
A Network-Centric Hardware/Algorithm Co-Design

to Accelerate Distributed Training of Deep Neural Networks

Youjie Li1, Jongse Park2, Mohammad Alian1, Yifan Yuan1, Zheng Qu3, Peitian Pan4, Ren Wang5,
Alexander Gerhard Schwing1, Hadi Esmaeilzadeh6, Nam Sung Kim1

1University of Illinois, Urbana-Champaign, 2Georgia Institute of Technology, 3Tsinghua University,
4Shanghai Jiao Tong University, 5Intel Corporation, 6University of California, San Diego

Abstract—Training real-world Deep Neural Networks (DNNs)
can take an eon (i.e., weeks or months) without leveraging
distributed systems. Even distributed training takes inordinate
time, of which a large fraction is spent in communicating weights
and gradients over the network. State-of-the-art distributed
training algorithms use a hierarchy of worker-aggregator
nodes. The aggregators repeatedly receive gradient updates
from their allocated group of the workers, and send back the
updated weights. This paper sets out to reduce this significant
communication cost by embedding data compression accelerators
in the Network Interface Cards (NICs). To maximize the benefits
of in-network acceleration, the proposed solution, named
INCEPTIONN (In-Network Computing to Exchange and Process
Training Information Of Neural Networks), uniquely combines
hardware and algorithmic innovations by exploiting the following
three observations. (1) Gradients are significantly more tolerant
to precision loss than weights and as such lend themselves better
to aggressive compression without the need for the complex
mechanisms to avert any loss. (2) The existing training algorithms
only communicate gradients in one leg of the communication,
which reduces the opportunities for in-network acceleration
of compression. (3) The aggregators can become a bottleneck
with compression as they need to compress/decompress multiple
streams from their allocated worker group.

To this end, we first propose a lightweight and hardware-
friendly lossy-compression algorithm for floating-point gradients,
which exploits their unique value characteristics. This
compression not only enables significantly reducing the gradient
communication with practically no loss of accuracy, but also
comes with low complexity for direct implementation as a
hardware block in the NIC. To maximize the opportunities for
compression and avoid the bottleneck at aggregators, we also
propose an aggregator-free training algorithm that exchanges
gradients in both legs of communication in the group, while the
workers collectively perform the aggregation in a distributed
manner. Without changing the mathematics of training, this
algorithm leverages the associative property of the aggregation
operator and enables our in-network accelerators to (1) apply
compression for all communications, and (2) prevent the
aggregator nodes from becoming bottlenecks. Our experiments
demonstrate that INCEPTIONN reduces the communication time
by 70.9∼80.7% and offers 2.2∼3.1× speedup over the conven-
tional training system, while achieving the same level of accuracy.

I. INTRODUCTION

Distributed training [1–9] has been a major driver for
the constant advances in Deep Neural Networks (DNNs)
by significantly reducing the training time [7–9], which can
take weeks [10] or even months [11]. Although distributing
training unleashes more compute power, it comes with the
cost of inter-node communications, proportional to the DNN

(a) (b) (c)

Worker Node Aggregator Node

Fig. 1: (a) State-of-the-art hierarchical distributed training. (b)
INCEPTIONN’s distributed training algorithm in the conventional hi-
erarchy. (c) Hierarchical use of INCEPTIONN’s distributed algorithm.

size (e.g., AlexNet and ResNet-50 consist of 232 MB and
98 MB of weights). Moreover, accelerators, which further
cut the computation time, make the cost of communication
more pronounced [12, 13]. As illustrated in Fig. 1(a), state-of-
the-art distributed training systems [6, 14, 15] are structured
as a hierarchy of worker-aggregator nodes. In each iteration,
the aggregator nodes gather the gradient updates from their
subnodes, communicate the cumulative gradients upwards (see
Fig. 1(a)) and send back the updated weights downwards. These
gradients and weights of real-world DNNs are often hundreds
of mega bytes (e.g., 525 MB for VGG-16 [16]), imposing
significant communication loads on the network. This paper sets
out to reduce this communication cost by embedding data com-
pression accelerators in the Network Interface Cards (NICs).

Simply using general-purpose compression techniques and
developing in-network accelerators for the compression would
provide limited gains due to substantial hardware complexity
and latency overhead. Thus, we instead propose a hardware-
algorithm co-designed solution, dubbed INCEPTIONN1, that
offers a novel gradient compression technique, its in-network
accelerator architecture, and a gradient-centric distributed
training algorithm to maximize the benefits of the in-network
acceleration. In designing and developing INCEPTIONN, we
exploit the three following observations:
(1) Compared to weights, gradients are significantly more
amenable to precision loss. Therefore, they lend themselves
better to aggressive compression without requiring
complicated mechanisms to alleviate their loss.

(2) The existing training algorithms communicate gradients
in only one leg of the communication, which reduces the
opportunities for compression and its in-network acceleration.

1INCEPTIONN: In-Network Computing to Exchange and Process Training
Information Of Neural Networks



(3) Using compression can make the aggregators a bottleneck
since they need to compress/decompress multiple streams
of data corresponding to each of their subnodes.
Building upon these observations, INCEPTIONN first comes

with a lightweight and hardware-friendly lossy-compression
algorithm for floating-point gradient values. This compression
exploits a unique value characteristic of gradients: their
values mostly fall in the range between -1.0 and 1.0 and the
distribution peaks tightly around zero with low variance. Given
this observation, we focus on the compression of floating-point
values in the range between -1.0 and 1.0 such that it minimizes
the precision loss while offering high compression ratio.
Moreover, the compression algorithm is developed while being
conscious of the implementation complexity to enable direct
hardware realization in the NIC. For seamless integration
of the in-network accelerators with the existing networking
software stack, we also provide a set of INCEPTIONN APIs that
interface the accelerators with the traditional TCP/IP network
stack and Open-MPI framework.

Although compressing the gradients is more effective than
weights, its benefits cannot be fully utilized with conventional
distributed training algorithms since they only pass the gradients
in only one leg of the communication. Moreover, the aggregator
would need to bear the burden of compressing/decompressing
multiple streams. To tackle these challenges, INCEPTIONN
comes with a gradient-centric, aggregator-free training algo-
rithm, which leverages the following algorithmic insight to
communicate gradients in both legs (see Fig. 1(b and c)). The
aggregation operator (typically sum) is associative and thus, the
gradients can be aggregated gradually by a group of workers.
The intuition is to pass the partial aggregate from one worker
to the other in a circular manner while they add their own
contribution to the partial aggregate. This algorithm eliminates
the need for a designated aggregator node in the group as it is
conventional. This algorithm enables the distributed nodes to
only communicate gradients and equally share the load of ag-
gregation, which provides more opportunities for compressing
gradients and improved load balance among the nodes. Fig. 1(b)
visually illustrates the grouping view of our algorithm when it
only replaces the leaf groups of conventional worker-aggregator
hierarchy. Fig. 1(c) depicts the view when our algorithm
replaces all the levels of hierarchy. These nodes form a worker
group, which is the the building block of distributed training
algorithms as depicted in all three organizations in Fig. 1.

The combination of (1) lossy compression algorithm
for gradients, (2) NIC-integrated compression accelerator,
and (3) gradient-centric aggregator-free training algorithm
constructs a cross-stack solution, INCEPTIONN, that significantly
alleviates the communication bottleneck without affecting
the mathematics of DNN training. To demonstrate the
efficacy of synergistically integrating the aforementioned three
components, we train state-of-the-art DNN models such as
AlexNet [17], VGG-16 [16], ResNet-50 [18]. Our experiments
show that, INCEPTIONN reduces the communication time by
70.9∼80.7% and offers 2.2∼3.1× speedup in comparison
with the conventional worker-aggregator based system, while

achieving the same level of accuracy.

II. DISTRIBUTED TRAINING FOR DEEP NEURAL NETWORKS

A. Mathematics of Distributed Training

DNN training involves determining weights w of a predictor
ŷ = F(x, w), which processes input data x and yields a
prediction ŷ. Supervised training finds w by minimizing a
loss function `(F(x,w),y∗), which compares the ground-truth
output y∗ with the prediction ŷ=F(x,w) for given input data
x and current w. Data and groundtruth are available in a
training dataset D ={(x,y∗)} which is considered iteratively
for many epochs. The commonly used optimization process
for deep neural networks is gradient descent, which updates
the weights in the opposite direction of the loss function’s
gradient, g = ∂`D

∂w , where `D denotes the loss accumulated
across all samples in the set D . Hence, the update rule that
captures the gradient descent training is as follows:

w(t+1)=w(t)−η · ∂`D
∂w(t)

=w(t)−η ·g(t),

where w(t+1), w(t), and g(t) denote the next updated weights,
the current weights, and the current gradient, respectively. The
η parameter is the learning rate.

However, contemporary datasets D do not fit into the mem-
ory of a single computer or its GPUs, e.g. the size of popular
datasets such as ImageNet [19] is larger than 200GB. To tackle
this challenge, stochastic gradient descent emerged as a popular
technique. Specifically, we randomly sample a subset from D ,
often referred to as a minibatch B. Instead of evaluating the
gradient g on the entire dataset D , we approximate g using
the samples in a given B, i.e., we assume g≈ ∂`B

∂w .
To parallelize this training process over a cluster, D can be

divided into partial datasets Di which are assigned to corre-
sponding worker node i. Each worker can then draw minibatch
Bi from its own Di to calculate local gradient gi=

∂`Bi
∂w and

send gi to an aggregator node to update the weights as follows:

w(t+1)=w(t)−η ·∑
i

∂`
B

(t)
i

∂w(t)
=w(t)−η ·∑

i
g(t)i .

The aggregator node, then, can send back the updated
weights w(t+1) to all worker nodes. This mathematical formu-
lation avoids moving the training data and only communicates
the weights and gradients. Although the weights and gradients
are much smaller than the training data, they are still a few
hundreds of mega bytes and need to be communicated often.

B. Communication in Distributed Training

Building on this mathematical ground, there have been
many research and development efforts in distributing DNN
training [1–9]. State-of-the-art distributed training algorithms
take the hierarchical worker-aggregator approach [6, 13–15], as
illustrated in Fig. 2. In these algorithms, worker and aggregator
nodes construct a tree where the leaves are the worker nodes
that compute the local gradient (g(t)i ) and the non-leaf nodes are
the aggregator nodes that collect the calculated local gradients
to update the weights (w(t)) and send back the updated weights

2



Data

W
o
rk
e
r

Data

W
o
rk
e
r

Data

W
o
rk
e
r

Data

W
o
rk
e
r

Gradients

Weights

Aggregator Aggregator

Aggregator

Fig. 2: Worker-aggregator approach for distributed training.

M
o

d
e
l 
S

iz
e
 (
M

B
)

0

100

200

300

400

500

600

AlexNet

ResNet-1
52

VGG-16

C
o

m
m

u
n

ic
a
ti
o

n
 

T
im

e
 %

0%

25%

50%

75%

100%

AlexNet

ResNet-1
52

VGG-16

(a) (b)

Fig. 3: (a) The size of weights (or gradients). (b) The percentage
of the time spent to exchange g and w in total training time with a
conventional worker-aggregator approach.

(w(t+1)) to worker nodes. The hierarchical reduction tree of
aggregator nodes not only effectively disperses the networking
and aggregation workload to distributed nodes, but also
significantly reduces the size of system-wide data exchange by
performing the intermediate aggregations. However, even with
the hierarchical approach, each aggregator node should com-
municate with a group of worker nodes and aggregate the local
gradients, which becomes the communication and computation
bottleneck. Fig. 3 reports the exchanged weight/gradient size
and the fraction of communication time when training state-of-
the-art DNN models on a five-node cluster with 10Gb Ethernet
connections. For instance, per each iteration, AlexNet requires
233 MB of data exchange for each of gradients and weights.
Due to the large size of data exchange, 75% of training time for
AlexNet goes to the communication. Some recent DNNs (e.g.
ResNet-50: 98 MB) that have smaller sizes than AlexNet are
also included in our evaluations (Sec. VIII). Nonetheless, as the
complexity of tasks moves past simple object recognition, the
DNNs are expected to grow in size and complexity [20]. The
communication/computation ratio becomes even larger as the
specialized accelerators deliver higher performance and reduces
the computation time and/or more nodes are used for training.

III. GRADIENTS FOR COMPRESSION

To reduce the communication overhead, INCEPTIONN aims
to develop a compression accelerator in NICs. Utilizing
conventional compression algorithms for acceleration is
suboptimal since the complexity of algorithms will impose
significant hardware cost and latency overhead. Thus, in
designing the compression algorithm, we leverage the
following algorithmic properties: (1) the gradients have
significantly larger amenity to aggressive compression

T
o

p
-1

 a
c
c
u
ra

c
y

0.0

0.2

0.4

0.6

0.8

1.0

g only w only w & g

No trunc. 16b-T 22b-T 24b-T

T
o

p
-5

 a
c
c
u
ra

c
y

0.0

0.2

0.4

0.6

0.8

1.0

g only w only w & g

HDCAlexNet

Fig. 4: Impact of floating-point truncation of weight w only, gradient
g only, and both w and g on training accuracy of AlexNet and
Handwritten Digit Classification (HDC). Floating-point truncation
drops the LSB mantissa or even exponent bits of the 32-bit IEEE FP
format. xb-T represents truncation of x LSBs.

compared to weights, and (2) the gradients mostly fall in the
range between -1.0 and 1.0 and the distribution peaks tightly
around zero with low variance. These characteristics motivate
the design of our lossy compression for gradients.

A. Robustness of Training to Loss in Gradients

Both weights (w) and gradients (g) in distributed training
are normally 32-bit floating-point values, whereas they are 16
or 32-bit fixed-point values in the inference phase [21, 22]. It
is widely known that floating-point values are not very much
compressible with lossless compression algorithms [23]. For
instance, using Google’s state-of-the-art lossless compression
algorithm, Snappy, not only offers a poor compression ratio
of ∼1.5, but also increases the overall time spent for the
training phase by a factor of 2 due to the computing overhead
of compression. Thus, we employ a more aggressive lossy
compression, exploiting tolerance of DNN training to imprecise
values at the algorithm level. While lossy compression provides
higher compression ratios and thus larger performance benefits
than lossless compression, it will affect the prediction (or
inference) accuracy of trained DNNs. To further investigate this,
we perform an experiment using a simple lossy compression
technique: truncating some Least Significant Bits (LSBs) of
the g and w values. Fig. 4 shows the effect of the lossy
compression on the prediction accuracy of both trained AlexNet
and an handwritten digit classification (HDC) net. This result
shows that the truncation of g affects the predictor accuracy
significantly less than that of w, and the aggressive truncation of
w detrimentally affects the accuracy for complex DNNs such as
AlexNet. This phenomenon seems intuitive since the precision
loss of w is accumulated over iterations while that of g is not.

-1 0 1

Gradient Values

0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

c
y

Iter #000100

-1 0 1

Gradient Values

0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

c
y

Iter #100000

-1 0 1

Gradient Values

0

0.2

0.4

0.6

0.8

F
re

q
u

e
n

c
y

Iter #300000

Fig. 5: Distribution of AlexNet gradient values at early, middle, and
final training stages.

3



DataWorker

Sum

Weights

DataWorker

Sum

Weights

Data
Worker

Sum

Weights

Data
Worker

Sum

Weights

Gradients

Weights

(a) Worker group organization.

Worker[0]

Worker[1]

Worker[2]

Worker[3]

Step 0: Block Partition

Step 1: Transmit and reduce (TR)

blk[0] blk[1] blk[2] blk[3]

Gradients

blk[0] blk[1] blk[2] blk[3]

Step 2: TR

blk[0] blk[1] blk[2] blk[3]

Step 3: TR

blk[0] blk[1] blk[2] blk[3]

Step 4: Send back reduced 

results (SR)

blk[0] blk[1] blk[2] blk[3]

Step 5: SR

blk[0] blk[1] blk[2] blk[3]

Step 6: SR

(b) An example of distributed gradient exchange.

Fig. 6: INCEPTIONN gradient-centric distributed training algorithm in a worker group.

B. Tightness of Dynamic Range in Gradients

In designing the lossy compression algorithm, we leverage
the inherent numerical characteristics of gradient values, i.e.,
the values mostly fall in the range between -1.0 and 1.0 and
the distribution peaks tightly around zero with low variance.
We demonstrate the properties, analyzing the distribution
of gradients at three different phases during the training of
AlexNet. As plotted in Fig. 5, all the gradient values are
between -1 and 1 throughout the three training phases and
most values are close to 0. We also find a similar distribution
for other DNN models. Given this observation, we focus on the
compression of floating-point values in the range between -1.0
and 1.0 such that the algorithm minimizes the precision loss.

Our lossy compression algorithm (Section V) is built upon
these two properties of gradients, and exclusively aims to deal
with gradients. However, the gradients are only communicated
in one direction in the conventional distributed training
while the updated weights are passed around in the other
direction. Therefore, before delving into the details of our
compression technique and its hardware, we first discuss
our training algorithm that communicates gradients in all the
directions. Hence, this algorithm can maximize the benefits
of INCEPTIONN’s in-network acceleration of gradients.

IV. GRADIENT-CENTRIC DISTRIBUTED TRAINING

Fig. 6(a) depicts the worker group organization of the
INCEPTIONN training algorithm. In this algorithm, there is no
designated aggregator node in the worker group. Instead, each
worker node maintains its own model w (i.e., model replica),
and only exchanges and aggregates a subset of gradients g
with two neighboring nodes after each iteration. Fig. 6(b)
illustrates step-by-step the procedure of the algorithm using
an example. At the beginning, every worker node starts
with the same w0 and INCEPTIONN evenly partitions gradient
vectors into four blocks, blk[0], blk[1], blk[2], and blk[3] for
four worker nodes. Every training iteration, each node loads
and computes a mini-batch of data based on the current w
and then generates a local g to be exchanged. Subsequently,
INCEPTIONN exchanges and aggregates g in two phases.

On node[i] in a N-node cluster

1: Initialize by the same model weights w0, learning rate η

2: for iteration t=0,...,(T−1) do
3: Load a mini-batch B of training data
4: Forward pass to compute current loss `B
5: Backward pass to compute local gradient gi← ∂`B

∂w
6: (Compress local gradient gi←Compress(gi))
7: // Gradient Exchange Begin
8: Partition gi evenly into N blocks
9: for step s=1,...,N−1 do

10: Receive a block rb from node[(i−1)%N],
11: then blklocal[(i−s)%N]←rb

⊕
blklocal[(i−s)%N]

12: Send blklocal[(i−s+1)%N] to node[(i+1)%N]
13: end for
14: for step s=N,...,2N−2 do
15: Receive a block rb from node[(i−1)%N],
16: then blklocal[(i−s+1)%N]←rb
17: Send blklocal[(i−s+2)%N] to node[(i+1)%N]
18: end for
19: // Gradient Exchange End
20: (Decompress aggregated gradient gi←Decompress(gi))
21: Update w←w−η ·gi
22: end for

Algorithm 1: INCEPTIONN gradient-centric distributed training
algorithm for each worker node.

(P1) aggregation of gradients. worker[0] sends blk[0] to
its next node, worker[1]. As soon as the blk[0] is received,
worker[1] performs a sum-reduction on the received blk[0]
and its own blk[0] (of worker[1]). This concurrently happens
across all four workers (“Step 1”). This step is repeated two
more times (“Step 2” – “Step 3”) until worker[0], worker[1],
worker[2], and worker[3] have fully aggregated blk[1], blk[2],
blk[3], and blk[0] from all other 3 workers, respectively.

(P2) propagation of the aggregated gradients. worker[3]
sends blk[0] to worker[0]. Now, worker[0] has blk[0] and blk[1].
This concurrently happens across all four workers and every
worker has two fully aggregated blocks (“Step 4”). This step
is repeated two more times (“Step 5” – “Step 6”) until every
worker has g which is fully aggregated from all four workers.
Algorithm 1 formally describes the INCEPTIONN training
algorithm to generalize it for an arbitrary number of workers,
where the

⊕
denotes sum-reduction.

In summary, the INCEPTIONN training algorithm utilizes the

4



Input : f : 32-bit single-precision FP value
Output :v: Compressed bit vector (32, 16, 8, or 0 bits)

t: 2-bit tag indicating the compression mechanism
s← f [31] // sign
e← f [30:23] // exponent
m← f [22:0] // mantissa
if (e≥127) then

v← f [31:0]
t←NO COMPRESS // 2’b11

else if (e<error bound) then
v←{}
t←0BIT COMPRESS // 2’b00

else if (error bound≤e<127) then
n shi f t←127−e
shi f ted m←concat(1’b1, m)>>n shi f t
if (e≥error bound+d(127−error bound)/2e) then

v←concat(s, shi f ted m[22:8])
t←16BIT COMPRESS // 2’b10

else
v←concat(s, shi f ted m[22:16])
t←8BIT COMPRESS // 2’b01

end
end

Algorithm 2: Lossy compression algorithm for single-precision
floating-point gradients.

network bandwidth of every worker evenly unlike the worker-
aggregator approach, creating the communication bottleneck.
Furthermore, the algorithm performs the computation for
aggregating gradients across workers in a decentralized
manner, avoiding the computation bottleneck at a particular
node. Lastly, the INCEPTIONN algorithm can be efficiently
implemented with popular distributed computing algorithms
such as Ring AllReduce [24].

V. COMPRESSING GRADIENTS

Compression. Algorithm 2 elaborates the procedure of com-
pressing a 32-bit floating-point gradient value ( f ) into a com-
pressed bit vector (v) and a 2-bit tag indicating the used com-
pression mechanism (t). Note that this algorithm is described
based on the standard IEEE 754 floating-point representation
which splits a 32-bit value into 1 sign bit (s), 8 exponent bits (e),
and 23 mantissa bits (m). Depending on the range where f falls
in, the algorithm chooses one of the four different compression
mechanisms. If f is larger than 1.0 (i.e., e≥127), we do not
compress it and keep the original 32 bits (NO COMPRESS). If
f is smaller than an error bound, we do not keep any bits from f
(0BIT COMPRESS). When the gradient values are in the range
(error bound < f < 1.0), we should take a less aggressive
approach since we need to preserve the precision. The simplest
approach would be to truncate some LSB bits from the mantissa.
However, this approach not only limits the maximum obtainable
compression ratio since we need to keep at least 9 MSB
bits for sign and exponent bits, but also affects the precision
significantly as the number of truncated mantissa bits increases.
Instead, our approach is to always set e to 127 and to not include
the exponent bits in the compressed bit vector. Normalizing
e to 127 is essentially multiplying 2(127−e) to the input value;
therefore, we need to remember the multiplicand so that it can
be decompressed. To encode this information, we concatenate a
1-bit ‘1’ at the MSB of m and shift it to the right by 127−e bits.
Then we truncate some LSB bits from the shifted bit vector
and keep either 8 or 16 MSB bits depending on the range of

Input :v: Compressed bit vector (32, 16, 8, or 0 bits)
t: 2-bit tag indicating the compression mechanism

Output : f : 32-bit single-precision FP value
if (t=NO COMPRESS) then

f←v[31:0]
else if (t=0BIT COMPRESS) then

f←32’b0
else

if (t=8BIT COMPRESS) then
s←v[7]
n shi f t← f irst1 loc f rom MSB (v[6:0])

m←concat(v[6:0]<<n shi f t, 16’b0)
else if (t=16BIT COMPRESS) then

s←v[15]
n shi f t← f irst1 loc f rom MSB (v[14:0])

m←concat(v[14:0]<<n shi f t, 8’b0)
end
e←127−n shi f t
f←concat(s, e, m)

end
Algorithm 3: Decompression algorithm.

value. Consequently, the compression algorithm produces a
compressed bit vector with the size of either 32, 16, 8, or 0
and 2-bit tag indicating the used compression mechanism.
Decompression. Algorithm 3 describes the decompression
algorithm that takes a compressed bit vector v and a 2-bit
tag t. When t is NO COMPRESS or 0BIT COMPRESS, the
decompressed output is simply 32-bit v or zero, respectively. If
t is 8BIT COMPRESS or 16BIT COMPRESS, we should recon-
struct the 32-bit IEEE 754 floating-point value from v. First, we
obtain the sign bit s by taking the first bit of v. Then we find the
distance from MSB to the first “1” in v, which is the multipli-
cand used for setting the exponent to 127 during compression.
Once we get the distance, e can be calculated by subtracting
the distance from 127. The next step is to obtain m by shifting
v to left by the distance and padding LSBs with zeros to fill
the truncated bits during compression. Since we now have s, e,
and m, we can concatenate them together as a 32-bit IEEE 754
floating-point value and return it as the decompression output.

VI.
IN-NETWORK ACCELERATION OF GRADIENT COMPRESSION

After applying compression algorithm in Section V, we may
significantly reduce the amount of data exchanged among nodes
in INCEPTIONN, but our final goal is to reduce the total training
time. In fact, although researchers in the machine learning

0
1
2
3
4
5
6

B
a
se

S
n
a
p
p
y

S
Z

1
6
b
-T
 

B
a
se

S
n
a
p
p
y

S
Z

1
6
b
-T
 

AlexNet HDC

T
ra
in
	T
im
e
	(
N
o
rm

) Computation Communication

Fig. 7: Impact of software-based lossless (Snappy) and lossy
(SZ) compression algorithms on the total training time of AlexNet
and HDC. “Base” denotes baseline without compression. xb-T
represents truncation of x LSBs.

5



TCP/IP
Stack

DMA
and
NIC 

Driver

Network
Applications

PCI
Express
(Gen3)

Packet
DMA

S2C

C2S

Compression

Engine

Decompression

Engine

Virtual 
FIFO

WR

RD WR

RD

10G
Ethernet

IPs

10G
Ethernet

IPs

GTH
Transceiver

GTH
Transceiver

…

…

Network

Host CPU

FPGA Chip

FPGA Board

Fig. 8: Overview of NIC architecture integrated with compressor and decompressor.

community have proposed other compression algorithms [25–
29], most of them did not report the total training wall-clock
time after evaluating only the compression ratio and the
impact of compression on training accuracy. Directly running
these compression algorithms in software, though reducing
the communication time, can place heavy burden on the
computation resources and thus seriously increase computation
time. Specifically, such compression algorithms need to run on
the CPUs as GPUs cannot offer efficient bit manipulation (e.g.,
packing some bits from floating-point numbers) compared to
CPUs. Prior work [30] shows GPUs offer only ∼50% higher
throughput at lower compression ratios than Snappy [31].

Fig. 7 shows that the training time increases by a factor
of 2∼4× even when using the fastest lossless (Snappy) and
lossy (SZ [32]) compression algorithms. Even a simple lossy
truncation operation significantly increases the computation
time, because simply packing/unpacking a large number of g
values also significantly burdens the CPUs. This in turn consid-
erably negates the benefit of reduced communication time as
shown in Fig. 7, only slightly decreasing the total training time.
Therefore, to reduce both communication and computation
times, we need hardware-based compression for INCEPTIONN.

A. Accelerator Architecture and Integration with NIC

NIC architecture. To evaluate our system in a real world
setting, we implement our accelerators on a Xilinx VC709
evaluation board [33] that offers 10Gbps network connectivity
along with programmable logic. We insert the accelerators
within the NIC reference design [34] that comes with the
board. Fig. 8 illustrates this integration of the compression and
decompression engines. For output traffic, as in the reference
design, the packet DMA collects the network data from the host
system through the PCIe link. These packets then go through
the Compression Engine that stores the resulting compressed
data in the virtual FIFOs that are used by the 10G Ethernet
MACs. These MACs drive the Ethernet PHYs on the board and
send or receive the data over the network. For input traffic, the
Ethernet MACs store the received data from the PHYs in the
virtual FIFOs. Once a complete packet is stored in the FIFOs,
the Decompression Engine starts processing and passing it to
the packet DMA for transfer to the CPU. Both engines use the
standard 256-bit AXI-stream bus to interact with other modules.

Although hardware acceleration of the compression and
decompression algorithms is straightforward, their integration
within the NIC poses several challenges. These algorithms are
devised to process streams of floating-point numbers, while

the NIC deals with TCP/IP packets. Hence, the accelerators
need to be customized to transparently process TCP/IP
packets. Furthermore, the compression is lossy, the NIC
needs to provide the abstraction that enables the software to
activate/deactivate the lossy compression per packet basis. The
following discusses the hardware integration and Section VI-B
elaborates on the software abstraction.

Compression Engine. Not to interfere with the regular packets
that should not be compressed, the Compression Engine
first needs to identify which packets are intended for lossy
compression. Then, it needs to extract their payload, compress
it, and then reattach it to the packet. The Compression Engine
processes packets in bursts of 256 bits, which is the number
of bits an AXI interface can deliver in one cycle. Our engines
process the packet in this burst granularity to avoid curtailing
the processing bandwidth of the NIC. Our software API marks
a packet compressible by setting the Type of Service (ToS)
field [35] in the header to a special value. Since the ToS field
is always loaded in the first burst, the Compression Engine
performs the sequence matching at the first burst and identifies
the compressible packets. If the ToS value does not match,
compression is bypassed. The Compression Engine also does
not compress the header and the compression starts as soon
as the first burst of the payload arrives.

Fig. 9 depicts the architecture of the compression hardware.
The payload burst feeds into the Compression Unit equipped
with eight Compression Blocks (CBs), each of which performs
the compression described in Algorithm 2. Each CB produces

+

<<

+
CB

CB
Concat

Concat

<<

+
CB

CB
Concat

<<

<<

<<

+
CB

CB
Concat

Concat

<<

+
CB

CB
Concat

<<

Concat

Compression Unit

32

32

32

32

32

32

32

32

Concat+

+

2
7
2
 (
1
6
 -

 2
7
2
)

<<

Concat

256

F
IF

O

Alignment Unit

256

F
IF

O

>>

M
a
s
k 2

5
6

F
IF

O

Fig. 9: 256-bit burst compressor architecture.

6



256

Tag

Decoder

B
u

rs
t 

B
u
ff

e
r

16

256 

(0~256)

C
o

n
c
a
t

Decompression 

Unit

256

DB

DB

DB

DB

DB

DB

DB

DB

F
IF

O

F
IF

O

<<
512

Fig. 10: 256-bit burst decompressor architecture.

a variable-size output in the size of either 32, 16, 8, or 0 bits,
which need to be aligned as a single bit vector. We use a
simple binary shifter tree that produces the aligned bit vector
of which possible size is from 0 to 256. The 2-bit tags of the
eight CBs are simply concatenated as a 16-bit vector. Finally,
the aligned bit vector and tag bit vector are concatenated as
the final output of the Compression Unit, of which size is
at least 16 bits and can go up to 272 bits. For each burst,
the Compression Unit produces a variable-size (16 – 272) bit
vector; therefore, we need to align these bit vectors so that
we can transfer the 256-bit burst via the AXI interface. The
Alignment Unit accumulates a series of compressed bit vectors
and outputs a burst when 256 bits are collected.

Decompression Engine. Similar to the Compression Engine,
the Decompression Engine processes packets in the burst
granularity and identifies whether or not the received packet is
compressed through the sequence matching of the ToS field at
the first burst. If the packet is identified as incompressible or the
burst is header, decompression is bypassed. The payload bursts
of compressible packets is fed into the decompression hardware,
of which its architecture is delineated in Fig. 10. Since the
compressed burst that contains 8 FP numbers can overlap two
consecutive bursts at the Decompression Engine, reading only a
single burst could be insufficient to proceed to the decompres-
sion. Therefore, the Decompression Engine has a Burst Buffer
that maintains up to two bursts (i.e., 512 bits). When the Burst
Buffer obtains two bursts, it feeds the 16-bit tag to the Tag
Decoder to calculate the size of the eight compressed bit vectors.
Given the sizes, the eight compressed bit vectors are obtained
from the buffered 512 bits. Since each compressed bit vector
has a variable size of either 32, 16, 8 or 0 bits, the possible size
of the eight compressed bit vectors is from 0 and 256. These
eight compressed bit vectors (0 – 256) and the tag bit vector (16)
are fed into the eight Decompression Blocks (DBs) in the De-
compression Unit, which executes the decompression algorithm
described in Algorithm 3. Then, the Decompression Unit simply
concatenates the outputs from the eight DBs and transfers it via
the AXI interface. For the next cycle, Burst Buffer shifts away
the consumed bits and reads the next burst if a burst (i.e., 256

DNN Training Applications

U
s
e

r 

S
p

a
c

e

O
p

e
n

M
P

I Application API

Networking API

K
e

rn
e

l 

S
p

a
c

e

N
IC

H
a

rd
w

a
re

Other 

Applications

Packets

System Call

collec_comm_comp

Packets (ToS = 28) 

setsockopt

System Call

Compression Engine

collec_comm

System Call

Packets

… ……

Network

 subsystem

Fig. 11: Dataflow across the software stack and NIC hardware.

bits) has been consumed and the left bits are fewer than a burst.

B. APIs for Lossy Compression of Gradients
As mentioned previously, we identify the context of a

TCP/IP packet [36] by utilizing the ToS field in the IP header.
ToS is an 8-bit field in the header of a TCP/IP packet and
is used to prioritize different TCP/IP streams. We tag packets
that need to be compressed/decompressed with a reserved ToS
value of 0x28. For each socket connection, we can call the
setsockopt function to set the ToS field or update it on the fly.

Fig. 11 demonstrates how we tag TCP/IP packets that need
to be compressed/decompressed in the OpenMPI framework.
It shows a scenario where we co-run DNN training application
and some other networking applications on a server. To properly
tag TCP/IP packets that require compression/decompression,
we introduce MPI collective communication comp, which is a
specialized MPI collective communication API set. We imple-
ment our INCEPTIONN algorithm described in Section V without
compression with the default MPI collective communication
APIs. MPI collective communication comp propagates a vari-
able down to the OpenMPI networking APIs and sets the ToS op-
tion of the corresponding TCP sockets used for communication.
We do not modify the Linux kernel network stack and the pack-
ets with ToS set to 0x28 reach to the NIC like regular TCP pack-
ets. Inside the NIC, a simple comparator checks the ToS field
of each incoming packet; if the ToS field is set to 0x28, then
the packet is sent to the compression engine, otherwise we do
not perform compression for the outgoing packet. On a receiver
node NIC, we have the same comparator for incoming packets.
If the ToS field is set to 0x28, then we perform decompression
on the packet. Otherwise, the received packet is a regular Eth-
ernet packet and is directly sent to the processor for reception.

VII. METHODOLOGY

A. DNN Models
Table I enumerates the list of evaluated DNN models with

the used hyper-parameters for training.
AlexNet. AlexNet [17] is a CNN model for image classification,
which consists of 5 convolutional layers and 3 fully connected
layers with rectified linear unit (ReLU) as the activation
function. Before the first and the second fully connected layers,
the dropout layers are applied. The model size of AlexNet is

7



TABLE I: Hyperparameters of different benchmarks.

Hyperparameter AlexNet HDC ResNet-50 VGG-16

Per-node	batch	size 64 25 16 64

Learning	rate	(LR) -0.01 -0.1 0.1 -0.01

LR	reduction 10 5 10 10

Number	of	LR	reduction	iterations 100000 2000 200000 100000

Momentum 0.9 0.9 0.9 0.9

Weight	decay 0.00005 0.00005 0.0001 0.00005

Number	of	training	iterations 320000 10000 600000 370000

233 MB. For our experiments, we use 1,281,167 training and
50,000 test examples from the ImageNet dataset [19].
Handwritten Digit Classification (HDC). HDC [37–41] is a
DNN model composed of five fully-connected layers, which
performs Handwritten Digits Recognition. The dimension of
each hidden layer is 500 and the model size is 2.5 MB. The
used dataset is MNIST [42], which contains 60,000 training
and 10,000 test images of digits.
ResNet-50. ResNet [18] is a state-of-the-art DNN model for the
image classification task, which offers several variants that have
different number of layers. Our experiments use the most pop-
ular variant, ResNet-50, which contains 49 convolution layers
and 1 fully connected layer at the end of the network. ResNet-
50 has a model size of 98 MB and uses the ImageNet dataset.
VGG-16. VGG-16 [16] is another CNN model for image
classification, which consists of 13 convolutional layers and
3 fully connected layers. VGG-16 also uses ImageNet dataset
and its model size is 525 MB.

B. Distributed DNN Training Framework

We develop a custom distributed training framework in
C++ using NVIDIA CUDA 8.0 [43], Intel Math Kernel
Library (MKL) 2018 [44], and OpenMPI 2.0 [45]. Note that
INCEPTIONN can be implemented in publicly-released DNN
training frameworks such as TensorFlow [46]. However, our
custom distributed execution framework is more amenable for
integration with software and hardware implementation of our
lossy compression algorithm. In our custom training framework,
all the computation steps of DNN training such as forward and
backward propagations are performed on the GPU (also CPU
compatible), while communication is handled via OpenMPI
APIs. Besides, our framework implements diverse distributed
training architectures and communication algorithms using vari-
ous types of OpenMPI APIs to exchange gradients and weights.

C. Measurement Hardware Setup

We use a cluster of four nodes, each of which is equipped
with a NVIDIA Titan XP GPU [47], an Intel Xeon CPU
E5-2640 @2.6GHz [48], 32GB DDR4-2400T [49], and a
Xilinx VC709 board [33] that implements a 10Gb Ethernet
reference design along with our compression/decompression
accelerators. We employ an additional node as an aggregator
to support the conventional worker-aggregator based approach.
We also extend our cluster up to eight nodes to evaluate the
INCEPTIONN’s scalability, while the rest of experiments are
performed on the four-node cluster due to limited resources.
All nodes are connected to a NETGEAR ProSafe 10Gb Ethernet
switch [50]. Note that the state-of-the-art network architectures

TABLE II: Detailed time breakdown of training different
benchmarks using the worker-aggregator based five-node cluster.
Measurements are based on 100-iteration training time in seconds.

Abs. Norm. Abs. Norm. Abs. Norm. Abs. Norm.

Forward	pass 3.13 1.6% 0.08 4.9% 2.63 3.5% 32.25 4.3%

Backward	pass 16.22 8.3% 0.07 4.3% 4.87 6.5% 142.34 17.3%

GPU	copy 5.68 2.9% - - 2.24 3.0% 12.09 1.5%

Gradient	sum 8.94 4.6% 0.09 5.2% 3.68 4.9% 19.89 2.4%

Communicate 148.71 75.7% 1.36 80.2% 60.58 80.2% 583.58 70.9%

Update 13.67 7.0% 0.09 5.3% 1.55 2.1% 30.50 3.7%

Total	training	time 196.35 100.0% 1.7 100.0% 75.55 100.0% 823.65 100.0%

AlexNet HDC ResNet-50
Steps

VGG-16

of datacenter at large Internet companies such as Google and
Facebook use 1∼10Gbps network connections within a rack
and 10∼100Gbps connections for the oversubscribed links
between the top of rack switches [51, 52]. As the servers
running the training applications are connected to the top of rack
switches, we did not consider supporting 40∼100Gbps network
connections for our experiments. Furthermore, we designed
the compression/decompression accelerators such that they do
not affect the operating frequency (100 MHz) and bandwidth
while successfully demonstrating the full functionality with the
modified NIC driver and OpenMPI APIs. Our distributed train-
ing framework runs concurrently on every node in our cluster
and all performance evaluations are based on the real wall
clock time. As we discover that the 10Gb Ethernet reference
design implemented in a Xilinx VC709 board can achieve only
∼2.1 Gb due to inefficiency in its driver and design, we use Intel
X540T1 10Gb Ethernet NICs [53] to measure the total training
and communication times when we do not deploy hardware
compression. That is, we use the Intel X540T1 NIC for all
the baseline measurements. To measure the communication
time after deploying hardware compression, we first measure
the breakdown of communication time (e.g., driver time, NIC
hardware time, and TX/RX time through links) from both NICs
based on Xilinx VC709 board and Intel X540T1 10Gb Ethernet
NICs. Then, we scale the TX/RX time through the link of the
Intel NIC based on a compression ratio corresponding to a
given iteration to calculate the total communication time while
accounting for the compression/decompression time.

VIII. EVALUATION

A. Performance Improvement with INCEPTIONN

We implement the conventional worker-aggregator training
algorithm in a cluster of four workers and one aggregator, as
the reference design. Table II shows a detailed breakdown of
the training time of AlexNet, HDC, ResNet-50 and VGG-16,
on the cluster. We report both the absolute and normalized
time for 100 iterations of training. Irrespective of which DNN
model we consider, Table II shows that (1) less than 30% of
the wall-clock time is spent for local computations including
the forward/backward propagations and update steps, and (2)
more than 70% of the time is used for communication, which
clearly indicates that the communication is the bottleneck.

Fig. 12 first compares the training time of the reference
design (WA) with that of the INCEPTIONN (INC), when
both run for the same number of iterations/epochs without
applying compression. We also provide the training time

8



0.0

0.2

0.4

0.6

0.8

1.0

W
A

W
A
+
C

IN
C

IN
C
+
C

W
A

W
A
+
C

IN
C

IN
C
+
C

W
A

W
A
+
C

IN
C

IN
C
+
C

W
A

W
A
+
C

IN
C

IN
C
+
C

AlexNet HDC ResNet-50 VGG-16 

Computation Communication	(+	HW	compression)
T
ra

in
in

g
 T

im
e
 (
N

o
rm

)

HDCAlexNet VGG-16ResNet-50

W
A

IN
C

IN
C
+
C

W
A
+
C

W
A

IN
C

IN
C
+
C

W
A
+
C

W
A

IN
C

IN
C
+
C

W
A
+
C

W
A

IN
C

IN
C
+
C

W
A
+
C

Fig. 12: Comparison of training time between the worker-aggregator
based approach (WAx) and the INCEPTIONN (INCx) with and with-
out hardware-based compression in NICs. WA denotes the worker-
aggregator baseline without compression, and WA+C denotes WA
integrated with our compression only on gradient communication
with an error bound of 2−10. INC denotes INCEPTIONN baseline with-
out compression, and INC+C denotes with our compression given
an error bound of 2−10. Training time is measured in a cluster of four
workers for INCx and one more aggregator for WAx. Note that these
measurements are based on the same number of training iterations.

breakdown between computation and communication. This
result shows that even in a small cluster without compression,
the INCEPTIONN’s training algorithm offers 52%, 38%, 49%,
and 31% shorter total training time than the worker-aggregator
based algorithm for AlexNet, HDC, ResNet-50 and VGG-16,
respectively. This is due to 55%, 39%, 58%, and 36% reduction
in communication time in comparison with the reference design.

Intuitively, INCEPTIONN is much more communication-
efficient, because it not only removes the bottleneck link, but
also enables concurrent utilization of all the links among nodes.
Besides, this balanced gradient exchange also contributes to
the reduction of computation time as the gradient summation
is done by all the nodes in a distributed manner, whereas the
worker-aggregator based algorithm burdens the designated
aggregator nodes to perform the aggregation of the gradients
collected from a group of subnodes.

Furthermore, Fig. 12 compares the training time of the
reference design and INCEPTIONN system, when both are
equipped with our gradient compression (WA+C, INC+C).
From the result, we see that the conventional worker-aggregator
based approach can still benefit from our compression with
a ∼30.8% reduction in communication time compared to its
baseline (WA), although only one direction of communication
is applicable for compression. On the other hand, our gradient-
centric INCEPTIONN algorithm offers maximized compression
opportunities such that INCEPTIONN with hardware compression
(INC+C) gives ∼80.7% and ∼53.9% lower communication
time than the conventional worker-aggregator baseline (WA)
and INCEPTIONN baseline (INC), respectively. Therefore, the
full INCEPTIONN system (INC+C) demonstrates a training time
speedup of 2.2∼3.1× over the conventional approach (WA)
for the four models trained over the same number of epochs.

B. Effect of INCEPTIONN Compression on Final Accuracy

The accuracy loss in gradients due to lossy compression
may affect the final accuracy and/or prolong the training
because of the necessity to run more epochs to converge to the

WA INC+C WA INC+C WA INC+C WA INC+C

Training Time 175h 56h 170s 64s 378h 127h 847h 384h

# of Epochs 64 65 17 18 90 92 74 75

Final Accuracy 57.2% 57.2% 98.5% 98.5% 75.3% 75.3% 71.5% 71.5%

AlexNet HDC ResNet-50 VGG-16

S
p

e
e
d

u
p

  

o
v
e
r 

W
A

0

1

2

3

4

AlexNet HDC ResNet-50 VGG-16

Fig. 13: Speedup of INCEPTIONN over the conventional approach
when both achieve the same level of accuracy. We use the same
notations with Fig. 12.

lossless baseline accuracy. To understand the effect of our lossy
compression on accuracy (and on prolonged training), we take
the conventional worker-aggregator system (WA) and the INCEP-
TIONN system (INC+C), and train the models until both systems
converge to the same level of accuracy. Fig. 13 presents the total
number of epochs and the final speedup of INCEPTIONN system
over the conventional training system to achieve the same level
of accuracy. From this, we observe that only a modest number
of more epochs (1 or 2) are required to reach the final accuracy
and thus INCEPTIONN system still offers a speedup of 2.2×
(VGG-16) to 3.1× (AlexNet) over the convention approach,
which matches the performance in Sec. VIII-A. Furthermore,
we find that the extra number of training epochs is small but es-
sential, without which an accuracy drop of ∼1.5% might incur.

C. Evaluation of INCEPTIONN Compression Algorithm

Fig. 14 compares the compression ratios among various lossy
compression schemes, and the impact of these compressions
on relative prediction accuracy of DNNs which are trained
through our training algorithm for the same number of epochs.
Specifically, we evaluate truncation of 16, 22, and 24 LSBs

A
v
e
ra

g
e
 

C
o

m
p

re
s
s
io

n
 R

a
ti
o

0

3

6

9

12

15

AlexNet HDC ResNet-50 VGG-16

Base 16b-T 22b-T 24b-T INC(       ) INC(       ) INC(       )2-10 2-8 2-6

R
e
la

ti
v
e
 T

o
p

-1
 

A
c
c
u

ra
c
y

0

0.2

0.4

0.6

0.8

1

AlexNet HDC ResNet-50 VGG-16

0
.5

7
2

0
.9

8
5

0
.7

5
3

0
.7

1
5

Fig. 14: Comparison of (a) compression ratio and (b) impacts on
prediction accuracy of DNNs trained by INCEPTIONN training
algorithm with various lossy compression schemes. Note that the
accuracy is based on the same epochs of training (without extra
epochs) for each model. (“Base” denotes the baseline without
compression. The number on top of each “Base” bar denotes the
absolute prediction accuracy. xb-T represents truncation of x LSBs.
“INC” bars are the results of INCEPTIONN lossy compression with
a given error bound.)

9



TABLE III: The bitwidth distribution of compressed gradients. The
compressed gradients are composed of two bits for indication tag
and compressed data bits (0, 8, 16, or 32 bits).

2-bit 10-bit 18-bit 34-bit

INC(2
-10
) 74.9% 3.9% 21.1% 0.1%

INC(2
-8
) 82.5% 14.8% 2.6% 0.1%

INC(2
-6
) 93.0% 7.0% 0.0% 0.1%

INC(2
-10
) 92.0% 6.5% 1.5% 0.0%

INC(2
-8
) 95.7% 3.4% 0.9% 0.0%

INC(2
-6
) 98.1% 1.6% 0.4% 0.0%

INC(2
-10
) 81.6% 17.9% 0.5% 0.0%

INC(2
-8
) 92.3% 7.7% 0.1% 0.0%

INC(2
-6
) 97.6% 2.4% 0.0% 0.0%

INC(2
-10
) 94.2% 0.9% 4.9% 0.0%

INC(2
-8
) 96.2% 3.8% 0.0% 0.0%

INC(2
-6
) 97.3% 2.7% 0.0% 0.0%

ResNet-50

VGG-16

AlexNet

HDC

of gradients and INCEPTIONN compression with the absolute
error bound of 2−10, 2−8 and 2−6. We observe that the naı̈ve
truncation of floating-point values only provides low constant
compression ratios (i.e., 4× at most) while suffering from
substantial accuracy loss (i.e., up to 62.4% degradation in
prediction accuracy of trained ResNet-50). This is due to the
fact that the compression errors introduced by naı̈ve truncation
are uncontrolled and open ended. Moreover, the potential of
truncation is limited by the length of the mantissa. Dropping
more bits will perturb the exponent (e.g., “24b-T” in Fig. 14),
which results in a significant loss of accuracy of trained
DNNs. In general, the truncation methods are only suitable for
simpler DNNs such as HDC and are not suitable for complex
DNNs such as AlexNet, VGG-16, or ResNet-50.

In contrast, our lossy compression shows much higher
compression ratios (i.e., up to 14.9×) as well as better
preserves the training quality than the truncation cases even for
those complex DNNs. Fig. 14 shows that the errors induced
by compression are well controlled by our algorithm and
the average compression ratios are boosted by the relaxation
of a given error bound. With the most relaxed error-bound
(2−6), almost all benchmarks demonstrate a compression
ratio close to 15× and the final accuracies of trained DNNs
are only degraded slightly, i.e., < 2% in absolute accuracy.
Note that this slight drop of accuracies incurs only when
DNNs are trained for the same number of epochs as their
lossless baselines and such drop can be easily compensated by
negligible extra epochs of training, as discussed in Sec. VIII-B.

To further understand the significant gains from our
compression algorithm, we analyze the bitwidth distribution of
compressed gradients. Table III reports the collected statistics.
When the error bound is 2−6, for all the evaluated models, our
algorithm compresses larger than 90% of gradients into two-bit
vectors. Even with 2−10 as the error bound, 75% to 94% of
gradients are compressed into the two-bit vectors. Leveraging
this unique value property of gradients, our lossy compression
algorithm achieves significantly larger compression ratio than
general-purpose compression algorithms.

Lastly, we find that the compression ratio of the gradients is
not necessarily proportional to the reduction in communication
time, as shown in Fig. 12 where the compression with an error
bound of 2−10 should have compressed the communication

0.0

0.5

1.0

1.5

2.0

4 6 8

G
ra
d
ie
n
t	
E
x
c
h
a
n
g
e
	

T
im
e
	(
N
o
rm

)

Number	of	Nodes

VGG-16

WA INC

0.0

0.5

1.0

1.5

2.0

4 6 8

G
ra
d
ie
n
t	
E
x
c
h
a
n
g
e
	

T
im
e
	(
N
o
rm

)

Number	of	Nodes

AlexNet

WA INC

0.0

0.5

1.0

1.5

2.0

4 6 8

G
ra
d
ie
n
t	
E
x
c
h
a
n
g
e
	

T
im
e
	(
N
o
rm

)

Number	of	Nodes

HDC

WA INC

0.0

0.5

1.0

1.5

2.0

4 6 8

G
ra
d
ie
n
t	
E
x
c
h
a
n
g
e
	

T
im
e
	(
N
o
rm

)

Number	of	Nodes

ResNet-50

WA INC

Fig. 15: Scalability of INCEPTIONN training algorithm (INC) as com-
pared to the conventional worker-aggregator based algorithm (WA)
with different number of worker nodes. Gradient exchange time
consists of both gradient/weight communication and gradient sum-
mation time. All values are normalized against four-node WA case.

time by a factor of 5.5∼ 11.6×. This is because we do not
reduce the total number of packets and the network stack
overhead such as sending network packet headers remains
the same. Consequently, the use of more relaxed error bounds
(e.g., 2−8 and 2−6) only provides marginally additional
reduction in the overall communication time.

D. Scalability Evaluation of INCEPTIONN Training Algorithm

We also evaluate the scalability of our INCEPTIONN training
algorithm by extending our cluster up to eight worker nodes.
Since we had only four GPUs available at our disposal, we
only measured the gradient exchange time for the scalability
experiments. The gradient exchange time consists of both
gradient/weight communication and gradient summation time,
and represents the metric in the scalability evaluation, because
only communication and summation overheads scale with the
number of nodes, while the time consumed by other DNN
training steps such as forward pass, backward pass, weight
update are constant due to their local computation nature.

Fig. 15 compares the gradient exchange time between the
INCEPTIONN baseline (INC) and the worker-aggregator baseline
approach (WA), both without compression across different num-
ber of worker nodes. As shown in Fig. 15, the gradient exchange
time increases almost linearly with the number of worker nodes
in the WA cluster; however, it remains almost constant in the IN-
CEPTIONN cluster, especially when training larger models such
as AlexNet, VGG-16, and ResNet-50 where the network band-
width is the bottleneck. This phenomenon seems intuitive, since
in WA cluster both the communication and summation loads
congest the aggregator node, while the INCEPTIONN approach
balances these two loads by distributing them evenly among
worker nodes. Analytically, by adopting the communication
models in [24], the gradient exchange time in a WA cluster is:
(1+ log(p)) ·α+(p+ log(p)) ·n ·β +(p−1) ·n ·γ , where p de-

10



notes the number of workers, α the network link latency, n the
model size in bytes, β the byte transfer time, and γ the byte sum
reduction time. In practice, for distributed DNN training, the
first term is negligible compared to the second and third term,
due to the large model size n and the limited network bandwidth
β . The above equation explains clearly why the conventional
WA approach is not scalable with increasing number of nodes p,
i.e., the gradient exchange time is linear in cluster size. In con-
trast, the communication-balanced INCEPTIONN offers the gra-
dient exchange time of: 2(p−1)·α+2( p−1

p )·n·β+( p−1
p )·n·γ ,

where the effect of large cluster size p cancels in the second
and third term, making INCEPTIONN much more scalable.

IX. RELATED WORK

Acceleration for ML. There has been a large body of work that
leverage specialized accelerators for machine learning. Most of
the work have concentrated on the inference phase [22, 54–70]
while INCEPTIONN specifically aims for accelerating the training
phase. Google proposes the TPU [22], which is an accelerator
with the systolic array architecture for the inference of neural
networks. Microsoft also unveiled Brainwave [68] that uses
multiple FPGAs for DNN inference. Eyeriss is also an accelera-
tor for CNN inference of which compute units set a spatial array
connected through the reconfigurable multicast on-chip network
to support varying shape of CNNs and maximize data reuse.

While the inference phase has been the main target of ML
acceleration, the community has recently started looking into
the acceleration of training phase [13, 71–75]. ScaleDeep [72]
and Tabla [73] are ASIC and FPGA accelerators for the training
phase while offering higher performance and efficiency com-
pared to GPUs, which are the most widely used general-purpose
processors for ML training. Google Cloud TPU [71] is the next-
generation TPU capable of accelerating the training computa-
tion on the Google’s distributed machine learning framework,
Tensorflow [76]. CoSMIC [13] provides a distributed and
accelerated ML training system using multiple FPGA or ASIC
accelerators. Others [74, 75] focus on the acceleration of neural
nets training with approximate arithmetic on FPGA. These
ML training accelerators are either single-node solutions or
accelerators deployed on the centralized training systems based
on worker-aggregator approach, while INCEPTIONN provides
a decentralized gradient-based training system and an efficient
in-network gradient compression accelerators.
Distributed training algorithms. Li et al. [78, 79] proposed
a worker-aggregator based framework for distributed training
of deep nets and a few approaches to reduce the cost of
communication among compute nodes. More specifically, they
first explored the key-value store approach that exchanges
nonzero weight values, leveraging the sparsity of the weight
matrix. Secondly, they adopted a caching approach to reduce
the number of key lists that need to be transmitted by caching
repeatedly used key lists on both the sending and receiving
compute nodes. Third, they deployed approaches that randomly
or selectively skip some keys and/or values. Note that these
approaches assume that (1) the weights are indeed sparse
and (2) the framework updates and maintains weights using

centralized nodes. In contrast, our work is a gradient-centric
framework that exchanges only gradient values among compute
nodes to update each weight, exploiting our observation that
the gradient values are much more tolerant to more aggressive
lossy compression than weight values. Consequently, our
framework efficiently supports dense weights without notably
compromising the accuracy of the training procedure.

Recently, Iandola et al. [6] diverted from the worker-
aggregator architecture and developed a reduction tree based
approach. More specifically, instead of workers directly
communicating with the aggregators, gradients are reduced
by employing a tree based topology. Despite this topology,
a central unit remains, which takes care of the weight
vectors. Importantly, Iandola et al. [6] did not change the
communication paradigm, i.e., transmitting gradients to a
central unit which then broadcasts the weights.

Similar to the aforementioned algorithms, HogWild! [80],
DistBelief [1] and SSP [81] also take the worker-aggregator
approach, while they perform asynchronous update of gradients
during training to reduce synchronization overhead. These
works not only need to deal with stale gradient update, but
also significantly rely on centralized aggregators.
Gradient reduction techniques. There has been a
series of work that proposes techniques for gradient
reductions [12, 25, 26, 82, 83]. Quantization techniques for
gradients [25, 26, 82, 83] provide algorithmic solutions to
reduce the gradient precision while preserving the training
capability. Deep Gradient Compression [12] is a complementary
approach that reduces the amount of communication by
skipping the communication of the gradients in each
iteration. It will only communicate the gradients if the locally
accumulated gradient exceeds a certain threshold. These works
do not change the worker-aggregator nature of distributed
training, nor propose in-network acceleration of compression.

X. CONCLUSION

Communication is a significant bottleneck in distributed
training. The community has pushed forward to address this
challenge by offering algorithmic innovations and employing
the higher speed networking fabric. However, there has been
a lack of solution that conjointly considers these aspects
and provides an interconnection infrastructure tailored for
distributed training. INCEPTIONN is an initial step in this
direction that co-design hardware and algorithms to (1) provide
an in-network accelerator for the lossy compression of gradients,
and (2) maximize its benefits by introducing the gradient-
centric distributed training. Our experiments demonstrate that
INCEPTIONN reduces the communication time by 70.9∼80.7%
and offers 2.2∼3.1× speedup over the conventional training
system, while achieving the same level of accuracy.

ACKNOWLEDGMENT

This work is supported in part by grants from NSF (CNS-
1705047 and CNS-1557244) and SRC/JUMP Applications
Driving Architectures (ADA) Research Center, and equipment
donations from IBM-ILLINOIS Center for Cognitive
Computing Systems Research (C3SR) and Intel.

11



REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le,
M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y.
Ng, “Large scale distributed deep networks,” in NIPS, 2012.

[2] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed
ML via a stale synchronous parallel parameter server,” in NIPS,
2013.

[3] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman,
“Project Adam: Building an efficient and scalable deep learning
training system,” in OSDI, 2014.

[4] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling
distributed machine learning with the parameter server,” in
OSDI, 2014.

[5] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “SparkNet:
Training deep networks in spark,” in ICLR, 2016.

[6] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer,
“Firecaffe: near-linear acceleration of deep neural network
training on compute clusters,” in CVPR, 2016.

[7] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate,
large minibatch SGD: training ImageNet in 1 hour,” in
arXiv:1706.02677 [cs.CV], 2017.

[8] S. L. Smith, P. Kindermans, and Q. V. Le, “Don’t decay the
learning rate, increase the batch size,” in ICLR, 2018.

[9] Y. You, Z. Zhang, C. Hsieh, and J. Demmel, “100-epoch
ImageNet Training with AlexNet in 24 Minutes,” in
arXiv:1709.05011v10 [cs.CV], 2018.

[10] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,”
Nature, 2015.

[11] F. Iandola, “Exploring the Design Space of Deep Convolutional
Neural Networks at Large Scale,” in arXiv:1612.06519, 2016.

[12] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep
gradient compression: Reducing the communication bandwidth
for distributed training,” in ICLR, 2018.

[13] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and
H. Esmaeilzadeh, “Scale-out acceleration for machine learning,”
in MICRO, 2017.

[14] D. S. Banerjee, K. Hamidouche, and D. K. Panda, “Re-designing
CNTK Deep Learning Framework on Modern GPU Enabled
Clusters,” in CloudCom, 2016.

[15] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda,
“S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable
Deep Learning on Modern GPU Clusters,” in PPoPP, 2017.

[16] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014.

[17] A. Krizhevsky, I. Sutskever, , and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in Proc.
NIPS, 2012.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv preprint arXiv:1512.03385, 2015.

[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” in IJCV, 2015.

[20] I. Kokkinos, “Ubernet: Training a universal convolutional neural
network for low-, mid-, and high-level vision using diverse
datasets and limited memory,” in CVPR, 2017.

[21] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K.
Lee, J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks,
“Minerva: Enabling low-power, highly-accurate deep neural
network accelerators,” in ISCA, 2016.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,

J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Kille-
brew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le,
C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Mag-
giore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn,
G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in ISCA, 2017.

[23] S. Sardashti, A. Arelakis, and P. Stenstrm, A Primer on
Compression in the Memory Hierarchy. Morgan & Claypool
Publishers, 2015.

[24] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization
of collective communication operations in mpich.” IJHPCA,
vol. 19, 2005.

[25] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic
gradient descent and its application to data-parallel distributed
training of speech dnns.” in INTERSPEECH, 2014.

[26] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li,
“Terngrad: Ternary gradients to reduce communication in
distributed deep learning,” CoRR, vol. abs/1705.07878, 2017.

[27] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“QSGD: Communication-Efficient SGD via Gradient
Quantization and Encoding,” in NIPS, 2017.

[28] N. Dryden, T. Moon, S. A. Jacobs, and B. V. Essen, “Commu-
nication quantization for data-parallel training of deep neural
networks.” in MLHPC@SC. IEEE Computer Society, 2016.

[29] N. Strom, “Scalable distributed dnn training using commodity
gpu cloud computing.” in INTERSPEECH, 2015.

[30] E. Sitaridi, R. Mueller, T. Kaldewey, G. Lohman, and K. A.
Ross, “Massively-parallel lossless data decompression,” in
Parallel Processing (ICPP), 2016 45th International Conference
on. IEEE, 2016.

[31] Google, “Snappy compression: https://github.com/google/snappy,”
2011.

[32] S. Di and F. Cappello, “Fast error-bounded lossy hpc data
compression with sz,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2016.

[33] Xilinx INC, “Xilinx virtex-7 fpga vc709 connectivity kit,
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-
g.html,” 2014.

[34] Xilinx INC, “Virtex-7 fpga xt connectivity targeted reference
design for the vc709 board, https://www.xilinx.com/support/
documentation/boards\ and\ kits/vc709/2014\ 3/ug962-v7-
vc709-xt-connectivity-trd-ug.pdf,” 2014.

[35] Network Working Group, “Requirement for comments: 3168,
https://tools.ietf.org/html/rfc3168,” 2001.

[36] M. Alian, A. H. Abulila, L. Jindal, D. Kim, and N. S. Kim,
“Ncap: Network-driven, packet context-aware power management
for client-server architecture,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on.
IEEE, 2017.

[37] Apache Incubator, “Handwritten digit recognition, https:
//mxnet.incubator.apache.org/tutorials/python/mnist.html,” 2017.

[38] Aymeric Damien, “Tensorflow-examples, https://github.com/
aymericdamien/TensorFlow-Examples/blob/master/examples/
3 NeuralNetworks/multilayer perceptron.py,” 2017.

[39] Google INC, “Keras examples, https://github.com/keras-
team/keras/blob/master/examples/mnist mlp.py,” 2017.

[40] Krzysztof Sopyła, “Tensorflow mnist convolutional network
tutorial, https://github.com/ksopyla/tensorflow-mnist-convnets,”
2017.

[41] Google INC, “Tensorflow model zoo, https://github.com/
tensorflow/models,” 2017.

12



[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” IEEE, 1998.

[43] NVIDIA Corporation, “NVIDIA CUDA C programming guide,”
2010.

[44] INTEL Corporation, “Intel math kernel library,
https://software.intel.com/en-us/mkl,” 2018.

[45] OpenMPI Community, “Openmpi: A high performance message
passing library, https://www.open-mpi.org/,” 2017.

[46] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu,
and X. Zhang, “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems,” 2015.

[47] NVIDIA Corporation, “Nvidia titan xp, https://www.nvidia.com/
en-us/design-visualization/products/titan-xp/,” 2017.

[48] INTEL Corporation, “Xeon cpu e5, https://www.intel.
com/content/www/us/en/products/processors/xeon/e5-
processors.html,” 2017.

[49] Samsung Corporation, “Samsung ddr4, http://www.samsung.
com/semiconductor/global/file/product/DDR4-Product-guide-
May15.pdf,” 2017.

[50] NETGEAR Corporation, “Prosafe xs712t switch,
https://www.netgear.com/support/product/xs712t.aspx,” 2017.

[51] Alexey Andreyev, “Introducing data center fabric, the next-
generation facebook data center network, https://code.facebook.
com/posts/360346274145943/introducing-data-center-fabric-
the-next-generation-facebook-data-center-network/,” 2014.

[52] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
A. Kanagala, J. Provost, J. Simmons, E. Tanda, J. Wanderer,
U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter rising: A decade
of clos topologies and centralized control in google’s datacenter
network,” in Sigcomm ’15, 2015.

[53] INTEL Corporation, “Intel x540, https://www.intel.com/
content/www/us/en/ethernet-products/converged-network-
adapters/ethernet-x540-t2-brief.html,” 2017.

[54] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn:
An accelerator for compressed-sparse convolutional neural
networks,” in ISCA, 2017.

[55] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accel-
erator efficiency through resource partitioning,” in ISCA, 2017.

[56] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep
neural network computing,” in ISCA, 2016.

[57] P. Judd, A. Delmas, S. Sharify, and A. Moshovos, “Cnvlutin2:
Ineffectual-activation-and-weight-free deep neural network
computing,” in ISCA, 2016.

[58] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, “Eie: efficient inference engine on compressed
deep neural network,” in ISCA, 2016.

[59] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,”
in ISCA, 2016.

[60] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and
O. Temam, “Diannao: a small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in ASPLOS, 2014.

[61] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
X. Feng, Y. Chen, and O. Temam, “ShiDianNao: shifting vision
processing closer to the sensor,” in ISCA, 2015.

[62] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li,
T. Chen, Z. Xu, N. Sun, and O. Temam, “Dadiannao: A
machine-learning supercomputer.” in MICRO, 2014.

[63] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Misra, and H. Esmaeilzadeh, “From high-level deep neural
models to fpgas,” in MICRO, Oct. 2016.

[64] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow:
A flexible dataflow accelerator architecture for convolutional
neural networks,” in HPCA, 2017.

[65] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
cnn accelerator,” in MICRO, 2016.

[66] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang,
X. Qian, Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu,
X. Lin, and B. Yuan, “Circnn: Accelerating and compressing
deep neural networks using block-circulant weight matrices,”
in MICRO, 2017.

[67] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac:
A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” in ISCA, 2016.

[68] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengil, M. Liu, D. Lo, S. Alkalay,
M. Haselman, C. Boehn, O. Firestein, A. Forin, K. S. Gatlin,
M. Ghandi, S. Heil, K. Holohan, T. Juhasz, R. K. Kovvuri,
S. Lanka, F. van Megen, D. Mukhortov, P. Patel, S. Reinhardt,
A. Sapek, R. Seera, B. Sridharan, L. Woods, P. Yi-Xiao, R. Zhao,
and D. Burger, “Accelerating persistent neural networks at
datacenter scale,” in HotChips, 2017.

[69] X. Zhang, A. Ramachandran, C. Zhuge, D. He, W. Zuo,
Z. Cheng, K. Rupnow, and D. Chen, “Machine learning on
FPGAs to face the IoT revolution,” in Proceedings of the
36th International Conference on Computer-Aided Design, ser.
ICCAD ’17. IEEE Press, 2017.

[70] X. Zhang, X. Liu, A. Ramachandran, C. Zhuge, S. Tang,
P. Ouyang, Z. Cheng, K. Rupnow, and D. Chen, “High-
performance video content recognition with long-term recurrent
convolutional network for FPGA,” in Field Programmable Logic
and Applications (FPL), 2017 27th International Conference
on, 2017.

[71] J. Dean and U. Hölzle, “Google Cloud TPUs,”
https://www.blog.google/topics/google-cloud/google-cloud-
offer-tpus-machine-learning/, 2017.

[72] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and
A. Raghunathan, “Scaledeep: A scalable compute architecture
for learning and evaluating deep networks,” in ISCA, 2017.

[73] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. K. Kim, and H. Esmaeilzadeh, “TABLA: A unified template-
based framework for accelerating statistical machine learning,”
in HPCA, 2016.

[74] Q. Wang, Y. Li, and P. Li, “Liquid state machine based pattern
recognition on fpga with firing-activity dependent power gating
and approximate computing,” in ISCAS, 2016.

[75] Q. Wang, Y. Li, B. Shao, S. Dey, and P. Li, “Energy efficient
parallel neuromorphic architectures with approximate arithmetic
on fpga.” Neurocomputing, vol. 221, 2017.

[76] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous distributed systems,” arXiv:1603.04467 [cs],
2016.

[77] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W.
Keckler, “vDNN: Virtualized deep neural networks for scalable,
memory-efficient neural network design,” in MICRO, 2016.

[78] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su, “Scaling
distributed machine learning with the parameter server,” in
OSDI, 2014.

13



[79] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,”
in NIPS, 2014.

[80] B. Recht, C. Ré, S. J. Wright, and F. Niu, “Hogwild: A
lock-free approach to parallelizing stochastic gradient descent.”
in NIPS, 2011.

[81] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. R. Ganger, and E. P. Xing, “More effective
distributed ml via a stale synchronous parallel parameter server.”
in NIPS, 2013.

[82] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic,
“QSGD: Communication-Efficient SGD via Gradient
Quantization and Encoding,” arXiv:1610.02132 [cs], 2017.

[83] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “DoReFa-
Net: Training Low Bitwidth Convolutional Neural Networks
with Low Bitwidth Gradients,” arXiv:1606.06160 [cs], 2016.

14


