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With the proliferation of applications with machine learning (ML), the importance of edge platforms has been
growing to process streaming sensor, data locally without resorting to remote servers.Such edge platforms are
commonly equipped with heterogeneous computing processors such as GPU, DSP, and other accelerators, but
their computational and energy budget are severely constrained compared to the data center servers. However,
as an edge platform must perform the processing of multiple machine learning models concurrently for
multimodal sensor data, its scheduling problem poses a new challenge to map heterogeneous machine learning
computation to heterogeneous computing processors. Furthermore, processing of each input must provide a
certain level of bounded response latency, making the scheduling decision critical for the edge platform. This
article proposes a set of new heterogeneity-aware ML inference scheduling policies for edge platforms. Based
on the regularity of computation in common ML tasks, the scheduler uses the pre-profiled behavior of each ML
model and routes requests to the most appropriate processors. It also aims to satisfy the service-level objective
(SLO) requirement while reducing the energy consumption for each request. For such SLO supports, the chal-
lenge of ML computation on GPUs and DSP is its inflexible preemption capability. To avoid the delay caused
by a long task, the proposed scheduler decomposes a large ML task to sub-tasks by its layer in the DNN model.

CCS Concepts: • Computer systems organization→Heterogeneous (hybrid) systems; Embedded sys-

tems; • Software and its engineering→ Scheduling; • Computing methodologies→Machine learning;

Additional Key Words and Phrases: Edge computing, heterogeneous computing, machine learning, inference,

task scheduling

ACM Reference format:

Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh, and Jongse Park. 2021. SLO-Aware Inference Scheduler
for Heterogeneous Processors in Edge Platforms. ACM Trans. Archit. Code Optim. 18, 4, Article 43 (July 2021),
26 pages.
https://doi.org/10.1145/3460352

This work was in part supported by the Institute for Information & Communications Technology Planning & Evaluation

(IITP2017-0-00466), Information Technology Research Center (ITRC) support program (IITP-2021-2020-0-01795), and

National Research Foundation of Korea (NRF-2020R1A2C1103088). These grants are all funded by the Ministry of Science

and ICT, Korea. This work was also partly supported by Samsung Electronics Co., Ltd.

Authors’ addresses: W. Seo, Y. Kim, J. Huh, and J. Park (corresponding author), School of Computing, KAIST, 291 Daehak-ro,

Yuseong-gu, Daejeon, Republic of Korea, 34141; emails: {wiseo, yjkim, jhhuh, jspark}@casys.kaist.ac.kr; S. Cha, 130,

Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea, 16678; email: s.h.cha@samsung.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).

1544-3566/2021/07-ART43 $15.00

https://doi.org/10.1145/3460352

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 4, Article 43. Publication date: July 2021.

https://doi.org/10.1145/3460352
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3460352


43:2 W. Seo et al.

1 INTRODUCTION

The application areas of machine learning (ML) techniques have been growing rapidly, and plat-
forms for ML are expanding from data center servers to mobile devices. One of the emerging com-
puting models for ML processing is edge computing [2, 5, 9, 16, 17, 27, 31, 32, 37, 39–43, 46, 48, 49,
51, 52, 54, 59, 61, 62, 64, 67]. Edge platforms process streams of local sensor data, often using ML
algorithms. As edge platforms are widely deployed under the constraints in their costs, their compu-
tational capability and energy budget are much more restricted than typical server environments.

Such edge platforms are commonly equipped with multiple heterogeneous computing processors.
In addition to conventional CPUs, various accelerators such as GPUs and DSPs are able to process
ML computation. With the advancement of hardware acceleration of ML and other common
computations, more accelerators can be added to the processors of edge platforms, since such
hardware accelerators can provide superior energy-efficient computations for specific algorithms,
compared to conventional CPUs [4, 22, 23, 29, 33, 35, 38, 63, 65].

In the edge platforms with heterogeneous computing processors, application requirements
for ML computation can differ from the traditional mobile devices. An edge platform constantly
processes locally collected data with multiple ML algorithms. With the growing diversification of
ML applications, an edge platform must run multiple ML models with different model architectures
and parameters. Streams of sensor-generated data are fed to the edge platform, and inference tasks
with heterogeneous ML models will be constantly processed for different streams of data.

Furthermore, the edge platform not only performs the computation of multiple ML models but
also must provide a certain level of service-level objectives (SLOs). In common use cases, input
data are periodically generated, and the ML computation for an input request must be completed
within a bounded latency [7, 8, 11, 15, 19, 24]. Supporting SLOs becomes complicated as multiple
ML models have different computational requirements.

The aforementioned three factors, heterogeneous computing processors, multiple ML models,
and SLO constraints, pose new challenges in the task scheduling of edge platforms. Heterogeneous
ML inference computations utilize CPU, GPU, and DSP differently, with high variations of latencies
and energy consumption. The scheduler must find the best mapping of incoming requests to the
right computing device. In addition, the response latency for each request must be bounded to
provide consistent quality of service with the SLO goal. The prior ML inference scheduler assumes
either only multiple models on GPUs [50] or a single model on heterogeneous processors [22]. This
study investigates the heterogeneity of both ML models and processors.

For effective scheduling considering the three factors, this article proposes new heterogeneity-
aware scheduling policies for ML inference tasks. The proposed scheduling framework considers
the heterogeneity of ML models as well as the heterogeneity of computing processors. Compared
to general computation, an advantage of ML inference tasks is that its overall computation pattern
does not dynamically change for each request. Therefore, the resource usage characteristics of the
inference computation can be pre-profiled and stored with the model parameters. The proposed
schedulers consult the pre-profiled execution behavior of each ML model on different computing
processors and makes the scheduling decision to minimize the overall latencies. However, unlike
the prior study [50], the proposed scheduler does not assume any fixed arrival rates for ML tasks,
and thus the entire scheduling decision is made on-demand to reflect fluctuating request arrivals
and resource availability.

In addition to the improvement of the overall average performance, the response latency of each
request must be bounded. The scheduler is extended to satisfy such SLO constraints while reducing
energy consumption. One of the challenges supporting SLOs is the non-preemptive nature of GPU
and DSP computation. Once a big ML task is being processed in GPU or DSP, a much shorter task
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Fig. 1. ML inference for diverse ML tasks in a heterogeneous-platform edge device.

must wait for the completion of the blocking big task. To address such limitation of ML processing
in GPUs and DSPs, this study utilizes model slicing, which decomposes the inference computation
at layer boundaries in DNNs. By decomposing a single DNN processing into multiple smaller tasks,
it provides more flexible scheduling of ML tasks.

To examine the effectiveness of proposed scheduling policies, we build an edge platform using
the Open-Q 845 HDK Development Kit equipped with CPU, GPU, and DSP and evaluate the various
application scenarios where the edge platform serves a thousand ML inference tasks based on
six representative DNN models. Compared to naïve scheduling policies, the proposed scheduling
policies offer up to 2.84× average performance speedup while reducing the SLO violation rate
down to 4.9%. We open-source the software for broader community engagement. The source code
is available at the following GitHub repository: https://github.com/casys-kaist/edge-scheduler.

This study is one of the first studies to consider the heterogeneity of both ML models and
computing devices for efficient scheduling with SLO supports. The contributions are as follows:

• This study proposes a range of schedulers for heterogeneous processors and heterogeneous
ML models, considering different characteristics of various ML models on multiple types of
processors.
• It proposes an SLO-aware inference scheduler based on expected latencies using the

pre-profiled task behaviors.
• It proposes a model slicing technique to provide coarse-grained preemption for GPU and

DSP computation. It resolves the resource blocking by a big ML task, which can lead to SLO
violations of following tasks.

The rest of the article is organized as follows. Section 2 presents the background of ML compu-
tation at edge devices. Section 3 presents the characteristics of ML workloads on heterogeneous
computing processors. Section 4 presents the design space of heterogeneity-aware scheduling for
ML tasks. Section 5 presents the experimental methodology, and Section 6 reports the experimental
results. Section 7 discusses possible extensions of the proposed scheduler. Section 8 presents the
related work, and Section 9 concludes the article.

2 BACKGROUND

This work explores task scheduling mechanisms for multi-model ML inference tasks on edge
devices, as shown in Figure 1(a). The schedulers dispatch the various types of ML inference tasks
to heterogeneous hardware platforms. In this section, we briefly provide the background details of
target application scenarios and target edge device system environment.
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2.1 ML Inference in Edge Platforms

In recent years, there have been remarkable advances in the ML algorithms. The community has
even started declaring victory in achieving human-level accuracies for certain ML-based tasks (e.g.,
image recognition and classification) [25, 26]. Built upon such outstanding advances, the industry
is now moving toward integrating the ML algorithms into various types of real-world applications
and deploying the applications on the edge platforms [4, 22, 23, 29, 33, 35, 38, 47, 63, 65]. In many
real-world scenarios, the edge platforms often serve multiple purposes and have to handle different
types of inference requests for different ML models at the same time. This trend is inevitable and
will intensify since there should be a limited number of computed-enabled edge platforms that can
directly interact with humans, while ML algorithms are permeating virtually every application
domain. Moreover, even though there exist several ML models that achieve equivalent objectives
(e.g., image classification models such as ResNet, MobileNet, SqueezeNet, etc.), all of them are used
independently in different real-world application scenarios, depending on the application-specific
context and platform-specific constraints.

Consider an example delineated in Figure 1(b). The figure depicts an autonomous driving vehicle,
which collects assorted types of sensory data and performs various types of ML inferences to serve
multiple applications at runtime. In this example scenario, the autonomous driving vehicle is an
edge platform that requires computing capabilities to perform ML inferences, since the nature of
the autonomous driving applications requires strictly low latency and high energy efficiency, and
hence entirely offloading the ML inferences to the cloud is unlikely to be feasible. An autonomous
driving vehicle is not the only edge platform to host more than one ML application. There are
many edge platforms used in a wide range of contexts and examples include smart-home hubs (e.g.,
Google Home and Amazon Echo), fog computing devices, ICU patient monitors, manufacturing
robots, and surveillance cameras [23].

2.2 Heterogeneous Processors in Edge Platforms

Unlike conventional embedded devices that usually had a sole purpose or a limited number of
features, modern edge platforms often support various capabilities from a wide range of application
domains. As different applications need different types of compute operations and are used in
unique contexts, the applications have disparate requirements in terms of performance and energy
efficiency. To meet the diversified demands, many edge platforms are equipped with heterogeneous

processors [30, 57].
Take Figure 1(b) for example once again. Autonomous driving vehicles take diverse kinds of

sensory data as input and perform inference for assorted ML models while running on a battery,
which necessitates a very performant yet power-efficient system equipped with heterogeneous
platforms such as CPU, GPU, DSP, FPGA, and NPU, as shown in Figure 1(b). As a real-world
example, the Tesla FSD computer consists of three quad-core CPUs, one GPU, two NPUs, one ISP,
and a few more ASIC chips [53].

2.3 Service-Level Objectives (SLO) for ML Inference

Most near-real-time applications commonly deployed on edge platforms come with SLOs. Thus,
when these applications rely on ML algorithms, achieving controlled latencies from ML inference
tasks is important in the perspective of application SLO, since the inference processing time usually
takes a significant portion of end-to-end application runtime. Achieving SLOs is particularly
challenging in the case of edge platforms compared to the cloud, since the available hardware
resource in the system is physically limited and not elastically scalable. Moreover, ML inference
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Fig. 2. Speedup of various processors on three different machines compared to the desktop CPU baseline, to

run inference for the six evaluated ML models.

tasks on edge are oftentimes a part of mission-critical applications (e.g., pedestrian detection in
ADAS), which makes SLOs not just a general guideline, but a must condition. The challenge gets
even more difficult when the edge platforms serve diverse ML inference requests at an arbitrary
rate on the heterogeneous hardware platforms. In this work, we aim to explore several scheduling
policies for multi-model ML inference tasks while navigating the trade-off space of average
response time, system throughput, and SLO. From the exploration, we observe how the scheduling
decisions affect the system-wide behavior under the given application scenarios.

3 MOTIVATION

3.1 Performance and Energy Efficiency Characterization

We perform preliminary experimental studies to better understand the performance/energy char-
acteristics of edge platforms when hosting ML inference executions. From the results, we observe
that there are invariant properties originated from the correlation between (1) the algorithmic
characteristics of given ML algorithms and (2) the hardware-specific characteristics per each
platform. The insights drive the development of the proposed scheduling policies in this work.

Benchmarks and hardware platforms. We refer to Section 5 for details of the benchmarks. For
this preliminary study, we use three different computing machines that come with various types of
processors: (1) a desktop machine that comes with Intel Xeon E5-2630 v4 and NVIDIA RTX 2080 Ti;
(2) a Qualcomm Snapdragon development board [13] (Open-Q™ 845 Hardware Development Kit)
equipped with CPU, GPU, and DSP (see Section 5 for details); and (3) a NVIDIA Xavier development
board [14] with ARM Carmel v8.2 CPU, NVIDIA Volta GPU, and NVIDIA NVDLA NPU.

Affinities of ML models to heterogeneous processors. Figure 2 shows the speedup of eight dif-
ferent processors equipped on three different machines when they run the six evaluated ML models.
The baseline is the desktop-class CPU (i.e., Intel Xeon). This result demonstrates that the processor
affinity varies across the ML models depending on diverse model-specific factors such as the number
of compute operations, model size, composition of layers, and network topologies. For instance,
VGG-16 shows the best performance when it runs on a power-hungry, desktop-class GPU, since it
requires a large memory footprint and is able to exploit large data parallelism. On the contrary, for
SqueezeNet, the low-power NPU (i.e., NVIDIA NVDLA) performs even better than the desktop GPU
(i.e., NVIDIA RTX 2080 Ti), since this model does not provide high enough parallelism to extract
high performance from thousands of GPU cores on the desktop GPU, yet the offloading overhead
to the NPU is relatively smaller. While we only provide these two examples, Figure 2 shows that
there is a significant variety in terms of the processor affinity to different ML models. Interestingly,
we observe that the affinities tend to be a fixed property per a given pair of (ML model, processor),
so we leverage this property to design our scheduling policies, which will be discussed in Section 4.

Energy efficiency characteristics of hardware platforms. While the ML models have disparate
performance characteristics in terms of processor affinities, we observe that the models have
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Fig. 3. Performance-per-watt improvement of various processors on the three different machines compared

to the desktop CPU baseline, when running inference for the six ML models.

similar energy efficiency characteristics regardless of their algorithmic properties. Figure 3 shows
that all ML models have the largest performance-per-watt improvement at low-power DSP (i.e.,
Snapdragon DSP) and the smallest at the desktop CPU, regardless of which model is evaluated on
the platforms. These results imply that in the perspective of schedulers, always mapping all the
given inference tasks to the energy-efficient processor is likely to be the best scheduling decision
for energy efficiency, even though this strategy can be suboptimal in terms of performance.

3.2 Naïve Scheduling Policies

Affinity-oriented scheduling. A naïve approach we can think of based on the processor affinity
results reported in Figure 2 is to always map the ML inference tasks to their best-performing
hardware platforms. While this policy is intuitive and straightforward, the policy does not capture
(1) the processor availability, (2) the composition of requests incoming to the edge platform at
a given time, (3) the request arrival rate per each inference-requesting ML model, and (4) other
potentially hidden factors. Therefore, unless the ML models have evenly distributed processor
affinities and the inference requests are evenly scattered at a steady arrival rate, a small subset of
processors would be bottlenecked while others remain available.

Availability-oriented scheduling. Another naïve approach is to greedily map an incoming infer-
ence request to an available processor at the moment. If there is an idle processor, the scheduling
is straightforward, but in many cases, the processors are already pre-occupied with other tasks
when a scheduling decision needs to be made. To schedule incoming requests while handling the
scheduled requests, the scheduler has a waiting queue per each processor where the queue contains
the pending requests in the order that the requests arrive to the queue. We use the length of pending
requests in this queue as the degree of availability. This way, the scheduler is able to look up the
processor with the shortest waiting queue to determine which processor to map the given request.
Compared to the affinity-oriented scheduling, this approach tends to make more processors busy.
However, such greedy approach does not always produce good decisions in terms of SLO, since the
hastily assigned task on a slow processor may require significantly longer response time compared
to the task assigned on a fast processor, even though there is a delay due to the in-queue wait time.

Energy-oriented scheduling. The last and simplest approach is to map all requests to the
processor that has the highest energy efficiency. This approach could be used in the scenarios
where the energy efficiency is the only concern, even though the system throughput and SLO need
to be significantly compromised. We use this model as a comparison point for evaluating the energy
efficiency of the proposed schedulers.

3.3 Implications of Model Slicing

Model slicing. To schedule an ML inference task, mapping the entire model to a processor as a
whole is a straightforward approach. However, mapping a long-lasting inference task to a processor
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Fig. 4. Execution time overhead due to the number of model slices, normalized to the unsliced model

execution time. For this experiment, we select to evaluate VGG-16 on GPU.

in a non-preemptive manner makes the task to fully occupy the processor while preventing the
smaller tasks to be scheduled. For instance, when running inference on the Snapdragon DSP,
VGG-16, the largest model we evaluated, takes 100 ms, while the smallest one, SqueezeNet, takes 12

ms. This effectively means that if the inference for VGG-16 just started, SqueezeNet potentially waits
for about 8.3× of its execution time in the queue. This limitation makes the scheduling problem
more challenging, especially when the scheduler aims to meet the SLO requirements.

Model slicing is an algorithmic technique to mitigate the problem, which partitions the large
chunk of inference task into smaller subtasks at the boundaries of ML layers (e.g., convolution
and fully connected layers). The use of model slicing potentially helps the schedulers balance
the load without stalling many small tasks waiting for big tasks to be done and violating SLO
significantly. The benefits of model slicing can be maximized when (1) the overhead incurred due to
the partitioning is insignificant, and (2) the sliced subtasks take similar execution time on the given
processor, because that way, the unit of scheduling can be unified. These conditions are highly
dependent on the model slicing strategies.

Methodology. To understand the implications of different model slicing strategies, we first
perform an experiment on the Snapdragon DSP for an example model, VGG-16. We select VGG-16

since it is the largest model that could potentially stall other small inference tasks. VGG-16 has 13

Convolution layers and 3 Fully Connected layers, and thus there can be myriad ways to slice the
model at the layer boundaries. We explore a small subspace of the search space by limiting the
number of slices and the slicing strategies to a few possibilities and discuss the implications of
model slicing. In addition, we fix the number of slices to a particular number, four, and investigate
the implications of the different slicing strategies for the evaluated ML models.

Overhead due to the number of model slices. Figure 4 shows the overhead on the execution
time due to the model slicing as we change the number of model slices from two to eight. The
overhead is normalized to the total execution time of the non-sliced model. In this experiment, we
slice the model as evenly as possible when it comes to the per-slice execution time. The results are
quite intuitive in that the slicing overhead linearly increases as the number of slices increases. For
instance, the eight-way slicing strategy imposes almost 20% execution overhead compared to the
unsliced vanilla model, which is likely to be too significant to be compromised for potential gains
out of possibly better scheduling.

Performance implications of model slicing strategies. Figure 5 presents the overhead on the
execution time due to the model slicing when we split the models into four slices using different
model slicing strategies (SSs) There exist many factors that incur the overhead, but the primary
factor is the intermediate output data movement at the slice boundaries. Depending on the slicing
strategies, the intermediate output data size varies substantially, which explains the large gap
between different strategies. The SS-unevenx represents the slicing strategies that split the models
into unevenly divided slices, while SS-even represents the slicing strategy where we give our best
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Fig. 5. Standard deviation and execution time overhead due to model slicing strategies, normalized to the

unsliced model. For this experiment, we evaluated the six models on Snapdragon GPU.

Fig. 6. Overview of the proposed schedulers. The different types of arrows refer to the workflow of the three

proposed task scheduling algorithms. xPU refers to heterogeneous processors on the edge system, such as

CPU, GPU, and DSP.

effort to split the models into slices that have the similar latencies. The figure first presents the
unevenness of model slices using the standard deviation delineated with the light blue line graph
(triangle marker). For all ML models, the SS-even delivers the lowest standard deviation as expected.
The figure also reports the execution time overhead per each slicing strategy depicted with the dark
blue line graph (square marker). For all models, the evenness of the slices has a marginal effect on
the overall slicing overhead. As mentioned earlier, the balanced slicing strategy that produces slices
with similar execution time is helpful for scheduling purposes, so we decided to take the evenly
slicing strategy in the proposed scheduling policy, which we will discuss in Section 4.

4 SLO-AWARE INFERENCE SCHEDULERS

While the naïve scheduling algorithms discussed in Section 3 help us explore the trade-off space,
none of the algorithms succeeds to effectively achieve the conflicting objectives: (1) minimizing the
inference turnaround time (i.e., maximizing the system throughput) and (2) satisfying the inference
SLO requirements.

4.1 Overview

We introduce three scheduling policies, each of which has a different set of optimization objectives.
We start from a baseline scheduling policy exclusively optimized for the minimal inference turn-
around time. The two following SLO-aware schedulers are designed such that they tend to try satis-
fying the SLO requirements. The workflows of the three schedulers are visually depicted in Figure 6.
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Minimum-Average-Expected-Latency (MAEL). Our foundational scheduling policy is
Minimum-Average-Expected-Latency (MAEL), which is an SLO-agnostic, time-window-based
scheduling policy. The sole goal of the MAEL scheduler is to minimize the average turnaround
time of all inference tasks, requested and accumulated during the given scheduling window, by
predicting their expected inference latencies at the scheduling point. For prediction, we rely on
the unique property of ML models where the inference latency for a given model on a particular
processor exhibits a very limited variance and is therefore very predictable. Hence, the scheduler
at offline collects the profiled information of mappings from the pair of (model, processor) to the
associated latency and, at runtime, uses this information to calculate the expected latencies. Since
our target system aims to schedule multi-model inference tasks on heterogeneous processors, the
search space of scheduling decisions is huge, which makes it infeasible for the runtime scheduler
to visit all possible scenarios of task insertions on the per-processor request queue. Therefore, the
MAEL scheduling policy and its two variants perform scheduling in two steps, (1) the former of
which is the evaluation phase, which determines on which processor each inference task should be
located, and (2) the latter of which is the selection phase, which decides where the task should be
located within the per-processor request queue.

SLO-aware MAEL (SLO-MAEL). Since the MAEL scheduling algorithm lacks the SLO awareness,
even though there are urgent inference tasks requested in the scheduling window, it dismisses the
urgency and schedules based on the average expected latency. To overcome this limitation, we
propose the SLO scheduler, the main goal of which is to take the avoidance and minimization of
SLO violations at the first priority and put the system throughput at the next.

The scheduler is composed of two phases similar to MAEL. In the first phase, the scheduler
evaluates if SLO violations are expected to exist. If the SLO violations are not expected to
arise, the scheduler simply falls back to the MAEL scheduler. Otherwise, the scheduler aims to
minimize the total summation of SLO violation degrees (i.e., how much longer the inferences take
beyond the given SLO). Note that this algorithm concerns the SLO violation degrees, not the viola-
tion rate (i.e., how much ratio of inferences violate the given SLO), by which the algorithm tries to
not only reduce the SLO violation rate but also eliminate the potential starvation issues. This design
choice is from the observation that the scheduler optimized for minimizing the SLO violation rate
tends to always prioritize scheduling small tasks over long ones. In fact, this phenomenon is intu-
itive, since saving the many by sacrificing the few is indeed superior in terms of rate, which instead
harms the fairness between the scheduled models. To handle the starvation issues on long tasks
and provide the inter-model fairness in the system, we seek an insight from a rather conventional
scheduling mechanism in operating systems, aging, and leverage the idea in our scheduling scheme
by using the SLO violation degrees. This way, as time passes, the starved tasks will be expected to
have an increasing degree of violation, which pushes them to be prioritized in scheduling.

Preempting SLO-aware MAEL (PSLO-MAEL). Although the SLO-aware MAEL scheduler
strikes the balance between the two optimization objectives, system throughput (i.e., the inverse of
average inference turnaround time) and SLO, the algorithm still dispatches the inference tasks in
a non-preemptive way, which in certain cases significantly limits the scheduling capabilities. For
instance, a few long tasks already occupy all the hardware platforms and are expected to complete
the computation in quite a while, and the hands of the SLO-aware MAEL scheduler are tied, which
would in turn engender significant SLO violation in terms of both rate and degree.

To address the large SLO violation problem, we leverage the inherent algorithmic property of ML
models that they consist of multiple layers of which computations can be represented as a series
of inference tasks. To this end, we propose the Preempting SLO-aware MAEL scheduler, which
leverages model slicing techniques [22] that split the large models into smaller yet evenly sized
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ALGORITHM 1: Minimum-Average-Expected-Latency (MAEL)

Input : T : Inference tasks

P : Hardware platforms

L(T ,P ): Inference latency of T on P

Output : Scheduling decision

1: procedure MAEL(T , P , L)

2: // Evaluation Phase

3: candidates←∅

4: while new_candidate_exists() do

5: candidates←candidates∪{(ti ,pj ) | ∀ ti ∈T ,∃ pj ∈P }

6: for c ∈candidates do

7: scor e(c) = 0

8: for (t,p) ∈c do

9: scor e(c) += 1
L(t,p)+wait _t ime (p)

10: // Selection Phase

11: Find c where scor e(c) is the max score

12: for (t,p) ∈c do

13: Insert t into Request Pr ior ityQueue(p)

sub-models and populate a sub-task per a sub-model to achieve the preemption-like effect for the
scheduling purpose. Apparently, as we discuss in Section 3.3, there is overhead associated with
the model slicing to initiate multiple small inference runs instead of a single large one. Thus, this
scheduling algorithm is not always active and instead only turned on when the reduction in SLO
violation degrees due to the preemption is expected to be significantly larger than the overhead.

4.2 Minimum-Average-Expected-Latency (MAEL)

Algorithm 1 elaborates the MAEL scheduling algorithm. This algorithm takes three sets of inputs:
(1)T : a set of inference tasks given to the scheduler at a certain point in the runtime, which is periodi-
cally invoked. The scheduling window is a configurable parameter, which is empirically determined.
(2) P : a set of processors available on a given edge platform. Modern edge platforms are increasingly
equipped with a diverse set of hardware processors, including not only conventional processors such
as CPU but also various accelerators such as GPU, DSP, and NPU [12, 18]. (3)L(T ,P): a set of mappings
from pairs of (inference task, hardware platform) to the associated latency. The inference latency
is heavily dependent on the algorithmic property of model and computing capabilities of hardware
platforms, which are deterministic and make the accurate latency prediction possible. As discussed
earlier, this information is collected in priori though offline profiling, and the runtime scheduler sim-
ply looks up the mapping table to get the latency. The output of the algorithm is scheduling decisions,
which include the mapped hardware platform and the scheduled location in the request queue.

The scheduling algorithm constitutes two phases. In the evaluation phase, the scheduler first
finds all possible task-to-platform mappings and collects them into a set, called candidates (Line
5). Then, iterating over the candidates, it calculates per-candidate scores (Lines 6∼9). To calculate
the per-candidate score, the scheduler estimates the expected latency, which is the sum of (1) the
profiled latency of task t on the platform p and (2) the current wait time due to the pending tasks
already scheduled on the platform p (Line 9). As we would like to prioritize the candidate that
delivers the minimum expected latency, we invert the calculated expected latency and accumulate
for all tasks. After the evaluation phase, the scheduler obtains the per-candidate score, score(c),
which is in turn used in the selection phase.

In the selection phase, the scheduler sweeps over the collected scores and figures out which
task-to-platform mapping produces the minimum average expected latency (Line 11). Once the
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mappings are determined, the task is assigned to each platform (Line 13). Each platform has a
request priority queue, which stacks up the scheduled tasks in an order based on past scheduling
decisions. The scheduled task t is inserted in a place between the pending tasks in the request
priority queue in such a way that the average expected latency is minimized. This way, the proposed
two-phase scheduling mechanism effectively reduces the cost of search space exploration, while
the scheduler is not capable of finding the globally optimal solutions.

Time complexity. To further analyze the scheduling overhead, we use the big O notation to
mathematically represent the time complexity of the scheduling algorithm. The MAEL algorithm is
fundamentally a brute-force approach, which (1) explores all possible candidates of task-to-platform
mappings and (2) finds the best candidate mappings that minimize the expected latency. Therefore,
the time complexity scales as the number of possible candidates increases. The number of the entire
set of possible mappings ismn , wheren is the number of ML inference tasks to schedule, andm is the
number of hardware platforms to be scheduled on. There is only a constant time required to get the
latency for each mapping, since the latencies for possible task-to-platform mappings are profiled
offline and can be obtained by a simple table lookup at runtime. Given the mappings, we now
need to sort the collected latencies and find a candidate with the minimal latency. Since we need
to sort the mn possible candidates in terms of latency, the final time complexity is O(mnloд(mn)).
Therefore, as the n andm increase, the time complexity scales exponentially. However, in practical
settings, (1) n (number of tasks) is mostly under at most 10 since the scheduling window of this
algorithm is set to a few tens of milliseconds (e.g., 10 ms in our experiments), and (2) m (number
of hardware platforms) on a machine is in most cases a small value (e.g., 3 in case of Snapdragon
board). In fact, the small values of n andm effectively make the scheduling overhead substantially
smaller compared to the execution time of ML tasks. In our experiments, the overhead was almost
negligible (avg: 30 us, min: 10 us, and max: 140 us).

4.3 SLO-Aware MAEL (SLO-MAEL)

Algorithm 2 depicts the SLO-aware MAEL (SLO-MAEL) scheduling algorithm, which is built
upon the MAEL algorithm while being designed such that it chases another objective, SLO. In
addition to the algorithm inputs discussed in Section 4.2, the algorithm gets one more input,SLO(T ),
which contains the task-specific SLO requirements.

Essentially, the score-based priority scheduling method is identical to that of the MAEL algo-
rithm; however, at the evaluation phase, the scheduler calculates two independent scores, score_ael
and score_slo, which represent scores for average expected latency and SLO, respectively. Before
calculating the scores, the scheduler first checks if the expected latency is larger than the required
SLO (Line 10). If yes, which means the task is expected to violate the SLO, instead of calculating
the expected latency, the scheduler calculates the degrees of SLO violation, which can be calculated
by normalizing the expected latency with the SLO requirement, and then accumulates the negated
values of the SLO violation degrees (Line 11). This way, the score_slo contains a negative value if

there is at least an SLO violation among the to-be-scheduled tasks.
When the scheduler reaches the selection phase, the scheduling decision can be simply made

since the score is designed in such a way that the larger score value a candidate has, the better
scheduling decision the candidate is.

4.4 Preempting SLO-aware MAEL (PSLO-MAEL)

Algorithm 3 details our last scheduling algorithm, the Preempting SLO-aware MAEL (PSLO-

MAEL) algorithm. This algorithm leverages the model slicing to effectively enable preemption
even on non-preemptive hardware and software inference frameworks, in order to further reduce
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ALGORITHM 2: SLO-aware MAEL (SLO-MAEL)

Input : T : Inference tasks

P : Hardware platforms

L(T ,P ): Inference latency of T on P

SLO (T ): SLO of T

Output : Scheduling decision

1: procedure SLO-MAEL(T , P , L, SLO )

2: // Evaluation Phase

3: candidates←∅

4: while new_candidate_exists() do

5: candidates←candidates∪{(ti ,pj ) | ∀ ti ∈T ,∃ pj ∈P }

6: for c ∈candidates do

7: scor e_ael (c) = scor e_slo(c) = 0

8: for (t,p) ∈c do

9: exp_l = L(t,p) + wait_t ime(p)

10: if exp_l > SLO (t ) then

11: scor e_slo(c) -=
exp_l

S LO (t )

12: else

13: scor e_ael (c) += 1
exp_l

14: scor e(c) = scor e_slo = 0 ? scor e_ael : scor e_slo

15: // Selection Phase

16: Find c where scor e(c) is the max score

17: for (t,p) ∈c do

18: Insert t into Request Pr ior ityQueue(p)

the SLO violations. The inputs and outputs of this algorithm are commensurate with the ones
in the SLO-aware MAEL algorithm. However, unlike the prior two algorithms, the PSLO-MAEL
algorithm maintains a stateful variable, SliceMode , which is a flag switch that enables and disables
the model slicing. To set this flag on or off, the scheduler monitors how beneficial the model slicing
is to reduce the adverse effects of SLO violations and prudently decide to turn on/off. The reason
we choose to have this algorithm stateful is that the scheduler needs to speculatively turn on the
slicing so that the already-sliced small tasks can prevent the potential SLO violations of the unseen
large tasks, which will arrive in the future. Note that model slicing is only helpful when the “short”
incoming tasks preempt the “long” already-scheduled task. Moreover, the model slicing comes with
a significant amount of latency overhead. Therefore, turning on model slicing without obtaining
the SLO violation reduction only imposes the performance degradation, which can be eschewed
via the speculative model slicing mechanism.

In the evaluation phase, the scheduler has a conditional block that checks whether the model
slicing is on (Lines 3∼7). If yes, the scheduler slices the inference task (t ) into a set (T ′) of sliced
sub-tasks (sub_t ) and puts all the sub-tasks into the task set (T ) while removing the original large
task (t ) from the task set (T ) to prevent computing duplicated tasks (Lines 5∼6). Not all of the
models are subject to be sliced; only the large ones are. The threshold for determining whether to
slice is empirically chosen and the slicing mechanism tends to produce evenly balanced sub-tasks
so that the scheduling using the sub-tasks is more manageable. For brevity, in Algorithm 3, we omit
the above details with respect to how the scheduler selects the slicing-target models. The rest of
the evaluation phase does not have to be updated since the slicing replaces large tasks with the
functionally identical sub-tasks in the set of inference-requested tasks; therefore, the SLO-aware
MAEL scheduler smoothly identifies the optimized scheduling decision.

In the selection phase, there exists a slight difference at the end of the algorithm, which updates
theSliceMode flag (Lines 24∼27). While the scheduler inserts the task into its request priority queue,
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ALGORITHM 3: Preempting SLO-aware MAEL (PSLO-MAEL)

Input : T : Inference tasks

P : Hardware platforms

L(T ,P ): Inference latency of T on P

SLO (T ): SLO of T

Output : Scheduling decision

1: procedure PSLO-MAEL(T , P , L, SLO )

2: // Evaluation Phase

3: if SliceMode is on then

4: for t ∈T do

5: Slice t ∈T into T ′ = {sub_t :
∑

sub_t = t }

6: Insert t ′ ∈T ′ into T

7: Remove t from T

8: candidates←∅

9: while new_candidate_exists() do

10: candidates←candidates∪{(ti ,pj ) | ∀ ti ∈T ,∃ pj ∈P }

11: for c ∈candidates do

12: scor e_ael (c) = scor e_slo(c) = 0

13: for (t,p) ∈c do

14: exp_l = L(t,p) + wait_t ime(p)

15: if exp_l > SLO (t ) then

16: scor e_slo(c) -=
exp_l

S LO (t )

17: else

18: scor e_ael (c) += 1
exp_l

19: scor e(c) = scor e_slo = 0 ? scor e_ael : scor e_slo

20: // Selection Phase

21: Find c where scor e(c) is the max score

22: for (t,p) ∈c do

23: Insert t into Request Pr ior ityQueue(p)

24: if Slicing helps SLO violation reduction then

25: SliceMode=True

26: else

27: SliceMode=False

if the SliceMode is off, it checks if the given task is expected to violate the SLO requirement due to
the pending long-latency tasks. If the condition is met, the SliceMode is turned on; otherwise, the
mode remains switched off. If the SliceMode is already on, the scheduler sees if the sliced pieces of
model help eliminate the potential SLO violations. If yes, the SliceMode remains True; otherwise,
it is turned off. The scheduler ensures the dependencies among the sliced sub-tasks by halting the
dispatch of the following sub-tasks until the executions of dependent sub-tasks are completed.

5 METHODOLOGY

5.1 Benchmarks

To examine the performance and energy consumption of ML inference tasks on edge platforms in
diverse circumstances, we select six DNN models that have disparate application domains, model
sizes, and network topologies, as shown in Table 1. We select these DNN models since they are
representative and widely used as the core DNN structure in real-world edge applications such
as lane detection [3], object tracking [45], image segmentation [55], object detection [6, 44], and
pedestrian detection [56]. While many of them fall into the equivalent application domain, their
performance and efficiency properties are unique since their network topologies and the employed
operators are disparate, which necessitates their independent use in a single edge platform.
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Table 1. Evaluated Machine Learning Models

5.2 Hardware Platforms

We use Open-Q 845 HDK Development Kit, which is equipped with three hardware platforms: (1) a
Qualcomm Snapdragon SDA845 CPU, (2) a Qualcomm Adreno 630 GPU, and (3) a Qualcomm Hexagon

685 DSP. The board vendor provides Snapdragon Neural Processing Engine (SNPE) SDK that
is compatible with Caffe and Tensorflow so that the users can readily deploy the pre-trained DNN
models onto the desired platform on the board. The current version of SNPE SDK supports a limited
set of DNN operators. For instance, it lacks the support for RNN operators such as LSTM and GRU.
However, such narrow coverage is the limitation of the particular platform, not a fundamental
limitation of proposed scheduling schemes. In fact, the proposed schemes are not bound by any
specific domain of ML algorithms either. Moreover, the SNPE SDK is closed source and a only offers
restricted hardware-software interface that prevents the users from investigating the internal
architecture and datapath of the SoC board, which did not allow us to perform detailed performance
characterization.

For the experiments, we use Caffe and the Caffe-provided pre-trained models without making
any algorithmic modifications (e.g., quantization and pruning). We measure the energy consump-
tion using the device’s current and voltage information recorded from Linux’s event recording
mechanism,uevent. Theueventproduces the current and voltage information of platform batteries
to the /sys/class/power_supply/battery/ directory, and we use this number to estimate the energy
consumption. While we prototype our proposals and build an edge system on the Snapdragon
development board, the proposed scheduling algorithms can be readily ported on any ML-serving
systems that are equipped with heterogeneous processors, such as NVIDIA Jetson Xavier and
server environments that we used to perform the preliminary study discussed in Section 3.1.

5.3 Request Generation Scenarios

Emulating the real-world request generation scenarios is difficult yet important to evaluate the
proposed scheduling policies. However, the research in the field of edge computing is in its initial
phase and there is not much resource publicly available to use for the experimental purposes.
Therefore, we make a set of assumptions and synthetically generate the requests in various
scenarios on a virtual edge platform. To emulate the task generation rate, we use the Poisson
distribution for the models, similar to several prior works [10, 15, 19, 34, 50, 66]. For all scenarios,
we set a fixed period of time at which the requests arrive to the system, which is 2 seconds. The
2 seconds is a long enough length of wall-clock runtime that we can evaluate the effectiveness of
the scheduling policies for diverse application scenarios. During the runtime, the frequency and
distributions of request arrivals depend on the given scenarios.

Table 2 reports the list of scenarios that we evaluate. The “Name” column shows the code name
of each scenario that we will refer to in Section 6. The “Scenario” column shows the composition
of long (L), medium (M), and short (S) inference runs, and the “Model” column denotes the
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Table 2. Scenarios That Assume Multiple Edge Applications

Running Together on an Edge System, Which Constitute

Many Inference Tasks from a Diverse Set of Evaluated

ML Models Reported in Table 1

Scenarios 1 and 2 constitute two types of ML inference tasks, while

Scenarios 3 and 4 have three, and Scenarios 5 and 6 have four, and

finally Scenarios 7 through 9 have six. L, M , and S refer to the long-,

medium-, and short-taking inference tasks. The rightmost column

presents the distributions of ML inference requests per the

corresponding model. The ratio is set to a fixed distribution, but the

request generation is based on the Poisson distribution.

corresponding DNN models for each scenario. The last column, “% Requests,” represents the
fractions of incoming requests, which have a one-to-one mapping from each model presented in the
“Model” column. The total number of requests dispatched on each scenario is determined depending
on the workload level that the edge platform is targeted to. In cases where the workload is overly
lightweight or overly heavyweight, the system would be underutilized (i.e., most processors are idle
for most of the runtime) and overloaded (i.e., the system cannot keep up with the incoming request
rate and is always occupied with a full of work), regardless of the scheduling decisions. To evaluate
diverse workload characteristics, we sweep through the workload intensity from lightweight to
heavyweight and show how the scheduling algorithms affect the performance, energy efficiency,
and SLO on the evaluated edge platform.

5.4 Metrics

To evaluate the performance and energy consumption of the proposed scheduling policies, we
use various metrics that include Averaged Normalized Turnaround Time (ANTT), energy
consumption, energy delay product (EDP), energy delay squared product (ED2P), and SLO. Normal-

ized Turnaround Time (NTT) represents the performance slowdown (ML
policy
i ) compared to its

ideal case (MLsolo_best
i ), where the given task runs alone on the best-performing processor. ANTT
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Fig. 7. ANTT improvement and the SLO violation rate for four different scheduling algorithms including the

affinity-oriented scheduling algorithm (AFF) and the proposed three scheduling algorithms. The baseline is

the case where AFF is used.

is the average normalized turnaround time of all ML inference tasks, as denoted in Equation (1).
Note that the turnaround time not only includes the processing time but also the wait time in the
ready queue. In other words, the turnaround time refers to the response time in the perspective of
application users, rather than the pure execution time that goes to the ML inference.

ANTT =
1

n

n∑

i=1

ML
policy
i

MLsolo_best
i

(1)

Defining the SLO target for ML inference tasks on the edge platform is a challenging task due to
the lack of clearly defined response time guideline. Moreover, the SLO can vary significantly as the
context of the application changes. For instance, while the pedestrian detection on an autonomous
driving car has a very strict SLO requirement, monitoring traffic through object detection algorithms
running on multiple cameras may not be on the critical path and can be performed asynchronously
in the background. Therefore, in this work, we adopt a methodology used in a prior work,
PREMA [11], which aims to achieve the SLO target for ML inference tasks on cloud. PREMA sets the

SLO target as (MLsolo_best
i ×N ). We empirically choose to use 10 for N . Since our evaluation target

is an edge platform equipped with a set of heterogeneous processors (i.e., CPU, GPU, and DSP), we
pick a processor that best-performs per each DNN model and set the SLO targets as 10 times longer
than the latency we measure on the best-performing processor. For instance, for SqueezeNet, since
the inference time on the best-performing processor is 12 ms, we choose to set the SLO target to
120 ms.

6 EVALUATION

To empirically investigate the effectiveness of our three schedulers, we evaluate them under various
applicationscenariosbasedonvariousMachineLearningmodels.Weshowhowthe threeschedulers
navigate the trade-off space of ANTT improvement (i.e., a proxy for system throughput) and SLO.

6.1 ANTT Improvement

Figure 7 presents the ANTT improvement of our three schedulers when their results are normalized
to those of the affinity-oriented scheduling algorithm, introduced in Section 3.2. We call the
affinity-oriented scheduling AFF for conciseness. We use the AFF as our baseline scheduling
algorithm since AFF always shows better ANTT results than the possible counterparts such as
the availability-oriented scheduling algorithm. We notice that the availability-oriented scheduling
algorithm tends to schedule a lot of ML tasks to the slowest processor, CPU, when it is available,
but this scheduling decision often incurs significant latency overhead for the tasks. The evaluated
turnaround time includes the waiting delay in the request queue. On average, MAEL, SLO-MAEL,
and PSLO-MAEL offer 2.19×, 2.48×, and 2.84× speedup, respectively. The results show that the
MAEL, SLO-MAEL, and PSLO-MAEL algorithms offer a substantial performance improvement in
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comparison with the naïve AFF algorithm, while suppressing the SLO violation to lower rates as
we employ the SLO-oriented schemes.

Note that in most cases, SLO-MAEL and PSLO-MAEL offer even higher performance gains com-
pared to MAEL since maximizing SLO not only helps avoid the SLO violation but also improves the
throughput for small tasks, which effectively improve the system-wide “average” throughput. This
phenomenon can be attributed to the short-task preference of SLO-aware scheduling algorithms
and the definition of the ANTT metric. Our SLO targets are set proportionally to the execution
latency of each model, similar to a prior work [11], which means the small models have tighter
SLOs. As SLO-aware scheduling algorithms try to avoid the SLO violations as much as possible,
they prefer to schedule the tasks with tight SLOs, which are the small ones. Since the definition
of ANTT calculates the average normalized turnaround time, such short-task preference makes
the ANTT improvement higher, which explains the increasing ANTT improvement when the
algorithms try to satisfy SLOs. In fact, such scheduling schemes are likely to hurt the fairness
between short and long tasks, though they would improve the system-wide throughput, which is
an interesting challenge for multi-tenant systems, yet we leave it for future work.

Figure 7 also shows that depending on the scenarios, the algorithms behave differently in terms of
turnaround time and SLO. For instance, in the case of Scenario 7, the SLO-MAEL and PSLO-MAEL
algorithms make a significant difference in SLO violation results. In this particular case, the
SLO-MAEL and PSLO-MAEL schedulers effectively exploit the room that the non-urgent inference
tasks have, to serve urgent tasks promptly, which ends up significantly reducing the SLO violation.
On the other hand, in the case of Scenario 1, none of our schedulers violates the SLO substantially
from the beginning, so the PSLO-MAEL scheduling policy does not greatly help on the SLO
violation reduction, but it improves the overall system throughput. The results demonstrate that in
all cases, the schedulers are able to schedule the tasks in the direction that simultaneously achieves
the conflicting goals, low turnaround time and SLO satisfaction, without compromising either.

6.2 Tail Latency and SLO

Figure 8 delineates the 99% tail latencies for the six evaluated models. The tail latencies are normal-
ized to the SLO target, which means when a model sees the result of higher than 1.0, it implies the
SLO violation exists. For Scenario 1 through Scenario 8, we observe that the baseline scheduling al-
gorithm, AFF, exhibits a substantial imbalance among the tail latencies of different ML models. More-
over, for all the scenarios, the AFF algorithm produces the tall bars that go far beyond the SLO target
and violate the SLO requirements. However, as we employ the expected latency-oriented schedul-
ing (MAEL) and the SLO-aware scheduling algorithms (SLO-MAEL and PSLO-MAEL), the heights of
SLO-violating bars are significantly shortened and squeezed under the SLO target (i.e., the horizon-
tal 1× line). At the same time, at the expense of such gains, the heights of other bars that were initially
smaller than the SLO target at AFF enlarge yet doenot go beyond the SLO target, which shows that
the SLO-aware scheduling algorithms effectively prioritize the deadline-approaching, urgent tasks
without newly introducing the SLO violations of other tasks. Scenario 9 is an exceptional case where
the request generation rate is too high and the load is beyond the capabilities of given computing re-
sources,whichrepresents thestate thatevenanoracle scheduler isunable tosatisfy theSLO.For such
a thrashed situation, the effectiveness of our scheduling algorithms is largely harmed, and yet rather,
due to the prolonged tasks scheduled on the undesirable processors and model slicing overhead, we
see the performance degradation and more SLO violations compared to the simple AFF baseline.

6.3 Energy Efficiency

While the energy efficiency is not one of the primary objectives of the proposed scheduling
policies, we examine the implications on the energy efficiency since the policies can be used for
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Fig. 8. Ninety-nine percent tail latencies when the proposed scheduling policies are used for all the scenarios.

The horizontal lines at 1× refer to the point where the tail latencies meet the SLO target. If the bar is larger

than 1×, it means an SLO violation.

potentially energy-constrained edge devices1 We use (1) performance-per-watt, (2) energy delay
product, and (3) ED2P improvements to investigate the trade-off between system throughput
and energy efficiency. Figure 9 shows the results for the five scheduling algorithms including the
MAEL, SLO-MAEL, and PSLO-MAEL algorithms plus the two naïve ones, affinity-oriented and
energy-oriented scheduling algorithms. We refer to the energy-oriented scheduling as ENR for
brevity. The results are normalized to those of the AFF algorithm.

For all scenarios, the ENR algorithm is always superb in terms of performance-per-watt im-
provement, since this algorithm simply redirects all the inference tasks to the most energy-efficient
processor, DSP, which dissipates significantly less energy for the same amount of computation, in
comparison with the alternative processors such as CPU and GPU. Compared to the AFF algorithm,
the ENR algorithm offers 2.74× performance-per-watt improvement, while the MAEL, SLO-MAEL,
and PSLO-MAEL algorithms show 51%, 52%, and 43% degradation, respectively. However, when
we emphasize more on the performance aspect of the system, which means we employ EDP and
ED2P instead of performance-per-watt improvement, the results are reversed. For EDP results, the
MAEL, SLO-MAEL, and PSLO-MAEL algorithms offer 1.05×, 1.19×, and 1.59× EDP improvements,
respectively. For ED2P results, the MAEL, SLO-MAEL, and PSLO-MAEL offer 2.32×, 2.96×, and
4.53× ED2P improvements, respectively, while the ENR algorithm experiences 77% ED2P degra-
dation. These results imply that the proposed scheduling algorithms not only concern the system
throughput and SLO satisfaction rate but also implicitly push the scheduling decision in a direction
that improves energy efficiency as well.

1The edge platforms we target are not the severely energy-constrained, battery-run edge platforms such as IoT devices, but

rather power-connected local machines such as SoC computers for autonomous driving vehicles or smart home hubs. For

this reason, we take the energy efficiency less significantly than the turnaround time and SLO.
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Fig. 9. Performance-per-watt, EDP, and ED2P improvement results compared and normalized to the baseline

scheduling algorithm, AFF.

Fig. 10. ANTT, Energy, EDP, and ED2P improvement plus SLO violation rate as we sweep through the GPU

frequency from 710 MHz to 257 MHz. For this experiment, we use the SLO-MAEL scheduling algorithm. The

results are normalized to the case where we use 710 MHz for GPU.

6.4 Implications of Dynamic Voltage Frequency Scaling

To navigate the performance-energy tradeoff, one possible knob for fine-grained scheduling is to
use the dynamic voltage frequency scaling (DVFS). Intuitively, it makes sense to dynamically
alter the frequency and trade off the performance for efficiency if the lowered performance does not
lead to the SLO violations. However, our empirical study corroborates that the use of this knob is
virtually ineffective since lowering frequency prolongs the execution latency, which ends up impos-
ing higher energy consumption and, in turn, exacerbates the energy efficiency. In our experiment,
we use the GPU’s DVFS feature on the evaluated Snapdragon board. As the CPU lacks the “per core”
DVFS feature, the use of DVFS on CPU affects the “system-wide” performance; thus, we did not use
it for the experiment. DSP lacks the DVFS feature. Figure 10 reports the results. For all metrics (i.e.,
ANTT, performance-per-watt, EDP, and ED2P improvement), the highest frequency (i.e., 710 MHz)
delivers the best performance and efficiency. Moreover, the SLO violation is minimal when we use
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the 710 MHz. We believe that such ineffectiveness is attributed to the generally high parallelism
and little control flow divergence of ML inference execution. Based on the empirical insights, we
decided not to employ the DVFS feature as one of the knobs for our scheduling algorithms.

7 DISCUSSION

7.1 Predictability of ML Inference Latency

The proposed scheduling policies are built upon an insight that the ML inference latency tends to be
deterministically predictable if the ML inference is performed for a particular model on a particular
hardware platform. Note that such property tends not to hold if multiple ML inference tasks are
co-located and batched on a single platform, as discussed in a prior work [21]. However, we are able
to avoid the condition to be met and leverage this deterministic property since in our scheduling
schemes, a single hardware platform always runs inference for a single model at a given time, and
the batch size is always set to one, which not only minimizes the possibilities of nondeterministic
system behaviors but also facilitates the scoring-based optimization by simplifying the objective
function. CPU is an exception to this enforcement since as a host processor, CPU takes care
of diverse processes including non-inference tasks such as platform control and management
software. However, our schedulers barely map the inference tasks to CPU since its inference
latency is significantly longer than the alternative processors, and thus, the variance in CPU
performance had a limited influence on the end-to-end system performance. Moreover, the goal of
proposed scheduling algorithms is to serve almost exclusively ML inference tasks, assuming that
the non-inference workload is either rare or lightweight.

Another condition that makes the ML inference latency possibly unpredictable is the input data
dependency of ML models. As the ML models tend not to have control flow in their computations,
such unpredictability often comes from the size of input data that a model inference takes. A
representative example algorithm is RNN for language translation, which takes as input a sentence
composed of multiple words where the number of words is unknown a priori. For such cases, we
enforce the models to have a fixed input data size by inserting dummy data so that the inference
latency becomes deterministic and predictable. While such constraints require some extent of
compromise on the throughput, the constraints enable improving the latency predictability and in
turn the schedulability with minimal SLO violations, which is the highest priority in this work.

A great body of works [11, 15, 20, 22, 34, 66] have leveraged the aforementioned property to
develop various sorts of system design solutions such as the SLO management and resource
optimization. PREMA [11] proposes a predictive multi-task ML inference scheduling algorithm
exploiting the deterministic predictability of ML inference. To motivate the work, the authors per-
form preliminary studies. First, they investigate whether the ML inference latency is deterministic
by executing 1,000 inference runs on GPU for models with 50 different layer types and report that
the latencies are off less than 4% from the average. They also report that the ML inference latencies
obtained by Google Cloud TPUv2 also fall within 0.2% standard deviation of the mean [11]. Clock-
work [20] is an ML serving distributed system, which leverages the deterministic predictability
of ML inference. Not only the aforementioned examples but also many others [15, 34, 66] have
leveraged the unique property of ML inferences, which largely inspired this work.

7.2 Queuing Theory

The goal of this work is not to devise a scheduling mechanism, which hits the very sweet spot in
the trade-off space placed with the dimensions of performance, energy efficiency, and quality of
service. It is rather to look into a wide spectrum of possible scheduling policies while exploring the
trade-off space. One key observation we made from the empirical studies is that the request arrival
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scenarios make a significant impact on the effectiveness of the scheduling policies. The request
arrival scenarios are driven by not only the general workload of incoming requests but also the
arrival rate, the compositions of requesting models, the periodic patterns of request bursts, and
many others. Therefore, it is critical to accurately model the request generation scenarios in such a
way that they are very close to the real-world system environments of ML-serving edge platforms.
A natural future direction of this study is to answer this question: how do we more accurately
model edge devices with heterogeneous processors, serving multi-model ML tasks, without actually
building the real system? Queuing theory [1] is a line of research in which researchers have been
trying to model and solve similar problems as ours. The scheduling problem this work aims to
address is a particular case of the problems that queuing theory tries to solve, in that (1) we have a
specific number of clients (i.e., ML inference tasks), and (2) there are a fixed number of servers (i.e.,
heterogeneous processors for a given edge platform). We believe that not only would this modeling
be a novel contribution by itself, but also it would help identify undiscovered issues and challenges
in designing more mature scheduling policies in the future effort.

7.3 Theoretical Guarantees

This work aims to explore the trade-off space between the SLO guarantees and system throughput
and seeks to strike a careful balance between the two, which (1) pushes the system throughput to the
maximum (2) while the violations are minimized, but the violations could still possibly happen. In
other words, few SLO violations are an expense for higher throughput, which we compromise in this
work. In case of real-time systems that require strict latency constraints, such compromise must not
be an option. The real-time systems would require the theoretical guarantees, and thus the systems
must employ a scheduling policy that exclusively accepts the requests when the target latency can
be safely met with sufficient headroom for runtime volatility and conservatively discards excessive
requests. Devising such scheduling policy is on its own is a novel research problem that we aim
to explore as future work. This work has the similar goal to the scheduling mechanisms largely
explored in the realm of ML inference schedulers for datacenters [10, 11, 15, 19, 20, 34, 50, 66],
which seek to offer the best-effort SLO guarantees.

7.4 Edge-Cloud Continuum

While this work focuses on on-device ML scheduling, offloading ML inferences to the cloud is
another alternative option. As a matter of fact, the modern mobile and edge devices are currently
offloading most of their ML inference tasks to the cloud (e.g., Apple Siri), rather than hosting on the
edge. Therefore, it is natural to consider the cloud as a co-processing engine in the perspective of
edge devices and deem the edge-cloud continuum as a virtual ML serving system. In our experiment,
the desktop GPU (NVIDIA RTX 2080 Ti) performed on average 6.8x faster than the Snapdragon’s
GPU counterpart. However, the challenge is the network communication cost, which is often not
affordable for real-world applications. To estimate the cost, we performed a preliminary experiment
using a VM hosted by Microsoft Azure. The average latency to exchange the input and output
data was 32 ms, which effectively canceled out the acceleration benefits. Nevertheless, we still
believe that offloading to the cloud makes sense, especially when the edge devices are excessively
overloaded and the SLO is a primary concern.

7.5 Requests with Different Priorities

Although the proposed SLO-aware schedulers aim to meet the SLO target for all requests equally

without having any precedence, the schedulers can be readily modified to support the precedence-
based scheduling by assigning the priority to critical tasks in the queue if they should be executed
preferentially. In fact, our PSLO-MAEL algorithm already employs the notion of prioritization
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through the preemption for relatively shorter tasks. Hence, enabling such customized prioritization
on top of our solution should be fundamentally straightforward.

8 RELATED WORK

8.1 ML-Based Applications on Edge Devices

There has been a great body of work that leverages ML algorithms in the real-time edge ap-
plications [2, 5, 9, 16, 17, 27, 31, 32, 37, 39–43, 46, 48, 49, 51, 52, 54, 59, 61, 62, 64, 67]. The
applications are from a wide range of application domains and the examples are autonomous driv-
ing [5, 17, 39, 46, 49, 51, 52, 67], mobile computing [31, 40, 48], robotics [37, 43, 59, 62], smart home
technologies [2, 9, 16, 32, 64], smart city technologies [27, 41, 42, 54], and surveillance systems [61].
While ML is already a pivotal component in modern real-time application domains, we can readily
expect the boundary of this scope to be significantly expanded in the near future, as the community
is pushing forward to practicalize ML algorithms and deploy them in a wider spectrum of applica-
tion scenarios. This trend will lead a growing number of edge platforms to serve more than one ML
inference request since the number of applications that every edge platform needs to host keeps
increasing, while the number of compute-enabled edge platforms that can directly interact with
humans is limited. Therefore, without effective scheduling mechanisms, the edge platforms would
be readily swamped with numerous ML inference tasks, which is an important problem to solve. To
the best of our knowledge, this work is the first effort to investigate the trade-off space of scheduling
policies that handle multiple ML inference tasks on heterogeneous-processor edge platforms.

8.2 Inference Task Scheduling for Heterogeneous-Platform Edge Device

There have been several efforts that make use of heterogeneous processors for efficient ML
inference [4, 22, 23, 29, 33, 35, 38, 63, 65]. Facebook [63] shares their hardware-software stack
for ML inference at heterogeneous mobile systems. Neurosurgeon [33] provides DNN model
partitioning techniques and intelligently maps the model shards on to the cloud and mobile device.
Similar to Neurosurgeon, MOSAIC [22] and DeepX [38] propose the DNN model partitioning
techniques, but these works aim to map the sliced model shards onto heterogeneous processors
at edge. DeepMon [29] takes computing for Convolution operators offloaded to GPU and utilizes
both CPU and GPU to minimize the inference latency. DeepIoT [65] proposes model compression
and sparsification techniques to compact DNN models so that the compressed models are better
fit for power-constrained IoT devices. μLayer [35] intelligently maps ML inference tasks to CPU
and GPU on mobile devices by leveraging layer distribution and processor-specific quantization
techniques. Cao et al. [4] propose to schedule a single ML inference on the heterogeneous platforms
by splitting the given model into pieces and distributing over the CPU/GPU platforms. Pipe-it [58]
proposes a pipelined design to split convolutional layers in asymmetric big.LITTLE multicore
clusters to improve throughput. Wang et al. [60] navigate the performance-power tradeoff space
of mobile SoCs equipped with heterogeneous processors when they perform ML inferences. Heo
et al. [28] propose an ML inference latency prediction model for GPU and devises multipath
neural networks, which enable the runtime to choose which path to take to meet real-time latency
constraints. AutoScale [36] is an execution scaling engine that leverages Reinforcement Learning to
adaptively determine which platform to pick for performing inference to improve energy efficiency
in edge-cloud systems. While the prior work has made the initial efforts to enable ML inference
on the edge system, none has taken into consideration the scheduling problem for multiple ML
inference tasks running on the heterogeneous-processor edge system, on which this work focuses.
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8.3 Service-Level Objectives (SLO) for ML Inference

There have been prior works that aim to offer SLO for ML inference services, but most works
solely target the cloud [7, 8, 11, 15, 19, 24]. Baymax [8] and Prophet [7] provide runtime solutions
that offer SLO on latencies when non-preemptive accelerators are used for ML inference at the
cloud. PREMA [11] has a similar goal with Baymax and Prophet but aims to solve the problem
for preemptive neural processing units (NPUs). Swayam [19] is a distributed autoscaling
framework on the cloud, which offers SLO while maximizing the resource utilizing of a scaling
system. Clipper [15] is a pioneering work that proposes an ML inference serving system on the
cloud. These works have pioneered to meet the SLO requirements for ML inference jobs on the
cloud, but few works have been done to provide SLO for ML inference at the edge device.

9 CONCLUSION

With the advent of Edge Computing and the Internet of Things (IoT), the industry is building
compute-enabled edge platforms equipped with heterogeneous processors. These platforms are
being actively deployed to places where humans can directly interact—from mobile devices to
autonomous vehicles, smart home/city devices, and robots. In a rather disjoint effort, the industry
is accelerating the integration of ever-advancing ML technologies and real-time edge applications.
Thus, efficiently mapping the multi-model ML tasks to heterogeneous processors at edge is a crucial
challenge to address. This work is a timely effort that sets out to address the scheduling problem on
ML-enabled edge platforms and takes an effective initial step toward exploring the trade-off space
of performance, quality of service, and energy efficiency. This work identifies the limitations of
naïve scheduling policies, proposes novel scheduling policies that navigate the dimensions of the
trade-off space, and evaluates its implications on system throughput, SLO, and energy efficiency.
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