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ABSTRACT TETRIS, with a mere of less than 0.5% accuracy loss achieved by
Albeit low-power, mixed-signal circuitry suffers from significant careful treatment of noise, computation error, and various forms of
overhead of Analog to Digital (A/D) conversion, limited range for variation. Compared to RTX 2080 TI with tensor cores and Titan Xp
information encoding, and susceptibility to noise. This paper aims GPUs, all with 8-bit execution, BIHIWE offers 35.4xand 70.1xhigher
to address these challenges by offering and leveraging the follow- Performance-per-Watt, respectively. Relative to the mixed-signal
ing mathematical insight regarding vector dot-product—the basic RedEye, ISAAC, and PipeLayer, BIHIWE offers 5.5, 3.6X, and 9.6x
operator in Deep Neural Networks (DNNs). This operator can be improvement in Performance-per-Watt respectively. The results sug-
reformulated as a wide regrouping of spatially parallel low-bitwidth gest that BIHIWE is an effective initial step in a road that combines
calculations that are interleaved across the bit partitions of multiple mathematics, circuits, and architecture.

elements of the vectors. As such, the computational building block

of our accelerator becomes a wide bit-interleaved analog vector CCS CONCEPTS
unit comprising a collection of low-bitwidth multiply-accumulate « Computer systems organization — Analog computers; Neu-
modules that operate in the analog domain and share a single A/D ral networks; Special purpose systems.
converter (ADC). This bit-partitioning results in a lower-resolution
ADC while the wide regrouping alleviates the need for A/D conver- KEYWORDS
sion per operation, amortizing its cost across multiple bit-partitions Accelerators; Deep Neural Networks; DNN; DNN Acceleration;
of the vector elements. Moreover, the low-bitwidth modules require Analog/Mixed-Signal Computing; Mixed-Signal Acceleration; Bit-
smaller encoding range and also provide larger margins for noise Partitioning; Spatial Bit-Level Regrouping; Analog Error Modeling
mitigation. We also utilize the switched-capacitor design for our
bit-level reformulation of DNN operations. The proposed switched- ACM Reference Format:
capacitor circuitry performs the regrouped multiplications in the Soroush Ghodrati, Hardik Sharma, Sean Kinzer, Amir Yazdan-
charge domain and accumulates the results of the group in its capac- bakhsh, Jongse Park, Nam Sung Kim, Doug Burger, and Hadi Es-
itors over multiple cycles. The capacitive accumulation combined maeilzadeh. 2020. Mixed-Signal Charge-Domain Acceleration of
with wide bit-partitioned regrouping reduces the rate of A/D con- Deep Neural Networks through Interleaved Bit-Partitioned Arith-
versions, further improving the overall efficiency of the design. metic. In Proceedings of the 2020 International Conference on Parallel
With such mathematical reformulation and its switched-capacitor Architectures and Compilation Techniques (PACT’20), Oct. 3-7, 2020,
implementation, we define one possible 3D-stacked microarchitec- Virtual Event, GA, USA. ACM, NY, NY, USA, 13 pages.
ture, dubbed BIHIwWE!, that leverages clustering and hierarchical https://doi.org/10.1145/3410463.3414634
design to best utilize power-efficiency of the mixed-signal domain
and 3D stacking. We also build models for noise, computational non- 1 INTRODUCTION
idealities, and variations. For ten DNN benchmarks, BIHIwE delivers With the dlmlnlshlng benefits from genera]—purpose processors [1—
5.5xspeedup over a leading purely-digital 3D-stacked accelerator 4], there is an explosion of digital accelerators for DNNs [5-26].
!BrHIwE: Bit-Partitioned and Interleaved Hierachy of Wide Acceleration through Mixed-Signal acceleration [27_37] is also gaining traction. Albeit
Electrical Charge low-power, mixed-signal circuitry suffers from limited range of infor-
mation encoding, is susceptible to noise, lacks fine-grained control
mechanism and imposes significant overheads for Analog to Digital
(A/D) conversions. As a point of reference, for an 8-bitx8-bit MACC
This wo’rk is licensed under a Creat_ive Commons Attribution International 4.0 License. which produces a 16-bit output at 500 MhZ, A/D conversion costs
g@i;?;g;ﬁfgﬁ:i;ﬁ igfﬁ::&::ij:i?ﬁo?&.USA about 1,000 higher energy than the MACC itself at 45 nm. In addi-
ACM ISBN 978-1-4503-8075-1/20/10. tion, encoding 256 levels for 8-bit inputs in less than 1 Volt allocates
https://doi.org/10.1145/3410463.3414634 3.9 mV for each level, significantly restricting both the representa-

tion capabilities as well as the noise margins. This paper sets out to
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address these challenges by inspecting the mathematical foundation
of deep neural networks and makes the following contributions.
(1) This work offers and leverages the insight that the set of
MACC operations within one vector dot-product can be par-
titioned, interleaved, and regrouped at the bit level without
affecting the mathematical integrity of dot-product. Unlike
prior work [28,37, 38], this work does not rely on changing the math-
ematics of the computation to enable mixed-signal acceleration.
Namely, PRIME [38] leverages memristive technology to enable ana-
log computation, but relies on several truncations during computa-
tions of intermediate data to overcome the overheads of A/D conver-
sions. In contrast, this work only rearranges the bit-wise arithmetic
calculations across multiple elements of the vectors to utilize a group
of lower bitwidth analog units for higher bitwidth operations. The
key insight is that a binary value can be expressed as the sum of prod-
ucts similar to dot-product, which is also a sum of multiplications
(a=)20W=Z,-x,- Xwj). Each x; or w; can be expressed as 3’ ; (2/ xbj)
where b;s are the individual bits or as Zj(24j xbpj), where bpjs are
4-bit partitions for instance. Our interleaved arithmetic utilizes the
distributive and associative property of multiplication and addition
at the bit granularity for partitioning and regrouping.

The proposed model, first, bit-partitions all elements of the two
vectors, and then distributes the MACC operations of the dot-product
over these bit partitions. Then, our mathematical formulation ex-
ploits the associative property of the multiply and add to group and co-
locate bit-partitions that are at the same significance position. This
significance-based rearrangement enables factoring out the power-
of-two multiplicand that signifies the position of the bit-partitions.
The factoring enables regrouping the partial results from a set of
lower-bitwidth MACCs as one spatially parallel operation in the
analog domain, while the group shares a single A/D converter (ADC).
The power-of-two multiplicand will be applied later digitally to the
accumulated result of the group operation. To this end, we refor-
mulate vector dot-product as a wide regrouping of interleaved and
bit-partitioned operations across multiple elements of the two vec-
tors (see section 2). This spatial regrouping of operations and parallel
execution is in contrast with prior analog-based accelerators such
as PRIME [38] and ISAAC [27], which although use bit-partitioning
but perform MACC operations serially over multiple cycles on bit
(partitions) of the operands or RedEye [30] that does not exploit any
sort of bit-partitioning.

The bit-partitioning lowers the resolution of ADCs while the
wide regrouping amortizes the cost of each A/D conversion across
multiple bit-partitions of the vector elements. Using low-bitwidth
operands for analog MACCs also provides a larger headroom be-
tween the value encoding levels in the analog domain. The headroom
tackles the limited range of encoding and offers more robustness to
noise, an inherent non-ideality in the analog mode.

(2) Atthecircuitlevel, the acceleratoris designed using switched-

capacitor circuitry that stores the partial results as electric
charge over time without conversion to the digital domain at
each cycle. The low-bitwidth MACCs are performed in charge do-
main with a set of charge-sharing capacitors. This design choice
lowers the rate of A/D conversion as it implements accumulation
as a gradual storage of charge in a set of parallel capacitors. These
capacitors not only aggregate the result of a group of low-bitwidth
MACC:s, but also enable accumulating results over time. As such,
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the architecture enables dividing the longer vectors into shorter
sub-vectors that are multiply-accumulated over time with a single
group of spatially parallel low-bitwidth MACCs. The results are
accumulated over multiple cycles in the group’s capacitors. Because
the capacitors can hold the charge from cycle to cycle, the A/D con-
version is not necessary in each cycle. This reduction in rate of A/D
conversion is in addition to the amortized cost of ADCs across the
analog low-bitwidth MACCs of the group (see section 3).
(3) We take a systematic approach and perform a step-by-step
analysis to evaluate the contribution of each technique in
tackling the challenges of mixed-signal design and maximiz-
ingits benefits. This analysis showsthat Interleaved Bit-Partitioning
is the most effective technique. On one hand, Spatially Wide Re-
grouping is the second most effective technique in improving area
efficiency of the arithmetic operations that enables integrating more
inagiven area, improving design parallelism. The benefit stems from
sharing a single ADC across the groupings of the low-bitwidth analog
MACC units, amortizing its area. On the other hand, Charge-Domain
Computation ranks second in improving the power efficiency that
is the fruit of reducing the rate of the A/D conversions, through
accumulation and storage of the intermediate results in capacitors.
With these insights, we devise a hierarchical 3D-stacked instance
of the microarchitecture, named BIHIwE, that leverages the pro-
posed arithmetic and building blocks, yet offers programmability and
domain generality. Evaluating this carefully balanced design of B1-
Hrwe with a diverse set of ten DNN benchmarks shows that BIHIwe
delivers 5.5xspeedup over the purely digital 3D-stacked DNN accel-
erator, TETRIs [7], with only 0.5% loss in accuracy achieved after mit-
igating noise, computation error, and Process-Voltage-Temperature
(PVT) variations. With 8-bit execution, BIHIWE offers 35.4xand
70.1xhigher Performance-per-Watt compared to RTX 2080 TI and
Titan Xp, respectively. Compared to the mixed-signal CMOS Red-
Eye [30], memristive ISAAC [27] and PipeLayer [39], BIHIWE deliv-
ers 5.5%, 3.6, and 9.6 higher Performance-per-Watt, respectively.
With these benefits, this paper marks an initial effort to use math-
ematical insights for devising mixed-signal DNN accelerators.

2 WIDE, INTERLEAVED,
AND BIT-PARTITIONED ARITHMETIC

A key idea of this work is the mathematical insight that enables
utilizing low bitwidth mixed-signal units in spatially parallel groups.
Bit-Level partitioning and interleaving of MACCs. To further
detail the proposed mathematical reformulation, Figure 1(a) delves
into the bit-level operations of dot-product on vectors with 2-elements
containing 4-bit values. As illustrated with different colors, each 4-
bit element can be written in the form of sum of 2-bit partitions
multiplied by powers of 2 (shift). As discussed, vector dot-product is
also a sum of multiplications. Therefore, by utilizing the distributive
property of addition and multiplication, we can rewrite the vector
dot-product in terms of the bit partitions. However, we also leverage
the associativity of the addition and multiplication to regroup the
bit-partitions that are in the same positions, together. For instance,
in Figure 1, the black partitions that represent the Most Significant
Bits (MSBs) of the W vector are multiplied in parallel to the teal® par-
titions, representing the MSBs of the X. Because of the distributivity
of multiplication, the shift amount of (2+2) can be postponed after

2Color teal in Figure 1 is the darkest gray in black and white prints.
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Figure 1: Wide, interleaved, and bit-partitioned mathematical formulation.

the bit-partitions are multiply-accumulated. The different colors of
the boxes in Figure 1 illustrates the interleaved regrouping of the
bit-partitions. Each group is a set of spatially parallel bit-partitioned
MACC operations that are drawn from different elements of the
two vectors. The low-bitwidth nature of these operations enables
execution in the analog domain without the need for A/D conversion
for each individual bit-partitioned operation. As such, our proposed
reformulation amortizes the cost of A/D conversion across the bit-
partitions of different elements of the vectors as elaborated below.

Wide, interleaved, and bit-partitioned vector dot-product. Fig-
ure 1(b) illustrates the proposed vector dot-product operation with
4-bit elements that are bit partitioned to 2-bit sub-elements. For in-
stance, as illustrated, the elements of vector X, denoted as x;, are
first bit partitioned to x{‘ and le . The former represents the two
Least Significant Bits (LSBs) and the latter represents the Most Sig-
nificant Bits (MSBs). Similarly, the elements of vector W are also
bit partitioned to the w{“ and wlM sub-elements. Then, each vector
(e.g., W) is rearranged into two bit-partitioned sub-vectors, WLSBs
and WMSBS In the current implementations of BIHIWE architecture,
the size of bit-partitioning is fixed across the entire architecture.
Therefore, the rearrangement is just rewiring the bits to the compute
units that imposes modestly minimal overhead (less than 1%). Fig-
ure 1 is merely an illustration and there is no need for extra storage
or movement of elements. As depicted with color coding, after the
rewiring, WESBS represents all the least significant bit-partitions
from different elements of vector W, while the MSBs are rewired
in WMSBS_ The same rewiring is repeated for the vector X. This
rearrangement, puts all the bit-partitions from all the elements of the
vectors with the same significance in one group, denoted as WL5Bs,
WMSBs xLSBs xMSBs Therefore, when a pair of the groups (e.g.,
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XMSBs WMSBS

and in Figure 1(c)) are multiplied to generate the
partial products, (1) the shift amount (“<4” in this case) is the same
for all the bit-partitions and (2) the shift can be done after partial
products from different sub-elements are accumulated together.

As shown in Figure 1(c), the low-bitwidth elements are multiplied
together and accumulated in the analog domain. Accumulation in the
digital domain would require an adder tree which is costly compared
to the analog accumulation that merely requires connectivity be-
tween the multiplier outputs. It is only after several analog multiply-
accumulations that the results are converted to digital for shift and
aggregation with partial products from the other groups. This is not
only because of spatially wide grouping of the low-bitwidth MACC
operations, but also, as will be discussed in the next section, due
to the accumulation of the partial results in the analog domain by
storing electric charge in capacitors before ADCs (see Figure 1(c)).
If the size of vectors exceeds the predefined value of (size of spatially
low-bitwidth array) x (number of capacitive accumulation cycles), these
converted partial results will be added up in the digital domain using
aregister. For this pattern of computation, we are effectively utiliz-
ing the distributive and associative property of multiplication and
addition for dot-product but at the bit granularity. This rearrange-
ment and spatially parallel (i.e., wide) bit-partitioned computation
is in contrast with temporally bit-serial digital [8, 12, 26, 40] and
analog [27] DNN accelerators.

3 SWITCHED-CAPACITOR DESIGN
FOR INTERLEAVED BIT-PARTITIONING

To exploit the aforementioned arithmetic, an analog vector unit
needs to be designed. This building block is a collection of low-
bitwidth analog MACCs that operate in parallel on sub-elements
from the two vectors under dot-product. This wide structure is
dubbed Mixed-Signal Bit-Partitioned MACC Array (M8-BPMacc).
Within the MS-BPMacc, we design the low-bitwidth MACC units us-
ing switched-capacitor circuitry [29,31,36,37,41], implementing the
MACC operations in the charge-domain rather than using resistive-
ladders to compute in current domain [27, 35, 38]. Compared to the
current-domain approach, switched-capacitors (1) enable result ac-
cumulation in the analog domain by storing them as electric charge,
eliminating the need for A/D conversion at every cycle, and (2) make
the relative ratio of capacitors the determining factor in analog mul-
tiplication. Dependence to ratio and not the absolute sizes makes
the design more resilient to process variation.

3.1 Mixed-Signal Bit-Partitioned MACC Array

Figure 2(a) depicts an array of n low-bitwidth MACCs, constituting
the MS-BPMacc unit, which perform operations for m cycles in the
analog domain. Each low-bitwidth MACC unit receives a pair of bit-
partitions (xp,;, Wpp;) from the sub-vectors. These bit-partitions are
fed to Digital to Analog (D/A) converters to enable charge-domain
MACC operations. Low-bitwidth MACC units are equipped with
their own pair of accumulating capacitors (Cacc+, Cacc-), which
perform the accumulation over time across multiple sub-vectors. The
pair is used to handle positive and negative values by accumulating
them separately on one or the other capacitor. Figure 2(b) illustrates
the MACC computation mode of the M8-BPMacc unit. Over m
cycles, each low-bitwidth MACC unit works separately and accumu-
lates the partial results privately on its own pair of Caccs. To enable
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Figure 2: M(8-BPMacc and its operational modes.

Figure 3: Low-bitwidth switched-capacitor MACC.

the private accumulation mode the transmission gates between dif-
ferent MACC units are all disconnected (shown with open switches)
and only the capacitors’ private transmission gates are connected.
Aggregation across the multiple low-btiwidth MACCs happens in
the first half of cycle m+1, shown in Figure 2(c) . In this half cycle,
the private results get aggregated across all n MACC units within the
MS8-BPMacc. The transmission gates between the capacitors con-
nect them and a simple charge sharing between the capacitors yields
the aggregated result of mxn number of multiply-adds. Clkacc is
the control signal which connects the Caccs. This aggregation hap-
pens for both positive and negative values (across Cacc+ sand Cacc-
s respectively) at the same time. The single ADC in the MS-BPMacc
is responsible for converting the aggregated result, which also starts
at the first stage of cycle m+1. The accumulating capacitors (Caccs),
are connected to a Successive Approximation Register (SAR) ADC
and share their stored charge with the Sample and Hold block (S&H)
of the ADC. This (S&H) block has differential inputs which samples
the positive and negative results separately and holds them for the
process of A/D conversion. In the second phase of cycle m+1 all the
Caccs get disconnected from the ADC and Clkys; connects them to
the ground to clear their charge for the next iteration of wide, bit-
interleaved calculations. There is a trade-off between resolution and
sample rate of ADC, which also defines its topology. For instance,
Flash ADCs are suitable for high sample rate but low resolution
designs. SAR ADC is a better choice when it comes to medium res-
olution (8-12 bits) and sample rate (1-500 Mega-Samples/sec). We
choose a 10-bit, 15 Mega-Samples/sec SAR ADC [42] as it strikes the
best balance between rate and resolution for MS-BPMaccs based
on design space exploration shown in Figure 17. The process of A/D
conversion takes m+1 cycles, pipelined with vector dot-products.

The MS-BPMacc computes the low-bitwidth MACC operations
in charge-domain as the following discusses.

3.2 Low-Bitwidth Switched-Capacitor MACC

Figure 3 depicts the design of a single 3-bit sign-magnitude MACC.
The xsx1x0 and wswiwg denote the bit-partitions operands. The
result of each MACC operation is retained as electric charge in the
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accumulating capacitor (Cacc). In addition to Cacc, the MACC unit
contains two capacitive Digital-to-Analog Converters (DACs), one
for inputs (Cx) and one for weights (Cyw). The Cx and Cy, convert the
2-bit magnitude of the input and weight to the analog domain as an
electric charge proportional to |x| and |w| respectively. Cx and Cy
are each composed of two capacitors ((Cy, 2C1) for Cx and (Cz, 2C3)
for Cy) which operate in parallel and are combined to convert the
operands to analog domain. Each of these capacitors are controlled
by a pair of transmission gates which determine if a capacitor is
active or inactive. Another set of transmission gates connect the two
D/A converters and share charge when partitions of x and w are
multiplied. The resulting shared charge is stored on either Cacc+
or Cacc- depending on the sign control signal produced by xs ®ws.
During multiplication, the transmission gates are coordinated by a
pair of complimentary non-overlapping clock signals, Clk and Clk.
Charge-domain MACC. Figure 4 shows the phase-by-phase pro-
cess of a MACC, the phases of which are described below.

Clkg(1): The first phase (Figure 4(a)) consists Cx converting digi-
tal input (x) to a charge proportional to its magnitude. Since, the
sampled charge (Qsx) by Cx in the first phase is equal to:

Qsx=0vppX(|1X|Cy) (1)
ﬁ(ﬁ (2):Inthe second phase (Figure 4(b)), the multiplication happens
via a charge-sharing process between Cx and Cy,. The 2-bit partition
of the weight is applied to Cy, and sets its equivalent capacitance to
|w|C2. At the same time, the Cx redistributes its sampled charge (Qsx)
over all of its capacitors (3XC7) as well as the equivalent capacitor
of Cyw. The voltage (Vjs) at the junction of Cx and Cy, is as follows:
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_ vppXx(IX]C1)
3C1+|W|C2 (2)

Because the sampled charge is shared with the weight capacitors,
the stored charge (Qs+y) on Cy is equal to:

®)

Equation 3 shows that Qg,, is proportional to |x| X |w]|, but includes a
non-linearity term in the denominator (|w/|). To mitigate that C; must

be much larger than C,. Further mitigation is considered as discussed
G UD D

C,C
Qsuw=Vir XIwlCo = x| x| 100

in Section 6. With this choice, Qs,, becomes |x|X|w|
Clkg(3): In the last phase, (Figure 4(c)), the charge from multlplica-
tion is shared with Cacc for accumulation. The sign bits (xs and wy)
determine which of Caccy or Cacc. is selected for accumulation.
The sampled charge by |w|C; is then redistributed over the selected
Cacc as well as all the capacitors of Cy (=3Cs). Theoretically, Cacc
must be infinitely larger than 3C, to completely absorb the charge
from multiplication. However, in reality, some charge remains un-
absorbed, leading to a pattern of computational error, which is miti-
gated as discussed in Section 6. Ideally, the V4 ¢ voltage on Cacc is:

C.
Vace=xl|wl( 5222 ) @

While the charge sharing and accumulation happens on Cacc, anew
input is fed into Cx, starting a new MACC process in a pipelined
fashion. This process repeats for all low-bitwidth MACC units over
multiple cycles before one A/D conversion.

4 MIXED-SIGNAL ARCHITECTURE
DESIGN FOR SPATIAL BIT-PARTITIONING

Last section provided the detailed innards of low-bitwidth MACCs
and how they can be used to construct a low-bitwidth spatially in-
terleaved dot-product unit (MS-BPMacc). This section, focuses
on architecting a higher bitwidth dot-product engine, called M§-
WAGG, from a collection of MS-BPMaccs. This engine is named
MS-WAGG as it is a Mixed- Signal Wide Aggregator that operates on
bit-partitioned vectors in SIMD fashion. Instead of just describing
the design, we take a quantitive journey that step-by-step highlights
how much each design decision contributes to improving the power
and area efficiency. Finally, we elaborate on how to utilize this en-
gine to construct a full-fledged programmable mixed-signal DNN
accelerator.

4.1 Mixed-Signal Wide Aggregator

To better understand the tradeoffs in designing M8-WAGG, we con-
trast it with a basic mixed-signal dot-product engine, called MS-
Basic, that does not utilize bit-partitioning (see Figure 5). Conse-
quently, the D/A converters in Figure 5 are stained with two different
shades of a color to highlight that all of the different bit-partitions
of each operand are kept together. Each analog multiplier receives
all operands’bits and converts the multiplication result to digital do-
main to go through an adder tree. Mixed-signal DNN accelerators are
essentially an optimized transformation of this basic engine. Here,
we discuss how much each of our innovations contributes to the
design transformation that yields M8-WAGG. Figure 6 illustrates a
possible MS-WAGG design, comprising 16 MS-BPMAccs, necessary
to perform 8-bit by 8-bit vector dot-product with 2-bit partitioning>.
In contrast to the MS-Basic, each D/A converter in Figure 6 is col-
ored with one shade to show each input is just a bit-partition. In

32-bit partitioning is the optimal choice (design space exploration in Figure 15).
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this case, the number of MS-BPMAccs, 16 (=fourX four), comes from
the fact that each of the two 8-bit operands can be partitioned to
four 2-bit values. Each of the four 2-bit partitions of the multiplicand
need to be multiply-accumulated with all the multiplier’s four 2-bit
partitions. As discussed in Section 2, each MS-WAGG also performs
the necessary shift operations to combine the low-bitwidth results
from its 16 MS-BPMAccs. By aggregating the partial results of each
MS8-BPMacc in the digital domain, the MS-WAGG engine generates
a scalar which is stored on its output register.

4.2 MS-WAGG Design Decisions and Tradeoffs

The design of MS-WAGG stems from three main techniques: (1) In-
terleaved Bit-Partitioning, (2) Spatially Wide Regrouping, and (3)
Charge-Domain Computation. For all the analyses in this section,
500 Mhz frequency at 45 nm is used to design an 8-bit vector dot-
product engine. Figure 7(a) and (b) illustrates the contribution of each
technique in power and area improvement, respectively. Improving
area efficiency has a direct effect on performance as it enables inte-
grating more compute units in a given area, improving design paral-
lelism. The pie charts show how much of the total power/area is con-
sumed by each of hardware components: analog multiplication, dig-
ital shift-and-add logic, register, ADC. D/A conversion is part of the
analog multiplier as discussed in Section 3. The size of the pie is pic-
torially reduced to show that the total power/area is decreasing. The
first pie chart belongs to MS-Basic-merely a point of reference-that
performs an 8-bitx8-bit MACC in the analog domain and converts the
16-bitresult to digital, while the last chart is of MS-WAGG. The follow-
ing discusses each technique and its effects on power/area efficiency.

(1) Interleaved Bit-Partitioning is the most effective technique
in improving both power and area of the mixed-signal dot-product
engines. This technique partitions each operand to lower bitwidth
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Figure 7: Step-by-step analysis of improvement in (a) power and (b) area.

suboperands, and then interleaves the bit-partitions. Interleaved Bit-
Partitioning enables replacing the 8-bitx8-bit MACC and its high
resolution (16-bit) ADC in M8-Basic with 16 2-bitx2-bit MACCs
and significantly lower resolution (4-bit) ADCs . By applying this
technique, the power and area for an 8-bit MACC operation im-
proves by 24.9x and 228.2x, respectively (Comparing Design-2 with
Design-1 in Figure 7). This improvement stems from the fact that
power and area of ADC increases dramatically with its resolution.

(2) Spatially Wide Regrouping is the second technique that re-
groups a wide array of interleaved lower bitwidth MACC units to
share a single ADC. The outputs of lower-bitiwidth MACC units is ag-
gregated in the analog domain, the result of which is fed to the ADC.
This technique ranks second in improving area efficiency (41.3x
when comparing Design-3 with Design-2 in Figure 7(b)). Sharing a
single ADC across a wide group of lower-bitwidth MACC units, re-
duces the effective number of ADCs, leading to lower area. This shar-
ing increases 4-bit resolution of the ADCs to 7-bits (sharing an ADC
with 8 2-bitx2-bit MACCs) as more number of low-bitwidth MACC
operations are aggregated in the analog domain before conversion;
however, this increase in the ADC’s power/area is sub-exponential.
The benefit comes from the fact that Spatially Wide Regrouping
enables shifting the ADC design style from Flash to Pipelined or SAR
in the same frequency. Exploiting this technique also improves the
power efficiency by 6.7X%.

(3) Charge-Domain Computation is the second most effective
technique in improving power-efficiency. Accumulating the partial
results as electric charge in capacitors eliminates the necessity of A/D
conversion at each cycle, leading to significant power reduction. This
additional accumulation in the analog domain requires higher resolu-
tion ADCs (10-bits); however, the reduced rate of the A/D conversion
trumps the resolution increase. This technique yields an additional
14.4X improvement in power efficiency (Design-4 vs Design-3 in Fig-
ure 7(a)). The number of the ADC remains the same but the reduced
rate enables choosing an ADC with lower sample rate. Lower sample
rate ADCs require lower-area subcomponents that can reduce its
overall area. However, the increase in resolution counteracts this
benefit to a large degree. As such, this technique only reduces the
area by 1.1x (Design-4 compared to Design-3 in Figure 7(b)).
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4.3 Hierarchically Clustered Architecture

As illustrated in Figure 8, a collection of MS8-WAGGs constitute an
accelerator core from which the clustered architecture of BIHIWE is
designed. The three aforementioned optimization techniques, results
in 5.4X less energy for a single 8-bit MACC in comparison with a dig-
ital logic. Hence, it is possible to integrate a larger number of mixed-
signal compute unitsin a given power budget compared to a digital ar-
chitecture. To efficiently utilize this increase in compute units, a high
bandwidth memory substrate is required. To maximize the benefits of
the mixed-signal computation, 3D-stacked memory is an attractive
option since it reduces the energy cost of data accesses and provides
a higher bandwidth for data transfer between the on-chip compute
and off-chip memory [7, 20]. Based on these insights, we devise a clus-
tered architecture for BIHIWE with a 3D-stacked memory substrate
as shown in Figure 8. As the results in Section 7.2 Figure 16 shows, a
flat design would result in significant underutilization of the compute
resources and bandwidth from 3D stacking. Therefore, BIHIwE is a hi-
erarchically clustered architecture that allocates multiple accelerator
cores as a cluster to each vault (Figure 8(a)). Figure 8(b) depicts a sin-
gle core. As shown in Figure 8(b), each core is self-sufficient and packs
amixed-signal systolic array of M8-WAGGs as well as the digital Pool-
ing Unit, Activation Unit, and Normalization Unit, etc. The mixed-signal
array is responsible for the convolutional and fully connected layers.
Generally, wide and interleaved bit-partitioned execution within
MS8-WAGggs is orthogonal to the organization of the accelerator archi-
tecture. This paper explores how to embed them and the proposed
compute model, within a systolic design and enables end-to-end
programmable mixed-signal acceleration for a variety of DNN.

Accelerator core. As Figure 8(b) depicts, the first level of hierarchy
is the accelerator core and its 2D systolic array that utilizes the MS-
WAGGs. As depicted, the Input Buffers and Output Buffers are shared
across the columns and rows, respectively. Each MS-WAGG has its
own Weight Buffer. This organization is commensurate with other
designs and reduces the cost of on-chip data accesses as inputs are
reused with multiple filters [21]. However, what makes our design
different is the fact that each buffer needs to supply a sub-vector
not a scalar in each cycle to MS-WAGGs. The rewiring of the inputs
and weights is already done inside the M8-WAGas since the size of
bit-partitions is fixed. Consequently, there is no need to reformat
any of inputs, activations, or weights. To preserve the accuracy of
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Figure 8: Hierarchical clustered architecture
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the DNNS, intermediate results are stored as 32-bit digital values and
intra-column aggregations are performed in digital mode.
On-chip data delivery for accelerator cores. To minimize data
movement and exploit the abundant data-reuse in DNNs, BIHIwE
uses a statically-scheduled interconnect that is capable of multicas-
ting/broadcasting data across accelerator cores. Static scheduling
enables the BIHIWE compiler stack to do exhaustive search over
variegated possibilities of cutting and tiling DNN layers across cores
to maximizing inter- and intra-core data-reuse. The static schedule
is encoded in the form of data communication instructions.
Parallelizing computations across accelerator cores. To mini-
mize data movement, the BIHIWE clustered architecture (1) divides
the computations into tiles that fit within the on-chip capacity of the
scratchpads, and (2) cutsthe tiles of computations across cores to min-
imize DRAM accesses by maximally utilizing the multicast/broadcast
capabilities of BIHIWE on-chip data delivery network. To simplify
the hardware, scratchpad buffers are private to each core and the
shared data is replicated across multiple cores. Thus, a single tile of
data can be read once from the memory and then be broadcasted/mul-
ticasted across cores to reduce DRAM accesses. The cores use double-
buffering to hide the latency for memory accesses for subsequenttiles.
Cores use output-stationary dataflow that minimizes the number
of A/D conversions by accumulating results in the charge-domain.
Section 5 discusses the cutting/tiling optimizations in compiler.

4.4 BiHiwe Instruction Set

The BIHIWE ISA provides a layer of abstraction that exposes the fol-
lowing unique properties of its architecture to the compiler (1) mixed-
signal execution within a BIHIWE core; and (2) data-movement for
both 3D-stacked memory and on-chip software-managed scratch-
pads between different BIHIWE cores. As such, BIHIWE uses a block-
structured ISA where the blocks have repetition counters due to
the tile-based execution and segregates the execution of the DNN
into (1) data communication instruction blocks that transfer tiles of data
between 3D-stacked memory and on-chip scratchpads (Input Buffer-
/Weight Buffer/Output Buffer in Figure 8) using address generation
instructions, and (2) compute instruction blocks that consumes the tile
of data from a communication instruction block to produce an output
tile. The communication block and compute block together specify a
static schedule for DNN execution in BIHIWE.

Using the compute instruction block, the compiler has complete
control over on-chip scratchpads, A/D conversion rate, and bit-
partitioning across M8-WAGas. These pieces of information are
encoded in the header of the compute instruction blocks. The gran-
ularity of bit-partitioning and charge-based accumulation is deter-
mined for each microarchitectural implementation based on tech-
nology node and circuit design style. As such, to support different
technology nodes and designs and allow extensions to the architec-
ture, the BIHIWE ISA encodes the bit-partitioning and accumulation
cycles. Using the communication instruction blocks, the compiler stack
exploits the broadcasting/multicasting capabilities to optimize data
movement while maximizing data locality for the on-chip scratchpad
memories in each core.

5 BIHIWE COMPILER STACK

Figure 9 illustrates the BIHIWE compiler stack that accepts a high-
level Caffe2 [43] specification of the DNN to generate an instruction
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Figure 9: BIHIWE compilation stack.

Initialize cut,p [N] < 0;
for layer,- €DFGpyy do
Sopt £
for tiling; j € layer; do
for cut; i €tiling; j do
(runtime; j 1, energy; ; ) < EstimTool(tiling; j,cut; j i)
8i,jk <= runtime; j x X energy; ; ,

Initialize tiling,p [N] <0

if s; jx <505 then
Cutt o [i] <= cut j ks
return cutop, tilingop

tilingop: [i] —tiling;

Algorithm 1: Cutting/tiling algorithm for clustered acceleration.

binary (BIHIWE ISA). The first step in the compiler stack is a trans-
lation of the Caffe2 file into a layer DataFlow Graph (DFG) that
preserves the structure of the DNN. The BIHIWE compiler stack also
accepts a specification of the accelerator configuration that includes
the organizations and configurations (# rows, #columns) of the clus-
ters, vaults, and cores as well as details of the MS-BPMaccs. Using
the layer DFG and the accelerator configuration, the compiler then
proceeds with an optimization step that determines the optimal cut
of the DFG nodes across BIHIWE clusters and cores, and optimal
tile sizes for the multidimensional arrays (DFG edges) to fit into the
limited on-chip memory. For each node in the layer DFG, the opti-
mization algorithm performs an exhaustive search of different cuts
and tile sizes for incoming and outgoing edges. For each candidate cut
and tile-size, the compiler stack uses an analytical estimation tool that
determines the total energy consumption and runtime. Estimation
is viable, as the DFG does not change, there is no hardware managed
cache, and the accelerator architecture is fixed during execution.
Thus, there are no irregularities that can hinder estimation. Algo-
rithm 1 depicts the cutting/tiling procedure. When cuts and tiles are
determined, the compiler generates the binary code that contains the
communication and computation instruction blocks in BiH1wE ISA.

6 MITIGATING ANALOG NON-IDEALITIES

Although analog circuitry offers significant reduction in energy, they
might lead to accuracy degradation. Thus, their error needs to be
properly modeled and accounted for. Specifically, MS-BPMaccs,
the main analog component, can be susceptible to (1) thermal noise,
(2) computational error caused by incomplete charge transfer, and
(3) PVT variations. Traditionally, analog circuit designers mitigate
sources of error by just configuring hardware parameters to values
which are robust to non-idealities. Such hardware parameter adjust-
ments require rather significant energy/area overheads that scale
linearly with number of modules. However, due to the scaled-up
nature of our design, we need to mitigate these non-idealities in a
higher and algorithmic level. We leverage the training algorithm’s
inherent mechanism to reduce error (loss) and use mathematical
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models to represent these non-idealities. We, then, apply these mod-
els during forward pass to adjust and fine-tune pre-trained neural
models with just a few more epochs across the chips within a technol-
ogy node. Our approach is commensurate with recent work [44] that
uses fine-tuning passes to incorporate analog non-idealities. The
rest of this section details non-idealities and their modeling.
Thermal noise. Thermal noise is an inherent perturbation in analog
circuits caused by the thermal agitation of electrons. This noise can be
modeled according to a normal distribution, where the ideal voltage
deviates relative to a value comprised of the working temperature
(T), Boltzmann constant (k), and capacitor size (C) which produce the
deviation o =+/kT/C. Within BIHIwE, switched-capacitor MACC
units are mainly effected by the combined thermal noise resulting
from weights and accumulator capacitors (Cyw and Cacc respec-
tively). The noise from these capacitors gets accumulated during the
m cycles of computation for each individual MACC unit and then
gets aggregated across the n MACC units in MS§-BPMacc. By apply-
ing the thermal noise equation used for similar MACC units [37] to a
MS-BPMacc unit, the standard deviation at the output is described
by Equation 5:
UACC:\/W( ﬁal(ﬁ)z’)xn ®)
In the above equation, « is equal to gécc . We add error tensors to
outputs of convolutional/fully connected layers in DNN forward
propagation, to incorporate thermal noise effect. Elements of error
tensors are sampled from a normal distribution as N(y = 0,62 =
(caccxrx85)2). cacc is scaled by r, the amount of MS-BPMacc
operations required to generate an element in the output feature
map, as well as the amount of total bit-shifts applied to each result
by MS8-WAGG engine, 85.
Computational error. Another source of error in BIHIwe’s compu-
tations arises when charge is shared between capacitors during the
multiplication and accumulation. Within each MACC unit, the input
capacitors (Cx) transfer a sampled charge to the weight capacitors
(Cw) to produce charge proportional to the multiplication result. But
the resulting charge is subject to error dependent on the ratio of
weight and input capacitor sizes (f=C7/C3) as shown in Equation 3.
This shared charge in the weight capacitors introduces more error
when it is redistributed to the accumulating capacitor (Cacc) which
cannot absorb all of the charge, leaving a small portion remaining
on the weight capacitors in subsequent cycles. The ideal voltage
(Vacc.Ideal) produced after m cycles of multiplication can be derived
from Equation 4 as follows:

\%4
VaccrdeaIml =21, 2R W;X; (6)
By considering the computational error from incomplete charge
sharing, the actual voltage at the accumulating capacitor after m

cycles of MACC operations (Vacc,r[m]) becomes:
7

We consider computational error in the fine-tuning pass by includ-
ing the multiplicative factors shown in Equation 7 in weights. Dur-
ing the forward pass, the fine-tuning algorithm decomposes weight
tensors in convolutional/fully-connected layers into groups corre-
sponding to MS8-WAGG configuration and updates the individual
weight values (W;) to new values (W) with the computational error:

3a memﬂ
Tar W] VACCRIM =11+ o e 1 VoD
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Figure 10: ResNet-50 and VGG-16 accuracy after fine-tuning.
Table 1: Evaluated benchmarked DNNs
DNN Type Domain Dataset Multiply-Adds Model Weights
AlexNet [48] CNN  Image Classification Imagenet [49] 2,678 MOps 56.1 MBytes
CIFAR-10[50,51] CNN  Image Classification ~ CIFAR-10 [52] 617 MOps 13.4 MBytes
GoogLeNet [53] CNN  Image Classification Imagenet 1,502 MOps 135 MBytes
ResNet-18[54] CNN  Image Classification Imagenet 4,269 MOps 11.1 MBytes
ResNet-50 (54]  CNN  Image Classification Imagenet 8,030 MOps 24.4 MBytes
VGG-16[50]  CNN  Image Classification Imagenet 31GOps 131.6 MBytes
VGG-19[50]  CNN  Image Classification Imagenet 39 GOps 137.3 MBytes
YOLOv3[55]  CNN  Object Recognition Imagenet 19 GOps 39.8 MBytes
PTB-RNN[51]  RNN  Language Modeling  Penn TreeBank [56] 17 MOps 16 MBytes
PTB-LSTM[57] RNN  Language Modeling  Penn TreeBank 13 MOps 123 MBytes
m—1
W= Wi BVpp 3a
=
3a+ Wy 3p+Wi| 11 3a+|w; (8)
Jj=it+l
V0<i<m-1

Process variations. We use the sizing of the capacitors to provi-
sion and mitigate for the process variations to which the switched-
capacitor circuits are generally robust. This is effective because the
capacitors are implemented using a number of smaller unit capac-
itors with common-centroid layout technique [45]. We, specifically,
use the metal-fringe capacitors for MACCs with mismatch of just 1%
standard deviation [46] with the max variation of 6% (65) which is
well below the error margins considered for the computational error.
Temperature variations. This is modeled by adding a perturbation
term to T in Equation 5 as a gaussian distribution N7 (y,6%). We con-
sider the maximum value of the temperature as 358°K, commensurate
with existing practices [47], and the minimum value as 300°K (This
is the peak-to-peak range for the gaussian distribution (60)).
Voltage variations. We also model the voltage variation by adding
a gaussian distribution to Vpp term in Equation 8. Our experiments
show that, variations in voltage can be mitigated up to 20%. The exten-
sive amount of vector dot-product operations in DNNs, allows for the
minimum and maximum values of the distributions being sampled
sufficient amount of times, leading to coverage of the corner cases.

Atop all these considerations, we use differential signaling for
ADCs which attenuates the common-mode fluctuations such as PVT
variations. To show the effectiveness of our techniques, Figure 10
plots the result of fine-tuning process of two benchmarks, ResNet-50
and VGG-16 for ten epochs. Table 3 reports the summary of accuracy
trends for all the benchmarks, which achieve less than 0.5% loss. As
Figure 10 shows, the fine-tuning pass compensates the initial loss
(0.73% for top-1 and 2.41% for top-5) to only 0.04% for top-1 and

0.02% for top-5. VGG-16 is slightly different and reduces the initial
loss (1.16% for top-1 and 2.24% for top-5) to less than 0.18% for top-1
and 0.13% for top-5 validation accuracy. The trends are similar for
other benchmarks and omitted due to space constraints.

7 EVALUATION
7.1 Methodology

Benchmarks. We use ten diverse CNN/RNN models including real-
time object recognition and word-level language modeling, described
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Table 2: BIHIWE and baselines platforms

ASIC
BiHIwEe
16,384
9216 KB

GPU
RTX 2080 TI

Parameters
Chip
Tensor Cores
Memory

Parameters
Chip
MACCs
On-chip Memory

TETRIS
3,136
3698 KB

Titan Xp
544 -
11GB (GDDR6) 12 GB (GDDRS5X)

Chip Area 1223 56 Chip Area (mm?) 754 an

(mm?) § Total Dissipation Power 250 W 250 W
Frequency 500 Mhz 500 Mhz Frequency 1545 Mhz 1531 Mhz
Technology 45nm  45nm Technology 12nm 16 nm

in Table 1. These benchmarks includes medium to large scale models
and variety of multiply-add operations.

Simulation infrastructure. We develop a cycle-accurate simula-
tor and a compiler for BIHIWE. The simulator dumps the statistics
of runtime and accesses to all components and calculates the power.
Since, all the instructions are statically scheduled, the simulator can
calculate the exact number of accesses to components.

Iso-power and iso-area comparison with TETR1s. We match the
on-chip power of BIHIWE and TETRIs and compare the total run-
time and energy, including DRAM accesses. TETRIS supports 16-bit
execution while BIHIWE supports 8-bit. For fairness, we modify the
open-source TETRIS simulator [58] and proportionally scale its run-
time/energy. BIHIWE supports 8-bit since this representation has
virtually no impact by itself on the accuracy of the DNNs [51, 59-62].
Comparison with analog/digital accelerators. We also compare
BIHIWE to mixed-signal RedEye [30], two analog memristive accel-
erators [27, 63], and Google TPU [21], all in 8-bits. The original
designs [27, 63] use 16-bits. We optimistically increase the efficiency
of the competitor designs by 4X to model 8-bit execution.

GPU comparison. We also compare BIHIWE to two Nvidia GPUs,
RTX 2080 TI with tensor cores and Titan Xp (Table 2). For a fair
comparison, we use 8-bit on GPUs using Nvidia’s TensorRT 5.1 [64]
library compiled with the optimized cuDNN 7.5 and CUDA 10.1.
Energy and area measurement. All hardware modelings are per-
formed using FreePDK 45-nm standard cell library [65]. We implement
the switched-capacitor MACCs in Cadence Analog Design Environment
V6.1.3 and use Spectre SPICE V6.1.3 to model the system. We then, use
Layout XL of Cadence to extract the energy/area. The energy/area
for ADCs are obtained from [66]. We implement digital blocks of
BIHIWE, including adders, shifters, and interconnection in Verilog
RTL and use Synopsys Design Compiler (L-2016.03-SP5) for synthesis
and measuring energy/area. We use CACTI-P [67] to model on-chip
buffers. 3D-stacked DRAM is based on HMC [68, 69], same as TETRIS,
and the bandwidth and access energy are adopted form that work.
Error modeling. We use Spectre SPICE V6.1.3 to extract noise be-
havior of MACCs. Thermal noise, computational error, and PVT
variations are considered based on details in Section 6. We imple-
ment extracted hardware error models and corresponding mathe-
matical modelings using PyTorch v1.0.1 [70] and integrate them into
Neural Network Distiller v0.3 framework [71] for a fine-tuning pass
over evaluated benchmarks.

7.2 Experimental Results

7.2.1
Iso-power and iso-area comparisons. Figure 11 shows the per-
formance and energy reduction of BIHIWE over TETRIs. On average,
BIHIWE delivers a 5.5Xspeedup over TETRIS in iso-power setting.
The low power and wide bit-partitioned mixed-signal design of MS-
WAGGs in BIHIWE enables us to integrate 5.2X more compute units
than TETRIs in the same power budget. The highest speedup is ob-
served in YOLOv3 and CIFAR-10, where the network topology favors
the wide vectorized execution in BIHIWE. The lowest speedup is

Comparison with TETRIS.
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Figure 11: Iso-Power/Iso-Area speedup and energy reduction over TETRIs.
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Figure 12: Energy breakdown of BiIHIWE and TETRIs.

observed in ResNet-18, since its relatively small size leads to under-
utilization of compute resources in BIHIWE. Figure 11 also demon-
strates total energy reduction for BIHIWE as compared to TETRIS in
iso-power setting. On average, BIHIWE yields 2.2xenergy reduction.
The lowest energy reduction is observed in RNN benchmarks, PTB-
RNN and PTB-LSTM, since matrix-vector operations in RNNs require
significant number of DRAM accesses for weights, limiting benefits.
Figure 11 also shows iso-area comparisons. Scaling-up computes
in TETRIS by 2.25X to match the area of BIHIWE results in ~ 60%
increase in TETRIS performance. This improvement in performance
comes at a cost of reduced energy-efficiency due to an increase in
memory accesses to feed the additional compute units. Trends in
speedup and energy-reduction remain the same with the exception
of ResNet-18, which now sees resource underutilization in TETRIS.
Overall, BIHIWE shows 3.4xspeedup and 2.5xenergy reduction.
Energy breakdown. Figure 12 shows the energy breakdown nor-
malized to TETRIs across: (1) on-chip compute units, (2) on-chip mem-
ory, (3) interconnect, and (4) 3D-stacked DRAM. DRAM accesses ac-
count for the highest portion of the energy in BIHIWE, since BIHIWE
significantly reduces the on-chip compute energy. While BIHIwE
has a larger number of compute resources compared to TETRIs, the
number of DRAM accesses remain almost the same. This is because
the statically-scheduled interconnect allows data to be multicast-
ed/broadcasted across multiple cores in BIHIWE without significantly
increasing the number of DRAM accesses. Unlike the fully-digital
PEs in TETRIS, BIHIWE uses M8-WAGGs which perform wide vector-
ized operations. Each MACC operation in BIHIWE consumes 5.4X
less energy compared to TETRIS. The output-stationary dataflow
enabled by capacitive accumulation in addition to the systolic orga-
nization of M8-WAGGs in each core of BIHIWE eliminates the need
for register file, leads to 4.4X reduction in on-chip data movement.

7.2.2  Comparison with Other Baselines.

Figure 13 depicts power efficiency (GOPS/s/Watt) and area effi-
ciency (GOPS/s/mm?) of BIHIWE with other recent accelerators. Due
to the lack of available raw performance/energy numbers for specific
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DNNss and the fact that the simulation/compilation infrastructures
for prior accelerators are not open sourced, we use these metrics that
is commensurate with comparisons for recent designs [16, 63, 72, 73]
to provide a best effort analysis. On average for the evaluated bench-
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Figure 13: Comparison with other accelerators.

marks, BIHIWE achieves 81% of its peak efficiency.

Mixed-signal CMOS: RedEye [30]. RedEye also uses switched-
capacitor circuitry. Compared to RedEye, BIHIWE offers 5.5X power
efficiency and 167X area efficiency. In contrast to RedEye [30] which
does not exploit any sort of bit-partitioning, the proposed wide, in-
terleaved, and bit-partitioned arithmetic amortizes the cost of ADCs
in BIHIWE and yields these benefits.

Analog Memristive designs [27, 63]. Prior work in ISAAC and
PipeLayer have explored memristive technology for DNN acceler-
ation, which integrates both compute and storage in the same die,
offering higher compute density compared to traditional CMOS. Gen-
erally, memrisitive designs perform computations in current domain,
requiring costly ADCs to sample currents at high rates, curtailing
the power-efficiency. Overall, compared to ISAAC and PipeLayer,
BiHIwE improves the power efficiency by 3.6x and 9.6 X, respectively.
Google TPU [21]. Compared to TPU, which also uses systolic de-
sign, BIHIWE delivers 4.5X more peak power efficiency and almost
the same area efficiency. Leveraging the wide, interleaved, and bit-
partitioned arithmetic with its switched-capacitor design in BIHIWE,
reduces the cost of MACC operations significantly.

Comparison with GPUs. Figure 14 compares performance of B1-
Hiwe with Titan Xp and RTX 2080 TI, normalized to Titan Xp. B1-
HIwk, on average, yields 1.9 speedup over Titan Xp and is just 5%
slower than RTX 2080 TI. CNNs require abundant matrix-matrix
multiplications, well-suited for tensor cores, leading to RTX 2080 TI's
outperformance on both BIHIwE and Titan Xp. However, BIHIWE
outperforms RTX 2080 TI in PTB-RNN and PTB-LSTM with 11.2X and
11.4X, respectively. RNNs require matrix-vector multiplications—
particularly suitable for the wide vectorized operations supported
in MS-WAGGs. However, BIHIWE outperforms both Titan Xp and
RTX 2080 TI GPUs in Performance-per-Watt by large margins of
70.1xand 35.4X%, respectively.

7.2.3  Design Space Explorations.
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Figure 14: Performance comparison to GPUs.
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Figure 17: Design space exploration for M 8-BPMacc.

Design space exploration for bit-partitioning. Figure 15 shows
the reduction in energy and area for different bit-partitioning design
points that are algorithmically identical and perform the same 8-
bitx8-bit vector dot-product with 32 elements. However, the baseline
design uses 8-bitx8-bit MACC units while the rest use our wide and
interleaved bit-partitioned arithmetic. As depicted, 2-bit partition-
ing strikes the best balance in energy/area with switched-capacitor
design of MACC units at 45 nm. Compared to 2-bit, single-bit parti-
tioning quadratically increases the number of low bitwidth MACCs
from 16 (2-bit partitioning ) to 64 (1-bit partitioning) to support 8-bit
operations. This imposes disproportionate overhead that outweighs
benefit of decreasing MACC units energy/area.

Design space exploration for clustered architecture. BIHIWE
uses a hierarchical architecture with multiple cores in each vault.
Having a larger number of small cores for each vault yields increased
utilization of compute resources, but requires data transfer across
cores and replication. We explore the design space with 1, 2, 4, and 8
cores per cluster. As Figure16 shows, BIHIWE with four cores per each
vault (default configuration) is optimal by striking a better balance be-
tween data accesses and compute resource utilization. Configuration
with 8-cores results in higher data accesses, hence higher energy.
Design space exploration for MS-BPMacc configuration. The
number of accumulation cycles (m) before A/D conversion and the
number of MACC units (n) are two main parameters of MS-BPMacc
which define ADC resolution and sample rate, determining its power.
Figure 17 shows the design space exploration for different configura-
tions of MS8-BPMacc. In a fixed power budget for compute units, we
measure total runtime/energy of BIHIWE across benchmarks and
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Table 3: Accuracy before and after fine-tuning.

Top-1Accuracy Top-1 Accuracy
(With Non-Idealities) (After Fine-Tuning)

53.12% 56.64%
90.82% 91.01%
67.15% 68.39%
66.91% 68.96%

74.5% 75.21%
70.31% 71.28%
73.24% 74.20%
75.92%
1.1BPC
97 PPW

Top-1Accuracy Final Accuracy
(Ideal)
57.11%
91.03%
68.72%

DNN Model Dataset

AlexNet
CIFAR-10
GooglLeNet
ResNet-18
ResNet-50
VGG-16
VGG-19
YOLOv3
PTB-RNN
PTB-LSTM

0.47 %
0.02%
0.33%
0.02%
0.04 %
0.18 %
0.32%
0.21%
0.0 BPC
0.0 PPW

Imagenet
CIFAR-10
Imagenet
Imagenet
Imagenet
Imagenet
Imagenet
Imagenet

Penn TreeBank

Penn TreeBank

68.98%
75.25%
71.46%
74.52%
77.22%
1.1BPC
97 PPW

77.1%
1.6 BPC
170 PPW

normalize it to those of TETRIS. As shown in Figure 17, increasing
number of MACCs, limits the number of accumulation cycles and
results in high sample rate ADCs. Using high sample-rate ADCs
significantly increases power. On the other hand, increasing num-
ber of accumulation cycles, limits the number of MACCs, which
restricts the number of MS8-WAGas that can be integrated under
given power budget. Overall, the optimal design point that delivers
the best performance and energy constitutes eight MACC units and
32 accumulation cycles.

7.2.4  Evaluation of Circuitry Non-Idealities.

Table 3 shows the Top-1 accuracy With Non-ldealities, After Fine-
Tuning, Ideal, and the Final Accuracy Loss. As shown in Table 3
AlexNet and ResNet-18 are more sensitive to the non-idealities, lead-
ing to a higher initial accuracy degradation. To recover the accuracy
loss, we perform a fine-tuning step for a few epochs. By performing
this fine-tuning step, the accuracy loss of the CIFAR-10, ResNet-18,
and ResNet-50 networks is fully recovered (loss is less than 0.04%)
which within these networks, CIFAR-10 and ResNet-50 are more ro-
bust to non-idealities. Accuracy loss for other networks is below
0.5% which within those AlexNet has maximum loss. Both PTB-RNN
and PTB-LSTM recover all the loss after fine-tuning. The final results
after fine-tuning step show the effectiveness of this approach in
recovering the accuracy loss due to the non-idealities pertinent to
analog computation.

8 RELATED WORK

There is a large body of work on digital DNN accelerators [5-26, 74—
79]. Mixed-signal acceleration has also been explored previously for
neural networks [29, 35] and is gaining traction for deep models [27,
28,30-34, 36, 37]. This paper fundamentally differs from these inspir-
ing efforts as it delves into mathematics of DNN operations, reformu-
lates and defines the interleaved and bit-partitioned arithmetic com-
bined with charge-domain computation to overcome challenges in
mixed-signal acceleration. Below, we discuss the most related works.
Switched-capacitor design. Switched-capacitor circuits [41] have
along history, having been mainly used for designing amplifiers [80],
ADC/DAC [81] and filters [82]. They have been used even for the
previous generation of neural networks [29]. More recently, they
have also been used for matrix multiplication [37, 83], which can ben-
efit DNNs. This work takes inspiration from these efforts but differs
from them in that it defines and leverages wide, interleaved, and bit-
partitioned reformulation of DNN operations. Additionally, it offers
a comprehensive architecture to accelerate a wide variety of DNNs.
Programmable mixed-signal accelerators. PROMISE [28] offers
a mixed-signal architecture that integrates analog units within the
SRAM memory blocks. RedEye[30] is a low-power near-sensor
mixed-signal accelerator that uses charge-domain computations.
These works do not offer wide interleavings of bit-partitioned basic
operations as described in this paper.
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Fixed-functional mixed-signal accelerators. They are designed
for a specific DNN. Some focus on handwritten digit classifica-
tion [83, 84] or binarized mixed-signal acceleration of CIFAR-10
images [33]. Another work focuses on spiking neural networks’ ac-
celeration [34].In contrast, our design is programmable and supports
interleaved bit-partitioning.

Resistive memory accelerators. There is a large body of work
using resistive memory [27, 38, 63, 72, 73, 85-90]. We provided di-
rect comparison to ISAAC [27] and PipeLayer [63]. ISAAC most
notably introduces the concept of temporally bit-serial operations,
also explored in PRIME [38], and is augmented with spike-based data
scheme in PipeLayer. BIHIWE, in contrast, formulates a partitioning
that spatially regroups lower-bitwidth MACCs across different vec-
tor elements and performs them in-parallel. PRIME does not provide
absolute measurements and its simulated baseline is not available for
head-to-head comparisons. PRIME also uses multiple truncations
that change the mathematics. Conversely, our formulation does not
induce truncation or mathematical changes.

Bit-level composable designs. Bit Fusion [23] proposes bit-level
dynamic composability to support quantized DNNs. BitBlade [78]
and BPVeC [79] extends bit-level reconfigurability to vector-level
composability to amortize the energy and area cost of bit-flexibility.
In contrast, this work delves into the details of mixed-signal comput-
ing, proposes wide, interleaved, and bit-partitioned arithmetic, and
combines it with switched-capacitor circuits to enable mixed-signal
acceleration.

9 CONCLUSION

This work proposed wide, interleaved, and spatially bit-partitioned
arithmetic to overcome key challenges in mixed-signal acceleration
of DNNs. This arithmetic enabled rearranging the highly parallel
MACC operations in DNNs into wide low-bitwidth efficient mixed-
signal computations. Further, we use switched-capacitor circuitry
that reduces the rate of ADC by accumulating partial results in the
charge domain. The incarnate design, BIHIWE, offers significant
benefits over its state-of-the-art analog and digital counterparts.
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