the interference effect into the scheduling deci-
sion. In this result, we measured SLO violation rates by grad-
ually increasing request rates until both gpulet and gpulet +int
consider the current rate not schedulable. Figure 14 presents
the SLO violation rates when the system is receiving the max-
imum request rate before both of them reach the not schedula-
ble decision. In the figure, if the violation rate is higher than
1%, the case is highlighted with a red round. The scheduler
gpulet, which does not consider interference, shows violation
rates higher than 1% even for the rates that it considered to be
schedulable for scen2, scen3, and scen5. However, gpulet +int
successfully filters out such rate by either classifying as not
schedulable (N) as shown in scen2 and scen3 or successfully
scheduling tasks without violating the SLO such as scen5.
Evaluation of scalability: To evaluate whether our prototype
scheduler can successfully scale gpulets to accommodate fluc-
tuating rates, we measure the performance of our scheduler
while submitting inference requests with varying rates for all
models in scen3. We have chosen scen3 because of its evenly
distributed model size to reproduce a realistic workload.

To evaluate scalability beyond our testbed, we launched
multiple servers by running each server with docker container.
By running one container per GPU with four more identical
GPUs, we conducted our experiment on total eight servers.
Additionally, the request generator and frontend server were
specially tailored to send dimensional data, instead of actual
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Figure 15: (a) Throughput(req/s), (b) number of GPUs, (c)
sum of partition size (%) of gpulet, (d) SLO violation (%) of
each model for 3,200 seconds.

data for inference request, for overcoming network bottle-
neck between physical servers. The backend servers behave
identically other than generating random data with dimen-
sions provided from frontend server. Figure 15 reports how
our scheduling framework performed for a 3,200 second win-
dow. The top graph shows a stacked graph of the accumulated
throughput of each model. The second and third graph reports
how many GPUs were scheduled and the sum of partition
sizes of gpulets, respectively. The last graph depicts the per-
centage of SLO violation (including dropped requests) for
20 second period. Between 0 and 1,200 seconds, the rate
gradually increases and decreases to its initial rate. As the
rate rises, our proposed scheduler successfully allocates more
GPUs to preserve SLO. When the rate decreases, the sum of
utilized partitions also decreases by reorganizing partitions.
The following wave, starting from 1,400 seconds, rises to a
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Figure 16: Comparison of the numbers of schedulable scenar-
ios between the ideal scheduler and gpulet +int scheduler.
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Figure 17: Comparison of the normalized maximum schedu-
lable rates with real-world multi-model benchmarks and five
scenarios.

higher peak than the previous wave of requests. Nonetheless,
our scheduler successfully adjusts gpulets and preserve SLO,
guaranteeing SLO violation rate lower than 1%.
Comparison to the ideal scheduler: We evaluate the
scheduling capability of elastic partitioning by comparing
the scheduling results produced from an ideal scheduler. To
produce various model-level inference request scenarios, we
use the same methodology described in Section 3.2, which
populates a set of 19,682 possible scenarios. The ideal sched-
uler makes scheduling decisions by exhaustively trying all 44

partition combinations, where 4 GPUs can be partitioned into
either (2:8), (4:6), (5:5), or (10:0). The search continues until
all cases are searched or a case produces a viable schedul-
ing result for a given request scenario. For a fair comparison,
the ideal scheduler uses the same set of partitions as gpulet
+int. Figure 16 compares the number of scenarios classified
as schedulable by each scheduler. gpulet +int can schedule
520 fewer cases compared to ideal, which is 2.6% of the total
19,682 cases.

Figure 17 reports the maximum schedulable rate of each
multi-model scenario. All rates are normalized to the maxi-
mum rate which ideal can provide. gpulet +int can achieve an
average 92.6% of the maximum rate which the ideal scheduler
can provide.

6 Related Work

6.1 Prior ML Systems Studies

Machine learning service platforms: A wide variety of
computer systems and researches have been proposed to im-
prove the quality of machine learning services [1, 2, 9, 13, 15,



Features Batch Multi GPU Temporal Spatial Interference
Tuning Model Scaling Schedule Schedule Prediction

Clipper [15] X X X X 7 7
MArk [45] X 7 X 7 7 7

INFaaS [36] X X X X 7 7
Nexus [38] X X X X 7 7

GSLICE [17] X X 7 7 X 7
Gpulet X X X X X X

Table 5: Comparison with prior work.

17, 21, 22, 24, 26, 32, 35, 36, 37, 38, 39, 40, 41, 45]. INFaaS
is a platform for serving inference that guarantees SLO and
minimizes the cost by choosing an adequate variation of a
model [36]. INFaaS adopts a reactive approach when dealing
with interference caused by co-locating model variants on the
same hardware resource. Clockwork focuses on providing an
accurately predictable system by leveraging the fact that the
latency of inference is relatively consistent [21]. Clockwork
preferred predictability over utilization gains from co-locating
models and thus does not consider spatial sharing.

Although this paper did not cover training, past research
inspired this study with schedulers for optimizing GPU re-
source [16, 24, 33, 42, 46]. Another related research di-
rection focus on how to ease the burden of deployment
and optimization for machine learning across various plat-
forms [6, 27, 28, 31, 32]. Prior studies related to cluster
scheduling have also influenced this paper [20, 30, 43].
Interference estimation: Precise estimation of interference
has been a key issue for high-performance computing. Bubble-
up [29] and bubble-flux [44] models an application’s sensitiv-
ity to cache and fits a sensitivity curve to predict performance.
Han et al. extend using sensitivity cure to distributed comput-
ing where interference can propagate among processes [23].
Prophet models concurrent task execution behavior for non-
preemptive accelerators [4].
Multi-tenancy in Accelerator: GPU vendors have included
HW/SW support for providing multi-tenancy to users such as
NVIDIA Multi Process Service (MPS) [12], Multi Instance
GPU (MIG) [14], and AMD MxGPU [10]. Academic re-
searches also proposed multi-tenancy support in accelera-
tors. Pratheek et al. devised page-walking stealing for multi-
tenancy support in GPU [34]. Choi et al. proposes fine-grain
batching scheme [8]. PREMA proposed time-multiplexing
solution with preemption [7]. Planaria supports multi-tenancy
by partitioning processing elements [19].

6.2 Comparison to Prior Work

Table 5 provides a summarized comparison of our work to
related ML inference frameworks. All the prior studies are
capable of dynamically tuning batch size by either leveraging
profiled latencies or incoming request rates during runtime.
As more ML workloads are consolidated in cloud-based GPU
servers, scheduling of multiple heterogeneous ML models in
a system and scaling GPU servers under fluctuating request
rates become more important. However, some prior studies

do not consider such multi-model supports or GPU scaling.
Regarding scheduling dimensions such as temporal and

spatial sharing, a majority of the prior work employ temporal
sharing by leveraging profiled information of latency. Only
GSLICE considered spatial sharing but it does not consider
multi-GPU scheduling and temporal sharing. On the other
hand, our study addresses all challenges, scheduling dimen-
sions, and predicting potential interference among partitions
in the same GPU.

7 Conclusion

This study investigated an SLO-aware ML inference server
design. It identified that common ML model executions can-
not fully utilize GPU compute resources when their batch
sizes are limited to meet the response time-bound set by their
SLOs. By leveraging spatial partitioning features, our frame-
work significantly improved throughput of multi-GPU con-
figurations while supporting SLOs. Based on the new spatio-
temporal scheduling technique, this study showed that a new
abstraction of GPU resources (gpulet) can improve ML in-
ference serving under SLOs. The source code is available at
https://github.com/casys-kaist/glet.
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A Artifact Appendix

A.1 Abstract

To maximize the resource efficiency of inference servers, we
proposed a key mechanism to exploit hardware support for
spatial partitioning of GPU resources. With the partitioning
mechanism, a new abstraction layer of GPU resources is
created with configurable GPU resources. The scheduler
assigns requests to virtual GPUs, called gpulets, with the
most effective amount of resources. The prototype
framework auto-scales the required number of GPUs for a
given workloads, minimizing the cost for cloud-based
inference servers. The prototype framework also deploys a
remedy for potential interference effects when two ML tasks
are running concurrently in a GPU.

A.2 Hosting

The artifact is hosted on the following platforms:
• Zenodo: We have published the artifact on Zenodo:

https://doi.org/10.5281/zenodo.6544909
• GitHub: Although the artifact provided in Zenodo

contains all necessary and functional code, it is still in
its early stage of development and needs improvement
in terms of UI and code readability. Further
improvement of code will be provided in the following
GitHub repository: https://github.com/casys-kaist/glet.

A.3 Scope

The artifact is capable of:
• Serving machine learning inference on multiple

multi-GPU servers.
• Adding new models defined and saved by TorchScript

(provided as .pt files).
• Scheduling multiple models and guarantee SLO.
• Providing stand-alone ML inference executor for

profiling performance and GPU resource usage.

The artifact does not provide the following:
• Utilize CPU for ML inference.
• Schedule heterogeneous GPUs.
• Guarantee availability (e.g. heartbeat, failure recovery).
• Add new models or deleting old models to serve while

the frontend server is running.

A.4 Contents

A.4.1 SW Components

• Frontend Server: Receives requests from M clients
and schedule requests to N backends.

• Backend Server: Receives batched requests from
frontend server and conveys request to 0 servers running
on the same machine.

• Proxy: Receives inputs from backend server and
executes ML inference on a gpulet

• Standalone Inference: Executes inference on a GPU.
Useful for debugging and profiling GPU resource
utilization.

• Standalone Scheduler: Provides scheduling decision
for given set of models and input rate of each model as
stand-alone SW. Useful for inspecting scheduling
decisions.

Please refer to binaries.md for further information of how to
run and setup each components.

A.4.2 Models

The artifact includes 0 CNN models of VGG16 and
ResNet50. Both models are stored as .pt file. All models are
also available on Torchvision.

A.4.3 Dataset

A subset of ImageNet data and camera surveillance footage
are each compressed as imagenet_data.tar and camera_data.tar
respectively.

A.4.4 Docker Images

The following prerequisites must be installed in order to use
the Docker images for this artifact:

• Docker Ver. >= 20
• Nivdia-docker (for utilizing GPUs)

Two Docker images are made public for experimenting with
the provided artifact. One is the server Docker image
available on sbchoi:glet-server and the other is the base Docker
image used for building the backend Docker image available
on sbchoi/glet-base.
We highly recommend using Docker images for
experimenting since it contains all required code and scripts.
For further instructions, please refer to the README file on
https://github.com/casys-kaist/glet.

A.5 Requirements

A.5.1 Hardware

The artifact was evaluated on multi-GPU servers. Each GPU
server had the following hardware specifications:

• GPU: NVIDIA RTX 2080ti (11GB global memory)
• CPU: Intel Xeon E5-2630 v4
• Network: Servers connected with 10 GHz Ethernet

https://doi.org/10.5281/zenodo.6544909
https://github.com/casys-kaist/glet
https://github.com/casys-kaist/glet


A.5.2 OS and Kernel

The artifact was evaluated on Ubuntu 18.04 with a Linux
kernel version 4.15.

A.5.3 Software

The artifact was built with the following drivers and libraries:
• LibTorch(PyTorch library for C++) = 1.10
• CUDA >= 10.2
• cuDNN >= 7.6
• Boost library>= 1.6
• OpenCV >= 4.0
• CMake >= 3.19

A.6 Experiment Setup
Experiments can be run by using the scripts provided in the
artifact. We have also provided example files required for
configuring experiments. Below are a few steps to configure
multiple GPU servers using Docker images we have
provided:

1. Run MPS daemon
2. Create and run an overlay network for Dockers
3. Setup and execute backend servers
4. Setup and execute frontend server, connecting all

backend servers for serving inference.
5. Run clients
6. Analyze the content of glet/scripts/log.txt for how each

request has been handled.
Please refer to the README file and binaries.md in
https://github.com/casys-kaist/glet for detailed instructions of
how to configure

https://github.com/casys-kaist/glet
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