
Scale-Out Acceleration forMachine Learning
Jongse Park† Hardik Sharma† Divya Mahajan† Joon Kyung Kim† Preston Olds† Hadi Esmaeilzadeh†‡

Alternative Computing Technologies (ACT) Lab
†Georgia Institute of Technology ‡University of California, San Diego

{jspark, hsharma, divya_mahajan, jkkim, prestonolds}@gatech.edu hadi@eng.ucsd.edu

ABSTRACT
The growing scale and complexity of Machine Learning (ML) algo-
rithms has resulted in prevalent use of distributed general-purpose
systems. In a rather disjoint effort, the community is focusing mostly
on high performance single-node accelerators for learning. This work
bridges these two paradigms and offers CoSMIC, a full computing
stack constituting language, compiler, system software, template
architecture, and circuit generators, that enable programmable accel-
eration of learning at scale. CoSMIC enables programmers to exploit
scale-out acceleration using FPGAs and Programmable ASICs (P-
ASICs) from a high-level and mathematical Domain-Specific Lan-
guage (DSL). Nonetheless, CoSMIC does not require programmers
to delve into the onerous task of system software development or
hardware design. CoSMIC achieves three conflicting objectives of
efficiency, automation, and programmability, by integrating a novel
multi-threaded template accelerator architecture and a cohesive stack
that generates the hardware and software code from its high-level
DSL.CoSMIC can accelerate a wide range of learning algorithms that
are most commonly trained using parallel variants of gradient descent.
The key is to distribute partial gradient calculations of the learning
algorithms across the accelerator-augmented nodes of the scale-out
system. Additionally, CoSMIC leverages the parallelizability of the
algorithms to offer multi-threaded acceleration within each node.
Multi-threading allows CoSMIC to efficiently exploit the numerous
resources that are becoming available on modern FPGAs/P-ASICs
by striking a balance between multi-threaded parallelism and single-
threaded performance. CoSMIC takes advantage of algorithmic prop-
erties of ML to offer a specialized system software that optimizes task
allocation, role-assignment, thread management, and internode com-
munication. We evaluate the versatility and efficiency of CoSMIC for
10 different machine learning applications from various domains. On
average, a 16-node CoSMIC with UltraScale+ FPGAs offers 18.8⇥
speedup over a 16-node Spark system with Xeon processors while the
programmer only writes 22–55 lines of code. CoSMIC offers higher
scalability compared to the state-of-the-art Spark; scaling from 4 to
16 nodes with CoSMIC yields 2.7⇥ improvements whereas Spark
offers 1.8⇥. These results confirm that the full-stack approach of
CoSMIC takes an effective and vital step towards enabling scale-out
acceleration for machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-50, October 14-18, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
h�ps://doi.org/10.1145/3123939.3123979

CCS CONCEPTS
• Hardware ! Hardware accelerators; • Computing methodolo-
gies ! Machine learning; • Computer systems organization !
Cloud computing;

KEYWORDS
Accelerator, scale-out, distributed, cloud, machine learning
ACM Reference format:
Jongse Park, Hardik Sharma, Divya Mahajan, Joon Kyung Kim, Preston Olds,
and Hadi Esmaeilzadeh. 2017. Scale-Out Acceleration for Machine Learning.
In Proceedings of The 50th Annual IEEE/ACM International Symposium on
Microarchitecture, Cambridge, MA, USA, October 14-18, 2017 (MICRO-50),
15 pages.
h�ps://doi.org/10.1145/3123939.3123979

1 INTRODUCTION
Prevalence of interconnected compute platforms has transformed the
IT industry, which is now rapidly moving towards scale-out solutions
that extract insights from data. Following this trend, systems that
enable distributed computing on general-purpose platforms are gain-
ing eminence (e.g., Spark [1] and Hadoop [2]). In a concurrent yet
disjoint effort, due to the diminishing benefits from general-purpose
processing, the community is developing mostly single-node acceler-
ators for a variety of applications, including machine learning [3–12].
However, there is a gap between scale-out systems and accelerators
due to the lack of solutions that enable distributed acceleration at scale.
Moreover, it is not enough to just design and integrate accelerators
independent from algorithms and programming interfaces. We need
a holistic approach that reworks the fundamental hardware-software
abstractions and enables a broad community of programmers to seam-
lessly utilize accelerators at scale for a specific domain of applications.
Reusing the traditional stack for scale-out acceleration is inadequate
as the entire computing stack is designed and optimized merely for
CPUs, which were the sole processing platform up until recently. To
that end, this paper sets out to design a full and specialized computing
stack, dubbed CoSMIC1, for scale-out acceleration of learning.

CoSMIC offers the entire stack of layers to execute a wide range
of learning algorithms on accelerator-augmented scale-out systems.
These layers comprise a domain-specific language, a compiler, a spe-
cialized runtime system, and a multi-threaded template architecture
for the accelerator. The template architecture can be automatically
tailored for deployment on FPGAs or realization as custom Pro-
grammable ASICs (P-ASICs). FPGAs offer flexibility as well as
efficiency and are becoming readily available in different markets [13–
16], now even in Amazon Elastic Compute Cloud (EC2) [16]. Not
only have FPGAs become a lower-cost alternative to ASICs, but
also serve as prototypes for custom chip design. However, designing
efficient accelerators is onerous even when targeting a single-node
FPGA and requires extensive expertise in both hardware design and
1CoSMIC: Computing Stack for ML acceleration In the Cloud

Appears in the Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017

MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

application domain. This challenge is exacerbated in the scale-out
setting due to the added complexity of task distribution and communi-
cation. Additionally, P-ASICs impose high non-recurring engineering
costs over long design periods and usually need unintuitive or nar-
row programming interfaces. Furthermore, as technology is scaled,
modern FPGAs and ASICs can harbor an ample amount of resources,
whose effective utilization necessitates rethinking accelerator design
paradigms. Therefore, to realize scale-out acceleration, we address
the following triad of challenges when devising the CoSMIC full
stack: (1) efficiently exploiting large number of on-chip resources, (2)
enabling distributed acceleration using accelerator-augmented nodes,
and (3) relieving programmers of distributed system coordination and
the onus of hardware design. Furthermore, CoSMIC targets a wide
class of learning algorithms and provides support for new learning
models and algorithmic changes to the existing ones. To realize CoS-
MIC we were required to address the following research challenges.
(1) How to enable scale-out acceleration of many ML algo-
rithms, yet disengage programmers from hardware design.
To tackle this challenge, CoSMIC leverages a combination of two
theoretical insights: (1) a wide range of learning algorithms are sto-
chastic optimization problems, solved using a variant of gradient de-
scent [12, 17, 18]; (2) differentiation is a linear mathematical operator,
and thus the gradient over a set of data points can be calculated as an ag-
gregated value over the partial gradients computed in parallel for each
point [19–25]. A variety of learning algorithms can be parallelized
using these two insights. Examples include, but are not limited to,
recommender systems, Kalman filters, linear and nonlinear regression
models, support vector machines, least square models, logistic regres-
sion, backpropagation, softmax functions, and conditional random
fields. To implement these algorithms, one needs to have (1) the partial
gradient calculation function, (2) the aggregation operator, and (3) the
number of data points that are processed before each aggregation. The
first layer of theCoSMIC stack exposes a high-level mathematical lan-
guage to programmers to specify these three constructs, which capture
the entirety of the learning algorithm. The next layer of the CoSMIC
stack fully automates the scale-out acceleration. The CoSMIC com-
piler maps and schedules the operations on the distributed accelerators.
The next layer, a specialized runtime system, assigns roles and tasks
for the scale-out system components and orchestrates the distributed
calculation of the partial gradients and their iterative aggregation. The
final layer of the CoSMIC stack provides a novel multi-threaded tem-
plate architecture for the accelerators. This layer can be automatically
customized and tailored according to the high-level specification of
the learning algorithm and the constraints of the system.
(2) How to design customizable accelerators that e�iciently
exploit the large capacity of advanced process technologies.
Advanced manufacturing processes have made integration of compute
and storage resources on the chip. As a result, even modern FPGAs
offer large capacities—e.g. Intel Arria 10 [26] instances comprise
1,518 DSP slices with 6.6 MBytes of storage and Xilinx UltraScale+
in Amazon EC2 [16] includes 6,840 DSP slices and 43 MBytes of
storage. A single instance of learning algorithm may not effectively
exploit resources since it is limited by the fine-grained parallelism
in its Dataflow Graph (DFG). Therefore, CoSMIC offers a novel
Multiple-Instruction Multiple-Data (MIMD) multi-threaded template
architecture that divides the resources across multiple instances of the
learning algorithm as independent threads. The last layer of CoSMIC
customizes this template and generates the final accelerator by strik-
ing a balance between the number of threads running on the chip and

the resources assigned to each thread. The code generation differs for
FPGAs and P-ASICs. For FPGAs, the generated core is tailored to
one specific learning algorithm as the chip can be erased and repro-
grammed for different applications. For P-ASICs, the generated accel-
erator is a programmable superset of the design that fits in the area and
power budget of the chip. Any algorithm that can be expressed using
the DSL can be compiled and accelerated on the generated P-ASIC.
The generated code and template are in the form of Register-Transfer
Level (RTL) Verilog code. The template architecture is designed, op-
timized, and implemented by experts once in Verilog, which ensures
efficiency although CoSMIC generates the accelerators automatically.
More specifically, the template is designed as a two-dimensional ma-
trix of compute units to ensure data dependencies and within-thread
communications do not curtail its scalability to rather large number
of processing elements. We also designed a tree-like bus to connect
the rows and allocated bidirectional communication across columns.
Hence, the communication latency only grows by a logarithmic order
with an increase in the number of compute units, improving on-chip
scalability. Furthermore, CoSMIC’s backend compiler minimizes
data movement by mapping operations to where their operands are
located. This hardware-software co-design that aims to maximize
effective resource utilization ensures effective utilization of on-chip
resources, especially when they are plentiful.
(3) How to devise the system so�ware that is specialized for
distributedmulti-threaded acceleration of learning.
To be inline with the recent industry trends in integrating accelerators
in datacenters [14–16], CoSMIC targets commodity distributed sys-
tems in which accelerators sit on the high-speed expansion slots (e.g.,
PCIe). For generality, we assume no special connectivity between the
accelerators although such connectivity will most likely improve the
benefits of CoSMIC. CoSMIC aims to best utilize the system-wide
resource on both CPUs and accelerators. CoSMIC achieves this ob-
jective by offering a lean and specialized system software layer that
exclusively supports learning algorithms that can be trained using
parallel variants of stochastic gradient descent. This specialized layer
allows theCoSMIC stack to assign the partial gradient calculation onto
the accelerators while the CPUs perform aggregation and networking.
This task assignment alleviates the use of accelerator resources for
TCP/IP communication, avoids data copies to accelerator boards for
aggregation, and enables using commodity distributed systems with
CoSMIC. Moreover, it maximizes system-wide resource utilization as
well as portability to different accelerator boards. Within each node,
the system software maintains an internal thread pool. These threads
handle the communication with the remote peer nodes. Internally
managing this thread pool avoids costly OS-level context switches.
The system software layer also maintains another internal thread pool
that asynchronously aggregates the partial gradients. In addition, this
layer assigns roles to the nodes and orchestrates the exchange of
partial gradients and their aggregation.

We evaluate the benefits of the CoSMIC stack using 10 different
learning applications from various domains including medical diag-
nosis, computer vision, finance, audio processing, and recommender
systems. We compare CoSMIC against Spark, a popular framework
for scale-out computing using the optimized MLlib machine learn-
ing library [27]. On average, a 16-node CoSMIC with UltraScale+
VU9P FPGAs offers 18.8⇥ speedup over a 16-node Spark system
with Xeon E3 Skylake CPUs while the programmer only writes 22–55
lines of code. When scaling the nodes from 4 to 16, CoSMIC’s per-
formance improves by 2.7⇥, while Spark’s performance scales only

Scale-Out Acceleration for Machine Learning MICRO-50, October 14-18, 2017, Cambridge, MA, USA

by 1.8⇥. We also compare the CoSMIC system with the distributed
GPU (NVIDIA Tesla K40c) implementation. We report the benefits
of CoSMIC for two P-ASIC implementations that match the compute
resources and off-chip bandwidth of the FPGA and the GPU. On
average, these P-ASICs offer 1.2⇥ and 2.3⇥ higher system-wide per-
formance, while the GPU delivers 1.5⇥ speedup over FPGA system.
While using custom chips can improve computation time by 11.4⇥,
the system-wide performance benefits are limited to 2.3⇥. Finally,
with CoSMIC’s novel multi-threaded accelerator architecture, the
FPGA and the two P-ASIC systems respectively achieve 4.2⇥, 6.9⇥,
and 8.2⇥ higher Performance-per-Watt than the GPU system. These
results confirm that CoSMIC is an effective and vital initial step to
enable acceleration of learning at scale. To this end, this work not
only contributes the full stack of CoSMIC, but also defines a new
multithreaded accelerator architecture, a novel communication-aware
scheduling and mapping algorithm, and a lean and specialized system
software for thread management and system orchestration.

2 DISTRIBUTED LEARNING
The CoSMIC stack empowers programmers to exploit accelerator-
augmented distributed systems for a wide range of learning algorithms
without requiring them to deal with the laborious task of hardware
design and system software programming. Although providing higher
performance drives this work, programmability and generality are
its other two pillars. CoSMIC facilitates programming by exposing a
math-oriented DSL to programmers to express various learning algo-
rithms as stochastic optimization problems. The layers of theCoSMIC
stack compile this high-level specification to generate the accelerator
architecture, and offer the system software that orchestrates them for
scale-out execution. This stack is not designed for a specific ML algo-
rithm. Instead, it is adept at accelerating learning algorithms that can
be trained using variants of gradient descent optimizer. This section
provides the theoretical foundation of these type of algorithms.

2.1 Learning as Stochastic Optimization
CoSMIC targets a wide range of supervised machine learning algo-
rithms. These algorithms have two phases: training and prediction
(inference). We focus on training, as it is more complex and involves
several passes of prediction-tuning over the training data. Since train-
ing involves prediction, CoSMIC can accelerate prediction as well.

Each machine learning algorithm is identified by a set of parame-
ters (q) and a transfer function (g), that maps an input vector (Xi) to a
predicted output vector (Yi). As Equation 1 illustrates, training is the
process of finding q such that the predicted output Yi = g(q ,Xi) has a
minimum difference from the expected output Y ⇤i for all input-output
pairs (Xi,Y ⇤i) in the training dataset.

Find q 3{Loss=Â
i

f (q ,Xi,Y ⇤i)=Â
i
hg(q ,Xi)�Y ⇤i i} is Minimized

(1)
This unique loss function (Âi f (q ,X ,Y ⇤)) defines each of the learn-

ing algorithms in our target class. A machine learning algorithm
learns the model (q) by solving an optimization problem that min-
imizes this loss function (Âihg(q ,Xi)�Y ⇤i). To learn a model (q),
optimization algorithms iterate over the training data and gradually
reduce the loss by adjusting the model parameters. One of the most
common [17, 18, 50] optimization algorithm is Stochastic Gradient
Descent (SGD). SGD is based on the observation that a function
decreases fastest in the negative direction of its gradient.

q (t+1) =q (t)�µ⇥ ∂ (f (q (t) ,Xi,Yi))

∂q (t) (2)

As Equation 2 shows, each iteration t of SGD calculates q (t+1) by
updating q (t) in the negative direction of the gradient (∂ f) with a learn-
ing rate (µ). The process is repeated until the loss is minimized. The
gradient function varies with the learning algorithm, while the rest of
the process is fixed. Hence, our stack requires programmers to specify
the algorithm by expressing the gradient of its loss function (∂ f

∂q).

2.2 Parallelizing Stochastic Optimization
SGD only consumes one input-output vector (Xi,Yi) per iteration,
traversing the entire data sequentially. Thus, basic SGD is imprac-
tical for scale-out acceleration, where the training data is large and
dispersed across multiple nodes. To enable scale-out acceleration, we
exploit the insight that gradient is a linear operator. Therefore, the
gradient over a set of data points can be computed by aggregating par-
tial gradients calculated over partitions of this set. Different parallel
variants of SGD [19–25] have been developed, which differ in how
they iterate over the partitions and aggregate the partial gradients. For
instance, the batched gradient descent algorithm [21] uses summation
for aggregation, whereas the parallelized SGD [20] uses averaging.
Equation 3 shows the use of parallelized stochastic gradient descent
algorithm [20], for distributed learning.

Parallel
j:1!n

hq (t+1)
j =SGD

�
{XY1,...,XYb},q (t) , f

�
i (3a)

q (t+1) =
Â jq

(t+1)
j

n
(3b)

As shown, each node independently performs the traditional stochas-
tic gradient descent for b input-output pairs ({XY1, ...,XYb}) and
calculates a set of partial updates, q (t+1)

j . These partial updates are
aggregated with averaging, which yields the overall update (q (t+1)).
Equation 3a and 3b are repeated until the loss function f is minimized
and the model is trained. The meta parameter b, called the mini-batch
size, is the amount of local data that is processed before each aggrega-
tion step. CoSMIC expects the programmer to provide the gradient
(∂ f

∂q), aggregation operator (s), and mini-batch size (b). Using only
this information, CoSMIC orchestrates the scale-out acceleration of
the learning algorithm. The next section discusses the accelerated
execution flow and the system software layer.

3 COSMIC SYSTEM SOFTWARE
CoSMIC targets scale-out systems with commodity nodes that use
off-the-shelf CPUs. Each node hosts an accelerator board, identical
across all the nodes and installed on a high-speed expansion slot such
as PCIe. The nodes communicate through conventional TCP/IP stack
via a Network Interface Card (NIC). We choose to use commodity
host systems, networking hardware-software to alleviate dependency
on a particular part. To understand the specialized system software
layer of CoSMIC, we first need to delve into the overall execution
flow across the nodes of the scale-out system.
Execution and acceleration flow. Figure 1 illustrates a single
node of the system. Each node stores a partition (Di) of the train-
ing dataset. We have devised a multi-threaded ML accelerator for the
nodes, which will be discussed in Section 5. To utilize multi-threading
in the accelerator, the node further divides its data into equally sized
sub-partitions (Di1 , ..., Di j, ... Dim). These data sub-partitions are
simultaneously processed by the accelerator. In Figure 1, each accel-
erator Threadi j calculates its own private partial gradient (q (t+1)

i j) by
consuming a sub-partition of the training data. After the partial gradi-
ent updates are calculated, the multi-threaded accelerator aggregates

MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

Di = DataPartitioni
Di1 Dij Dim

CPU

M
em

or
y

Ac
ce

le
ra
to
r

Threadij

Local Aggregation

Mini-Batchi1

Sub
Partitioni1 Model

ParametersMini-Batchij

Sub
Partitionij

Mini-Batchim

Sub
Partitionim

XYi1

NIC

#i(t)#i(t+1)

#i(t)#i(t+1)
#i(t+1)

#i(t+1)
#im(t+1)#ij(t+1)#i1(t+1)

#i(t)

#i(t)#i(t)#i(t) XYimXYij

Threadi1 Threadim

Figure 1: Execution and acceleration flowwithin each node.

them locally and produces the node’s partial gradient update (q (t+1)
i).

The host CPU sends this locally-aggregated partial gradient update
(q (t+1)

i) to a special node that maintains the trained model parameters
for a group of nodes. We refer to this special node as a Sigma node,
while other nodes are calledDelta nodes. The system software layer of
CoSMIC performs the aggregation in a hierarchical manner to avoid
overwhelming a single Sigma node. In the first level of the hierarchy,
the group Sigma node calculates the group aggregate. In the next level
of the hierarchy, a master Sigma node combines the aggregates. Be-
sides aggregation, the Sigma nodes compute their own partial gradient
updates, as they are also equipped with accelerators. After the aggrega-
tion, the Sigma nodes distribute the updated model parameters back to
all the nodes and threads and invoke training for the next mini-batch.
Task assignment in the system so�ware.CoSMIC offers a lean
and scalable system software layer that amortizes the cost of OS-level
context switches, networking, and general thread scheduling; avoids
unnecessary data copies; and matches tasks to the system resources.
To devise this layer, we leverage the observation that aggregation is
significantly less compute intensive than partial gradient calculations.
Hence, the system software layer assigns the partial gradient calcu-
lation to the accelerators, while the CPUs perform aggregation and
networking. This task assignment alleviates the use of accelerator re-
sources for TCP/IP communication, avoids data copies to accelerator
boards for aggregation, and enables using commodity distributed sys-
tems. Moreover, it maximizes system-wide resource utilization and
portability to different accelerator boards. To avoid extra data transfer
with the memory and the host CPU, each accelerator internally aggre-
gates the partial gradients for all its worker threads. Delta nodes send
these partially aggregated gradients to their corresponding Sigma
node. The system software workflow in the Sigma nodes is as follows.
Internal thread pools for networking and aggregation. Fig-
ure 2 illustrates the system software and its subroutines in the Sigma
nodes. The main objective in devising these subroutines is to avoid the
cost of generic thread management (creation, scheduling, and context
switches) and networking by exploiting the specific execution flow
of our class of learning algorithms. These subroutines need to open a
socket for each communicating node. A naive approach would assign
an active thread to handle each socket and spawn a thread to aggre-
gate the received partial gradients. In contrast, the CoSMIC system
software internally manages two thread pools, Networking Pool and
Aggregation Pool as shown in Figure 2, limiting the number of active
threads and reusing them as described below. When a Sigma node
receives a partial update, our Incoming Network Handler catches the
recv event using the Linux epoll system call. The epoll system call is
effective since it does not require a linear scan on the list of monitored

Ag
gr

eg
at

io
n

Bu
ffe

r

Outgoing
Network
Handler

Aggregator

Sigma NodeCircular Buffers

so
ck

et

Model
Buffer so

ck
et

so
ck

et

Model
Buffer so

ck
et

so
ck

et

Networking
Thread Pool

so
ck

et

so
ck

et

so
ck

et

so
ck

et

Aggregation
Thread Pool

D
el

ta
 N

od
e j

D
el

ta
 N

od
e i

Incoming
Network
Handler

epoll

Figure 2: System so�ware in a Sigma node.
sockets. The Incoming Network Handler assigns a thread from the
Networking Pool to copy the received data from the socket buffer in
the kernel space to a Circular Bu�er for aggregation (Figure 2). We
useCircular Bu�ers for concurrent networking and aggregation while
each corresponding thread deals with smaller portions of data. As soon
as the first chunk of data is copied, a thread from theAggregation Pool
starts processing the data and updates the Aggregation Bu�er. This
buffer holds the results of overall aggregation. The networking threads
are data producers, while the aggregation threads are the consumers.
Since Sigma nodes communicate with multiple other nodes, this ap-
proach uses the multi-threading capabilities of the CPUs to improve
concurrency. TheCircular Bu�er reduces the memory required for ag-
gregating partial results from multiple sources while enabling overlap
between communication and computation. Our internally managed
thread pools (1) alleviate the need to create an active thread for each
connection, limiting the number of active threads; (2) reuse threads for
different connections, mitigating the cost of context switching; and (3)
use a producer-consumer semantics between the two thread pools, spe-
cializing their scheduling. These techniques avert the cost of generic
thread management (creation, scheduling, and context switches),
which is oblivious to the execution flow of machine learning.
4 THE COSMIC STACK
Figure 3 illustrates the layers of the CoSMIC stack and their inter-
working that orchestrates Sigma andDelta nodes and enable scale-out
acceleration. This section discusses each layer briefly.

4.1 Programming Layer
Our stack makes the accelerator-augmented scale-out systems pro-
grammable from a high-level DSL. With CoSMIC, programmers
use our extension of the high-level language, developed in the prior
work [12] that focuses on single-FPGA acceleration of learning. We
chose to extend this DSL since it has a one-to-one mapping to math-
ematical formulations instead of providing linear algebra primitives
as proposed in the past [51]. Moreover, it is open source and publicly
available (h�p://act-lab.org/artifacts/tabla/). Using the extended lan-
guage, programmers express the mathematical formula of the partial
gradient and the aggregation operator in a textual format. Additionally,
the programmer declares the mini-batch size. Figure 4(a) illustrates
how a programmer uses our stack to accelerate the training of a binary
classifier based on support vector machines. The first part of the code
is the textual representation of Equation 4.

Gradienti=

(
�y⇥Xi,

�
(ÂiXi⇥Wi)⇥y

�
>1

0,
�
(ÂiXi⇥Wi)⇥y

�
1

(4)

The code has three segments: data declarations, gradient formula-
tion, and aggregator specification. The DSL provides five data types:
model_input, model_output, model, gradient, and iterator. These
types denote the semantics of the variables in learning algorithms, and
the statements represent the mathematical operations. For instance,
the ÂiXi⇥Wi term in Equation 4 is implemented as sum[i](w[i] * x[i]),
where x and w are declared as model_input and model, respectively.

http://act-lab.org/artifacts/tabla/

Scale-Out Acceleration for Machine Learning MICRO-50, October 14-18, 2017, Cambridge, MA, USA
Sy

st
em

 L
ay

er
C

om
pi

la
tio

n
La

ye
r

Pr
og

ra
m

m
in

g
La

ye
r

Model Specification System Specification

Translator

Dataflow Graph (DFG)

Compiler

Operation Schedule/Map

System Director

Nodes Role
Assignment

Delta Node
Subroutines

Sigma Node
Subroutines

A
rc

hi
te

ct
ur

e
La

ye
r Predesigned

Template Planner

Accelerator Architecture

C
irc

ui
t L

ay
er

Constructor

RTL Verilog for Multi-Threaded Accelerator

Chip
Constraints

Partial	Gradient
Aggregation	Operator

Mini-Batch	Size
Number	of	Nodes
Number	of	Groups
Accelerator	Type

Translator Dataflow	Graph	(DFG)
Compiler Operation	Schedule/Map

System	Director Node	Roles
Accelerator	Invocation	Module

Module	for	Communication	with	Sigma	Node
Accelerator	Invocation	Module

Networking	Thread	Pool	for	Communication	with	Delta	Nodes
Circular	Buffer	for	Consumer-Producer	Networking	&	Aggregation

Aggregation	Thread	Pool
Module	for	Communication	with	Next	Level	of	Hierarchy	Node

Hand-Optimized	Template	Design RTL	Verilog
Performance	Estimation	Tool Design	Space	of	Possible	Architectures

Number	of	Threads
Resources	per	Thread
Accelerator	Datapath

Circuit	Layer Constructor RTL	Verilog	of	the	Multi-Threaded	Accelerator

Architecture	
Layer Planner

System	Specification

Algorithmic	Specification
Programming	

Layer

Compilation	
Layer

System	Layer

System	Subroutines:	Sigma	Nodes

System	Subroutines:	Delta	Nodes

Figure 3: The full CoSMIC stack.

mu = 0.01; // learning rate
m = 3; // num of features
minibatch_size = 10000;

model_input x[m];
model_output y;
model w[m];
gradient g[m];
iterator i[0:m];

h = sum[i](w[i] * x[i]);
c = y * h;
g[i] = ((c > 1) * (0 - y)) * x[i];

n = 10; // number of nodes
aggregator(n) {
 iterator j[0:n];

w[i] = (sum[j](w[i])) / n; }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

(a)

 source

 mu x[0] x[1] x[2] y w[0] w[1] w[2] 0 1

 * * *

 *

 *

 *

 *

 *

 *

 *

 -

 - - -

 >

 +

 +

 *

 sink

* * *

(b)
Figure 4: (a) Programmer specifies the classification algorithmas its
gradient and aggregation functions. (b) Translator outputs theDFG.

The iterator i represents the subscript in Âi. The aggregation function
of the parallelized SGD, which averages the partial gradients, is spec-
ified by w[i] = sum[j](w[i]) / n. This high-level expression is then
converted to a Dataflow Graph (DFG) by the Translator (Figure 4(b)).

4.2 Compilation Layer
In a conventional computing stack, the next natural step after trans-
lation would be compilation. However, in our specialized stack, the
order of the steps is different since the architecture of the accelerator
has not yet been solidified. First, the Planner (from the architecture
layer) needs to produce the architectural plan of the accelerator. In the
FPGA case, this plan even depends on the DFG of the learning algo-
rithm. In the P-ASIC case, although this plan is not dependent on the
DFG, it still changes according to the chip constraints. The back-edge
from the architecture layer to the compilation layer in the left diagram
of Figure 3 illustrates the dependence of Compiler to the Planner.
Once the architecture is planned, the Compiler leverages our novel
mapping/scheduling algorithm to statically map operations to the ac-
celerator Processing Engines (PEs). This static mapping is converted
to state machines and control units that are embedded in the accelera-
tor code for FPGA realization. For P-ASIC, the mapping is converted
to microcodes. This static scheduling strategy avoids the von Neu-
mann overheads and significantly simplifies the hardware which is
necessary for the efficiency of the accelerator. As detailed in Section 6,

our mapping/scheduling algorithm also minimizes on-chip commu-
nication and alleviates the need for data preprocessing or marshaling.
Compiler also generates the schedule for the template architecture’s
programmable memory interface that feeds a large number of PEs
and streams data in without the need for PEs to request the data.

4.3 System Layer
Section 3 already detailed the system layer. The topmost component of
this layer is the SystemDirector that assigns roles (Sigma orDelta) to
the nodes and then configures and initiates the corresponding system
subroutines. This role assignment is based on the system specification,
which includes the total number of nodes, the number of groups, and
the accelerator type (Figure 3, right).

4.4 Architecture Layer
In the conventional stack, this layer defines the Instruction Set Archi-
tecture (ISA) of a microprocessor. In CoSMIC, this layer is respon-
sible for planning the architecture of the accelerator in accordance
with the constraints of the target platform. The plan is generated with
respect to our novel multi-threaded template architecture, which is
a parametric RTL Verilog of customizable design. This template ar-
chitecture can accelerate multiple instances of the partial gradients
simultaneously. However, it is not specific to a learning algorithm
and can be shaped according to the constraints of the acceleration
platform (e.g., area) and the DFG of the algorithm in the case of FPGA
acceleration. Instead, it is a two-dimensional matrix of customizable
PEs that this layer needs stretches or squeezes in either dimension to
match the chip specifications. The main challenge is allocating the
chip resources in such a way that strikes a balance between the single-
threaded performance and multi-threaded parallelism. The Planner is
responsible for this balanced plan by determining how many threads
will be accelerated simultaneously; how many PEs will be allocated
to each thread; and how the PE will be arranged in the 2D matrix
of the accelerator. For P-ASICs, the Planner determines the largest
number of PEs that fits in the area and power budget of the target chip.
However, this metric depends on the PE buffer capacity that is decided
according to a set of benchmarks. After determining the total number
of PEs, the Planner steps are similar for P-ASICs and FPGAs. Thus,
we only discuss the Planner in the context of FPGAs for brevity.

To determine these factors, the Planner takes in a high-level spec-
ification of the FPGAs, which includes the number of DSP units, the

MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

off-chip memory bandwidth, the number of on-chip Block RAMs
(BRAMs), and the size of each BRAM (Figure 3). The first step is
determining the number of columns (=# PEs in a row) and rows. The
Planner uses the off-chip memory bandwidth to first set the number of
columns equal to the number of words that can be fetched in parallel
from memory (=off-chip bandwidth). Having fewer columns would
waste bandwidth, while more would increase pressure on the internal
interconnection between the PEs. The Planner will then determine
the maximum row count as rowmax=

DSPs
of Columns .

Next, the Planner determines the number of threads and their PE
allocation through design space exploration. However, this design
space is prohibitively large, due to the copious amount of resources
in the modern FPGAs. We prune this design space through the fol-
lowing intuitive design decisions. The Planner first calculates the
amount of required storage and area for accelerating one worker
thread based on its DFG. The ratio of total on-chip storage and area
to this thread’s footprint will be the upper bound on the number
of simultaneous threads. Then, we restrict the PE allocation to the
row granularity, meaning each thread will have at least a row of
PEs. Another parameter that affects the maximum number of threads
is the programmer-provided mini-batch size, as it determines how
many parallel threads can potentially be launched. The minimum
of these parameters is the maximum number of possible threads
(tmax=min

⇣
BRAMs⇥BRAM Size

DFG.storage() , rowmax, Mini-Batch Size
⌘

).
These design choices and the column/row arrangement restrict the

design space from which the Planner needs to determine the optimal
allocation of PEs to the threads. For instance, in UltraScale+, the
design space is limited to 27 design points. However, the Planner
still needs to explore this reduced design space. Instead of simulation,
which will be intractable, we propose to equip the Planner with a per-
formance estimation tool. The tool will use the static schedule of the
operations for each design point to estimate its relative performance.
This enables the Planner to choose the smallest, best-performing
design point which strikes a balance between the number of cycles
of data processing and off-chip data transfer. Performance estimation
is viable, as the DFG does not change, there is no hardware managed
cache, and the accelerator architecture is fixed during execution. Thus,
there are no irregularities that can hinder estimation. As such, it takes
less than five minutes to explore all the possible design points for
UltraScale+. The result of this design space exploration is presented
in Section 7. After this analysis, the Planner generates the Verilog
code of the accelerator datapath from the template.

4.5 Circuit Layer
As Figure 3 depicts, theConstructor is the main module of the Circuit
layer and generates the final Verilog code by adding the control logic.
In the case of FPGAs, to generate the state machines and control
units, the Constructor needs the Compiler to first statically map and
schedule all the operations. In this case, the accelerator avoids the von
Neumann overhead by bypassing instruction fetch and decode stages.
Instead, the Constructor statically converts the execution schedule to
state machines and control logic. In the case of P-ASICs, theConstruc-
tor adds a control logic that enables microcode execution on the PEs.
Then, it inserts these control units within the datapath Verilog code
generated by the Planner and produces the final synthesizable Ver-
ilog code of the accelerators. The Planner, the Constructor, and the
Compiler work in tandem to make CoSMIC a cohesively co-designed
stack that delivers high gains.

Sh
i$
er

Worker	Thread	#1
PE₁,₁

PE₁,₂

PE₁,n

Mem	
Addr

Thread	
Index	
Table

Sh
ar
ed

	
Ro

w
	B
us

Pipelined	
Memory	Bus

PE	
Offset

Memory	
Schedule

Th
re
ad
	ID

Tree	Bus

Pr
ef
et
ch
	

Bu
ffe

r

PE₂,₁

PE₂,₂

PE₂,n

Worker	Thread	#T
PEm-₁,₁

PEm-₁,₂

PEm-₁,n

PEm,₁

PEm,₂

PEm,n

M
em

or
y	

In
te
rfa

ce

Figure 5: CoSMICMulti-Threaded Template Architecture.

5 TEMPLATE ARCHITECTURE
A major challenge in acceleration is the generality across a wide range
of algorithms and applications while supporting a variety of platforms
(e.g., various FPGA chips). It is also crucial to offer a solution that can
adapt to new algorithms and algorithmic changes. A fixed architecture
cannot offer enough flexibility and is not deployable on different
chips. Therefore, CoSMIC offers a template architecture to accelerate
learning at scale. This template is predesigned, yet re-organizable,
providing the capability to implement different gradient calculations
and parallel variants of gradient descent aggregations and updates.
The template offers reusability while delivering high performance,
as it is hand-crafted by experts (e.g., our team). Our stack stretches
and squeezes the template to best match the DFGs and the target
chip. Hence, it is modular and scalable to maximally utilize the ample
amount of resources in the server-grade FPGAs and P-ASICs.
The need for multi-threading. A single instance of a learning
algorithm cannot effectively exploit as much resources, since it is
limited by the level of parallelism in its DFG. The DFG of the partial
gradient update dictates the number and type of operations, along with
data-dependencies. However, data-dependencies in the DFG limit the
number of operations that the accelerator can execute in parallel. To
increase the parallelism available to the accelerator, we use the insight
that partial gradient updates generated by worker threads in parallel
gradient descent algorithms are independent. As such, the CoSMIC
template architecture executes multiple worker threads in the FPGA
accelerator; each thread, using a subset of the accelerator resources,
executes the entire DFG over the thread’s data sub-partition to gen-
erate an independent partial gradient update. This multi-threading
limits the data-communication within a worker thread to a subset of
the accelerator’s DSP slices, reducing communication overhead.

5.1 Accelerator Organization
As depicted in Figure 5, the template architecture constitutes: (1) the
memory interface—to transfer data to and from external memory; (2)
the shifter—to align the data coming from memory; (3) the prefetch
buffer—to store the aligned data; and (4) the two-dimensional array
of PEs—to compute partial gradient updates and locally aggregate
them. We choose this 2D topology, because it enables the Planner
to modularly add or remove PEs as columns or rows. As discussed,
this organization also enables an efficient design space exploration
by assigning PEs to the worker threads in the rows granularity.
Connectivity and bussing. As Figure 5 shows, the number of PEs
in each row of the template matches the off-chip bandwidth so that the
memory interface can feed all the PEs in a row every cycle, maximiz-
ing parallelism. Each row of PEs connects to the memory interface
using a pipelined bus, as shown in Figure 5. Pipelining the bus is
necessary for scalability since the bus is shared by all the rows in the
accelerator. In addition to data transfer between external memory and

Scale-Out Acceleration for Machine Learning MICRO-50, October 14-18, 2017, Cambridge, MA, USA

the PEs, connectivity between PEs is required to transfer intermediate
results due to data-dependencies in the DFG. To facilitate the com-
munication, PEs in a single row are connected to their adjacent PEs
using bi-directional links and are also connected to the other PEs in
the row via a shared bus. A hierarchical tree bus connects the shared
bus for different rows. We specialize the interconnect between PEs
in the template architecture for communication patterns typical for
operations in stochastic gradient descent based learning algorithms.
One such example of a common operation is a vector dot product,
which involves element-wise multiplication followed by reduction
(Â). The result is then typically communicated to all PEs. While the
PEs can execute the element-wise multiplication in parallel, the re-
duction and broadcast operations require significant communication
between PEs, which can be a performance bottleneck. In order to
alleviate the communication overhead and ensure high utilization
of the accelerator’s resources, PEs possess three distinct levels of
connectivity. Figure 5 shows these three levels of connectivity for
the template architecture with (n) PEs per row and (m) rows. At the
first level, the n adjacent PEs within each row can communicate using
bi-directional links. Next, a shared bus connects all of the n PEs within
each row. Finally, we use a tree bus to connect the shared bus of m
rows of the accelerator. To further aid the reduction operation, each
node in the tree bus contains an ALU to perform Â and ’ operations.
PE design. Figure 6 details a PE, the basic unit of the template ar-
chitecture responsible for executing the operations of the DFG. The
rows of PEs within a worker thread exploit fine-grained parallelism
in the DFG, enabling the execution of multiple independent opera-
tions in parallel. A PE consists of separate buffers for storing training
data, model parameters, and intermediate results. This partitioning
of buffers is necessary to enable parallel accesses required for DFG
operations. The buffers are composed of on-chip SRAMs and the
size of each buffer can be configured by the Planner for a given DFG.
CoSMIC’s Compiler statically generates the schedule of operations
for each PE. The PEs execute the scheduled operations using a five
stage pipeline, orchestrated by a PE scheduler. The first pipeline stage
reads the required data from PE’s buffers, adjacent PE links, and
shared bus links. This data is registered in the second stage. The third
stage selects the input operands required by the scheduled operation.
The fourth stage executes the scheduled operation using the PE’s
ALU. For FPGA implementation, the ALU uses DSPs blocks—the
hardened on-chip arithmetic unit on the FPGA. The non-linear unit
is a look-up table that implements expensive operations like sigmoid,
gaussian, divide, and logarithm and is only instantiated in a PE if the
Compiler schedules a non-linear operation for that PE. The output
of the ALU unit is written back in the fifth and final stage of the PE
pipeline. The PEs have a bypass path between the final stage and the
ALU stage to forward the result of the previous operation. Figure 6
highlights the path taken by an add operation which reads from data
and model buffers and writes back to the interim buffer.
Memory interface. Simplicity of the PEs and their highly pipelined
design is vital for the efficiency of the accelerator. To further simplify
the design, the template architecture prevents the PEs from initiating
data requests to the memory. Instead, as illustrated in Figure 5, the de-
sign harbors a smart memory interface which feeds the PEs according
to the schedule generated by the Compiler. This memory interface
design is intended to alleviate the overhead of data marshaling, which
would have been prohibitive since CoSMIC targets distributed learn-
ing with copious amounts of data. However, one issue that arises is
that the vectors of data in the off-chip memory do not necessarily align

Data	Buffer

Model	Buffer

Interim	Buffer

Le3	PE

Shared	Bus

Right	PE
ALU

x

>

Non-
Linear

Stage	1 Stage	2 Stage	3 Stage	4 Stage	5

+

Figure 6: Pipelined PE. Black highlights an Add operation (Interim-
Bu�er[i] = DataBu�er[j] +ModelBu�er[k]).
with the rows of the PEs. This can lead to under-utilization of off-chip
bandwidth, which is often a performance bottleneck. To avoid the
overhead of padding the data to align with the PEs, we propose to use
an on-chip Shi�er that aligns input data after fetching it, according to
the data map generated by theCompiler. In addition to the Shi�er, the
memory interface will have a Prefetch Bu�er. The size of the training
data for each DFG is often large. Hence the time required for external
memory access is significant. The Prefetch Bu�er enables the acceler-
ator to store the subsequent set of training data for the worker threads,
thereby hiding the latency of memory accesses and enabling efficient
MIMD execution. The memory interface can also perform broadcast
writes to the PEs, as the same model needs to be sent to all the worker
threads before they start calculating the new gradient updates.

5.2 Multi-Threaded Acceleration
The programmable memory interface plays a significant role in en-
abling multithreading in the accelerator without imposing significant
hardware overhead. It harbors aMemorySchedule queue along with a
Thread Index Table that stores thread-specific information as depicted
in Figure 5. This information includes the memory address of each
thread’s data sub-partition and the base index of the first allocated PE
row to the thread. In addition, each thread has its own dedicated pointer
to theMemorySchedule queue. The data transfer schedule is the same
for all the threads but it needs to start from different addresses and
write to different PEs. TheThread IndexTable enables correct and effi-
cient data transfer from memory to all the threads while the schedule is
shared. Each row of the table corresponds to one thread. The first field
in each row is MemAddr, which specifies the starting address of each
thread’s data sub-partition in the off-chip memory. The second field,
PE O�set, specifies the index of the first PE of the thread. By walking
through these rows, the memory interface controller uses the entries of
the Memory Schedule and the Thread Index Table to generate mem-
ory accesses for each thread in a round-robin fashion. Each entry of the
schedule stores a Base PE Index, RD/WR bit, Broadcast bit, and Size.
The index of the target physical PE is (BasePE Index+PEO�set). The
latter term in the addition comes from the Thread Index Table. The
memory address is also obtained from the Thread Index Table, which
is updated by the size of the transferred data after it finishes. Using this
table, the memory interface has the necessary information to transfer
each thread’s data to its allocated PEs without the need for storing mul-
tiple copies of the memory schedule. The RD/WR bit of the memory
schedule entry specifies whether the memory access is a read or a write.
The Broadcast bit allows a memory read to be sent to all the worker
threads via the memory interface bus. This bit is particularly useful
when sending model parameters from memory to all worker threads.
The Size specifies the size of the data transfer. TheCompiler generates
the memory schedule according to the Planner-provided architecture
and the DFG. The following section discusses the Compiler in detail.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

6 COSMIC COMPILATION
The Compiler is a critical layer of CoSMIC, since it statically deter-
mines a fine-grained map and schedule of all the data and operations,
which significantly simplifies the hardware. This simplification is
necessary for acceleration, particularly for FPGAs that incur lower
frequency when design complexity grows. Furthermore, theCompiler
minimizes on-chip and off-chip communication and avoids data pre-
processing or marshaling. Avoiding data marshaling is crucial, since
the accelerators process large amounts of data and any data transfer
is costly. To this end, we propose an algorithm that minimizes data
movements by statically mapping data elements to PEs before map-
ping the operations. Conventional mapping algorithms [12, 52] map
operations before the data to find the lowest-latency schedule which
adheres to the on-chip resource constraints. In contrast, we reverse the
order of mapping, thereby minimizing data movement atop latency.

The Compiler takes as input the DFG of the gradient update, the ar-
chitectural plan of the multi-threaded accelerator, and the data layout
of the training dataset and model parameters in the memory. Using
these inputs, the Compiler generates the following for each thread:
(1) Data map: assignment of inputs, outputs, model parameters, and

intermediate values to the PEs.
(2) Operation map: assignment of all the DFG operations to PEs.
(3) Data transfer schedule: detailed schedule for memory interface

and interconnection buses to send data to the appropriate PEs.
To generate the data map, the Compiler first segregates the DFG

operands (graph edges) intoDATA,MODEL, and INTERIM categories.
These categories represent training data, model parameters, and in-
termediate operands, respectively. This semantic segregation enables
the Compiler to provide an optimal data map without marshaling the
data as follows. It starts by mapping each training data element (type
DATA) to the PE that is connected to the memory interface column
which brings in that element. The Compiler uses this data map to gen-
erate the schedule of data transfer from off-chip memory and embeds
it into the memory interface. This map and schedule avoids marshal-
ing by adhering to the layout of training data in the memory. Next, the
Compiler generates the operation map and data map for the model
parameters while minimizing the communication between PEs. We
have designed Algorithm 1 for the Compiler to map the operations
to the same PEs that hold their operands; hence minimizing inter-PE
communication. This algorithm also maps the model parameters to
the PEs that hold their corresponding operation. The intuition is to
map the MODEL and INTERIM edges on to the same PE if a node
operates on both of them. After determining the data map on the PEs,
the algorithm traverses the DFG and map operations according to
the location of their operands, minimizing data movement. During
this pass, to reduce latency, the Compiler also prioritizes scheduling
operations that have the longest dependence chain. The algorithm
takes in the DFG (G) and the number of PEs per thread (nPE) and
goes through the following steps:
(1) Initialize the operation map (O[nPE]) and the data map (D[nPE])

to null and the Graph variable to the DFG (G). O and D are arrays
of lists that hold the maps for each PE.

(2) Select a vertex (v) that is ready i.e. all its predecessors are
mapped.

(3) Check the operand type for this vertex (v). If any of its operands
(opi) is of type DATA, then map v to the PE containing this data,
else go to step (4). Check the type of the other operand (op j). If
the other operand (op j) is of type MODEL, then map this model
parameter to v’s PE and go to step (5).

Input :G: Dataflow graph (V ,E)
nPE : Number of PEs per worker thread

Output :O: Operation map
D: Data map

Initialize O[nPE] /0
Initialize D[nPE] /0
Initialize Graph G
PEi = 0
while (graph , /0) do

for (v 2Graph) do
if (8 pi in v.parents = MAPPED) then

if (9 opi in v.ops & opi.type = DATA) then
v.pe = opi.pe
if (9 op j in v.ops & op j.type = MODEL) then

D[v.pe].append(v.op j)
Break

else if (9 opi in v.ops & opi.type = MODEL) then
if (opi.pe != NULL) then

v.pe = opi.pe
else

v.pe = wi
D[v.pe].append(v.opi)
PEi = (PEi + 1) % nPE

Break
else if (9 opi in v.ops & opi.type = INTERIM) then

v.pe = opi.pe
Break

O[v.pe].append(v)
graph.remove(v)

end
end

Algorithm 1:Minimum-Communication Data/OperationMapping.

(4) If operand type of the vertex (v) is MODEL, then map v to the
PE where the model parameter resides, otherwise go to step (5). If
the operand is not mapped, then map this vertex and the operand
opi to a new PE (PEi). The PEi variable is a counter, incremented
after each round of successful mapping. Incremental assignment
enables parallel execution of the operations in neighboring PEs.

(5) If operand type of the vertex (v) is INTERIM, map the vertex(v)
to the PE in which the operand resides.

(6) Reiterate steps 2 through 5 until all the vertices are mapped.
Given the data and operation map, the Compiler generates the ex-

ecution schedule for all the components of the accelerator, including
its programmable memory interface and PE interconnects. Recall
that each thread performs the same gradient update rule but uses dif-
ferent training data. Therefore, the Compiler generates the map and
schedule for one thread and use it for all of them. However, to overlap
off-chip data transfer with computation, the accelerator is MIMD,
not SIMD. Thus, threads can be at different computation stages since
they start execution as soon as they receive an operand. To enable the
MIMD execution, the Planner produces a PE O�set for each thread,
which is the index of the first PE that is assigned to the thread. The PE
O�set and the starting address of its training data is loaded into the
Thread Index Table as discussed before (see Figure 5). The Compiler
generates only one schedule for the memory interface since the des-
tination PE can be calculated at runtime by adding each thread’s PE
O�set to the PE index that is in the schedule. Finally, the Compiler
uses the map of the model parameters to generate the schedule for the
aggregation stage that follows partial gradient calculations.

7 EVALUATION
We evaluate CoSMIC with 10 different machine learning benchmarks
using various acceleration platforms, which consist of one FPGA
(Xilinx UltraScale+ VU9P) and two P-ASICs. These accelerators

Scale-Out Acceleration for Machine Learning MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Table 1: Benchmarks, algorithms, application domains, and datasets.

Name Algorithm Domain Description
#	

Features
Model	

Topology
Model	
Size	(KB)

Lines	
of	Code

#	Input	
Vectors

Input	Data	
Size	(GB)

mnist Image	Processing Handwritten	digit	pattern	recognition 784 784×784×10 2,432 55 60,000 0.4
acoustic Audio	processing Hierarchical	acoustic	modeling	for	speech	recognition 351 351×1,000×40 1,527 55 942,626 5.6
stock Finance Stock	price	prediction 8,000 8,000 31 23 130,503 14.7
texture Image	Processing Image	texture	recognition 16,384 16,384 64 23 77,461 17.9
tumor Medical	Diagnosis Tumor	classification	using	gene	expression	microarray	 2,000 2,000 8 22 387,944 10.4
cancer1 Medical	Diagnosis Prostate	cancer	diagnosis	based	on	the	gene	expressions 6,033 6,033 24 22 167,219 13.5
movielens Recommender	System Movielens	recommender	system 30,101 301,010 1,176 42 24,404,096 0.6
netflix Recommender	System Netflix	recommender	system 73,066 730,660 2,854 42 100,498,287 2.0
face Computer	Vision Human	face	detection 1,740 1,740 7 27 678,392 15.9
cancer2 Medical	Diagnosis Cancer	diagnosis	based	on	the	gene	expressions 7,129 7,129 28 27 208,444 20.0

Backpropagation

Support	Vector	
Machine

Collaborative	
Filtering

Logistic	
Regression

Linear	
Regression

are hosted in machines equipped with Intel Xeon E3 v5 processors.
We first compare the scalability of the FPGA-accelerated CoSMIC
systems to a popular distributed computing platform, Spark [1], while
increasing the number of nodes from 4 to 8 to 16. For the scale-out
experiments, we used Amazon EC2. We built a local three node sys-
tem for the in-depth sensitivity studies. We also perform comparison
with the distributed GPU (Nvidia K40c) implementation of the bench-
marks. Table 2 details the specification of these platforms. Lastly,
we compare the CoSMIC template architecture with TABLA [12], a
single-node FPGA acceleration framework for ML.

7.1 Methodology
Benchmarks and training input datasets. Table 1 shows the list
of 10 benchmarks—obtained from machine learning literature—that
train two different models with each of the following five different
algorithms: backpropagation, linear regression, logistic regression,
collaborative filtering, and support vector machines. The benchmarks
represent various application domains including image processing,
audio processing, finance, medical diagnosis, recommendation sys-
tems, and computer vision. The mnist and acoustic benchmarks train
Multi-Layer Perceptrons (MLPs) for handwritten digit [53, 54] and
automatic speech recognition [55], respectively. The stock bench-
mark trains a linear regression model to predict stock prices using
the tick-level data points [56]. The texture benchmark trains another
linear regression model for texture recognition [57]. The tumor and
cancer1 benchmarks train two different logistic regression models
to detect tumors [58] and cancer [59] using the microarray gene
expression data. The movielens and netflix benchmarks train recom-
mender systems that employ the collaborative filtering algorithm on
Movielens datasets [60, 61] and Netflix Prize Dataset [62]. The face
benchmark trains a support vector machine for face recognition [63].
The cancer2 benchmark trains another support vector machine to
detect cancer [63]. We train each benchmark for 100 epochs over
its dataset. We repeat the experiments 10 times and use the average
runtime. In Table 1, the “# of Features” column shows the number
of elements in each training data vector and the “Model Topology”
column denotes the model topology of each benchmark. The “Model
Size” column shows the size of the model parameters. The “Lines of
Code” column lists the number of lines of code that the programmer
writes, which ranges from 22 to 55. Finally, the “# of Input Vectors”
and “Input Data Size” columns show the number of the training vec-
tors and the size of the training data. The model parameters for all the
benchmarks fit in on-chip memory of the FPGA and the P-ASICs.
Scale-out system specification.BothCoSMIC and Spark systems
are deployed on a cluster of machines, which are equipped with the
high-performance quad-core Intel Xeon E3 Skylake processors with
hyper-threading support that operates at 3.6 GHz. The detailed CPU
specification is provided in Table 2. The machines run Ubuntu 16.04.1

LTS with the kernel version 4.4.0-47. The machines are connected
through a TP-LINK 24-Port gigabit Ethernet switch (TL-SG1024)
via TP-Link gigabit Ethernet network interface card (TG‘-3468). The
switch supports full duplex operation on all ports (2 Gbps per port)
and a combined switching capacity of up to 48 Gbps.
Spark. We compare CoSMIC with Spark version 2.1.0. Spark is se-
lected as the point of comparison since it supports efficient in-memory
processing for iterative applications. Moreover, Spark provides the
MLlib [27] machine learning library. The Spark MLlib library pro-
vides the baseline implementation for backpropagation, linear regres-
sion, logistic regression, collaborative filtering, and support vector
machines [27]. To optimize the performance of MLlib, we build Spark
with vectorized OpenBLAS library. For all the Spark results, we use
the best-performing combination of machines and threads. The best
number of threads is selected for each benchmark individually.
FPGA.As Table 2 shows, we use Xilinx Virtex UltraScale+ VU9P for
the FPGA experiments. We use Xilinx Vivado 2017.2 to synthesize
the generated accelerators at 150MHz. The synthesized accelerators
are connected to the external DRAM using the AXI-4 IP.
GPU. For comparison with GPUs, we extend CoSMIC’s runtime
system to support GPUs since Spark does not. The alternative would
have been integrating GPUs with Spark, which is on its own a line
of ongoing research [64–67]. As such, we build a GPU-accelerated
CoSMIC system. We had three Nvidia Tesla K40 GPUs at our dis-
posal, which are used for this comparison (see Table 2 for hardware
specification). For the GPU experiments, we developed highly opti-
mized CUDA implementations using well-known libraries, including
LibSVM-GPU [68] and Caffe2+cuDNN [69], as well as source code
from related works [6, 12]. In all cases, we used the latest versions
of each library (e.g., cuBLAS v8.0 [70] and cuDNN v7.0 [71]). We
use WattsUp [72] to measure the system power following the same
methodology in the prior work [73].
P-ASICs. We use Synopsys Design Compiler (L-2016.03-SP5) and
TSMC 45-nm high-Vt standard cell libraries to synthesize the CoS-
MIC-generated architectures and obtain the area, frequency, and
power results. We used CoSMIC to generate two P-ASIC designs:
one with the PE count and off-chip bandwidth that match those of the

Table 2: CPU, GPU, FPGA, and P-ASICs.
CPU GPU FPGA P-ASIC P-ASIC

Cores 4 2,880 DSP	Slices 6,840 PEs 768 2,880
Memory	 32	GB 12	GB BRAM 44,280	KB Area	(mm2) 29 105
TDP 80	W 235	W TDP 42	W Power 11	W 37	W

Frequency 3.6	GHz 875	MHz LUTs 1,182	K Frequency 1	GHz 1	GHz
Technology 14		nm 28	nm Flip	Flops 2,364	K Technology 45	nm 45	nm

Chip GChip
Xeon	

E3-1275	v5
Tesla	
K40c

FChip
UltraScale+	

VU9P	

MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

1×

10×

100×
CoSMIC Spark

100×

10×

1×

acousticmnist
stock

texturetumor
cancer1

movielens
netflix face

cancer2
geomean

Sp
ee

du
p

ov
er

4-
C

PU
-S

pa
rk

(lo
g-

sc
al

e)

Figure 7: Speedupover Spark as thenumber of nodes increases from
4 to 8 to 16. Baseline: Spark systemwith 4 nodes (4-CPU-Spark).

1×
2×
3×
4×

C
oS

M
IC

Im
pr
ov

em
en

t

acousticmnist
stock

texture
tumor

cancer1
movielens

netflix face
cancer2

geomean

(a) Improvement over 4-FPGA-CoSMIC

acou
sticmnist stocktextu

retumor
canc

er1
moviele

nsnetfli
x facecanc

er2
geom

ean
1×
2×
3×
4×

Sp
ar
k

Im
pr
ov

em
en

t

(b) Improvement over 4-CPU-Spark

Figure 8: Scalability comparison of CoSMIC and Spark as the
number of nodes increases from 4 to 8 to 16.

FPGAs (P-ASIC-F), the other that match those of the GPUs (P-ASIC-
G). Table 2 provides the details of these P-ASICs. We combine the
system-level measurements with the synthesis and simulation/estima-
tion results to evaluate these P-ASICs.

7.2 Experimental Results
Performance comparison. Figure 7 shows the result of perfor-
mance comparison between CoSMIC and Spark using three system
configurations: 4-Node, 8-Node, and 16-Node. The baseline is a 4-
Node Spark system, referred to as 4-CPU-Spark. On average, the
4-FPGA-, 8-FPGA-, 16-FPGA-CoSMIC configurations deliver 12.6⇥,
23.1⇥, and 33.8⇥ higher performance, respectively. Whereas, increas-
ing the number of nodes with Spark from 4 to 16 only yields 1.8⇥
performance improvement. The performance does not scale linearly
as the number of nodes increases due to system management overhead
in networking and aggregation. The performance gains for different
benchmarks depend on their model topology, parallelism, and mem-
ory footprint. For example,movielens (collaborative filtering) sees the
highest speedup (100.7⇥) since its DFG is significantly parallel that al-
lows CoSMIC to utilize the FPGAs resources for higher performance.
On the contrary, mnist and acoustic (backpropagation) achieve rel-
atively smaller speedup (6.8⇥ and 16.5⇥) since these benchmarks
require significant on-chip communication, which bottlenecks perfor-
mance. These results show that CoSMIC’s full-stack approach, which
comes with our multithreaded accelerators, is highly effective for the
scale-out acceleration of these ML applications. Furthermore, these
results show that CoSMIC better utilizes the added resources and is
more scalable as the number of nodes increases.
Scalability.To better compare the scalability of the two systems, Fig-
ure 8 shows the performance improvement over each system’s own
4-Node configuration. Figure 8(a) shows the improvement with CoS-
MICwhen the 4-FPGA-CoSMIC is the baseline and Figure 8(b) shows
the improvement with Spark when 4-CPU-Spark is the baseline. On
average, CoSMIC performs 1.8⇥ and 2.7⇥ faster when the system

Sp
ee

du
p

ov
er

3-

FP
G

A-
C

oS
M

IC

0×

1×

2×

3×

acousticstock
texture tumor

cancer1
movielens

netflix face
cancer2

geomeanmnist

3-P-ASIC-F-CoSMIC 3-GPU-CoSMIC3-P-ASIC-G-CoSMIC

Figure 9: System-wide speedup over 3-FPGA-CoSMIC.

Sp
ee

du
p

ov
er

 F
PG

A

0×

5×

15×

10×

acousticstock
texture tumor

cancer1
movielens

netflix face
cancer2

geomeanmnist

21
x

20
x

19
x P-ASIC-F GPUP-ASIC-G

Figure 10: Computation speedup over FPGA.

Im
pr

ov
em

en
t i

n
Pe

rfo
rm

an
ce

-p
er

-W
at

t
0×

5×

10×

15×

acousticstock
texture tumor

cancer1
movielens

netflix face
cancer2

geomeanmnist

3-P-ASIC-F-CoSMIC3-FPGA-CoSMIC 3-P-ASIC-G-CoSMIC

Figure 11: Performance-per-Wa�, baseline: 3-GPU system.

is scaled up to 8 and 16 nodes, respectively. As a point of reference
and comparison, Spark shows 1.3⇥ and 1.8⇥ speedup for the same in-
crease in the number of nodes. The results from Figure 7 and Figure 8
show that CoSMIC scales well and better than Spark as the number of
nodes increases. The improvement gap between Spark and CoSMIC
is larger for the benchmarks that have higher ratio of communication
to computation in the runtime (stock, texture, tumor, cancer1, face,
and cancer2). For the other benchmarks, CoSMIC scales less steeply
in comparison to Spark. These benchmarks are compute-bound and
therefore acceleration is effective and adding accelerators reduces the
computation time in the baseline 4-Node configuration. Since Spark
does not utilize the accelerators, it benefits more from the added nodes
as they bring in the necessary compute power that was missing in
the 4-Node configuration. Therefore, adding more nodes helps but
it is more effective for Spark. Nonetheless, as Figure 7 illustrates,
CoSMIC significantly outperforms Spark across all the benchmarks.
These results confirm that the specialization of the system software
has been effective in enabling acceleration at scale.
Comparisonof di�erent accelerationplatforms. Figure 9 com-
pares the benefits of CoSMIC with FPGAs and P-ASICs to GPUs.
The results are obtained from our three-node system configuration
and the baseline is the 3-FPGA-CoSMIC. On average, the 3-P-ASIC-
F-CoSMIC, 3-P-ASIC-G-CoSMIC, and 3-GPU-CoSMIC systems pro-
vide average 1.2⇥, 2.3⇥, and 1.5⇥ higher performance than the 3-
FPGA-CoSMIC system, respectively. Although as expected P-ASICs
and the GPU outperform the FPGA, the benefits are relatively mod-
est. To understand this trend, Figure 10 shows the improvement in
compute time without considering the system software. On average,
P-ASIC-F, P-ASIC-G, and GPU perform 1.5⇥, 11.4⇥, and 1.9⇥ faster
than FPGA, respectively. Except for mnist and acoustic benchmarks,
which use the backpropagation algorithm, the benefits from P-ASIC-F
and GPU are not overwhelming.GPU provides higher speedup on two
specific benchmarks (20.3⇥ for mnist and 12.8⇥ for acoustic) as the

Scale-Out Acceleration for Machine Learning MICRO-50, October 14-18, 2017, Cambridge, MA, USA

0.01⇥
0.1⇥

1⇥
10⇥

100⇥

mnist

acoustic
stock

texture
tumor

cancer1

movielens
netflix face

cancer2
gmean

b=500 b=1000 b=5000 b=10000 b=50000 b=100000

(a) Spark performance as the mini-batch size increases. (Log-scale)

0.01⇥
0.1⇥

1⇥
10⇥

100⇥

mnist

acoustic
stock

texture
tumor

cancer1

movielens
netflix face

cancer2
gmean

b=500 b=1000 b=5000 b=10000 b=50000 b=100000

(b) CoSMIC performance as the mini-batch size increases. (Log-scale)
Figure 12: Performance vs. mini-batch size as it is swept from 500 to 100,000; baseline: 3-node Sparkwhen themini-batch size is 10,000.

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

R
un

tim
e

mnist

acoustic
stock

texture
tumor

cancer1

movielens
netflix face

cancer2
average

Computation
Communication

b = 5000
b = 1000
b = 500

b = 10000
b = 50000
b = 100000

Figure 13: Fraction of 3-FPGA-CoSMIC runtime.

1×

10×

100×

1,000×

m
ni
st

ac
ou

st
ic

st
oc
k

te
xt
ur
e

tu
m
or

ca
nc
er
1

m
ov
ie
le
ns

ne
tfl
ix

fa
ce

ca
nc
er
2

ge
om

ea
n

FPGA System	Software

aco
ustic sto

ck
tex

ture
tumor

can
cer

1

movie
len

s
netfl

ix
fac

e

can
cer

2

geo
mean

1×

10×

100×

1000×

Sp
ee

du
p

/ S
pa

rk
(L

og
 S

ca
le

)

mnist

Figure 14: Speedup breakdown between FPGAs and system so�ware
(aggregation, networking, andmanagement) for 3-FPGA-CoSMIC.

dominant part of their computation is relatively large matrix-matrix
multiplication that GPUs can compute very efficiently. P-ASIC-F of-
fers the same number of PEs and bandwidth compared to the FPGA
but at higher frequency. These results show that just improvement
in frequency does not translate to proportional speedup as long as
the bandwidth remains unchanged. These results also show that the
coalescence of CoSMIC’s Planner, Compiler, and multi-threaded ac-
celerator design has been effective in exploiting the FPGA resources.
Across all benchmarks,P-ASIC-G shows significantly higher improve-
ment as this design point combines more PEs, higher frequency, and
higher bandwidth. The PE count and bandwidth of P-ASIC-Gmatches
the GPU and its frequency is higher than the FPGA. However, as
Figure 9 illustrates, even in the case of P-ASIC-G, the computation
speedup does not translate to proportional system-wide improve-
ment. These results confirm the importance of system software and
CoSMIC-like full-stack approaches, as accelerators gain popularity.

The speedup of 3-GPU-CoSMIC comes from the GPU’s higher
frequency as well as massive parallelism; however, it also comes at an
expense of higher power dissipation. Figure 11 highlights this power-
performance tradeoff by depicting the improvement in Performance-
per-Watt when comparing the FPGA- and P-ASIC-accelerated sys-
tems to the GPU-based system. The 3-FPGA-CoSMIC, 3-PASIC-F-
CoSMIC, and 3-PASIC-G-CoSMIC systems achieve on average 4.2⇥,
6.9⇥, and 8.2⇥ higher Performance-per-Watt than 3-GPU-CoSMIC,
respectively. These results show that when the power-efficiency is
the main concern, FPGAs or P-ASICs will be more desirable ac-
celeration platforms than GPUs although GPUs provide higher per-
formance than FPGAs and one of the P-ASICs, namely P-ASIC-F.
Moreover, although P-ASICs provide both higher performance and
power-efficiency, they impose a significant design and manufacturing
cost. CoSMIC’s template approach reduces the design time and cost
as it offers a way to generate accelerator code. However, the cost of
manufacturing may tip the scale towards FPGAs as they also offer
significant benefits in both performance and power efficiency.
Sensitivity tomini-batch size. We use 10,000 as the default mini-
batch size as used in the machine learning literature [74–76]. How-
ever, the optimal mini-batch size depends on several variables such
as model, datasets, and training iterations. Larger mini-batch size re-
duces the rate of aggregation, which reduces the inter-node communi-
cation, leading to higher performance. Figure 13 illustrates this effect

by segregating the fraction of runtime spent in computation and com-
munication as the number of mini-batch size increases from b=500
to b=100,000 in the three-node runtime. On average, the computation
with the mini-batch size 500 takes 12% of runtime but this increases
to 95% when the mini-batch size is 100,000. However, reducing the
aggregation rate can adversely affect training convergence [74–78].
To study the effect of mini-batch size on Spark and CoSMIC, we
sweep the mini-batch size from 500 to 100,000 for three-node system
configuration. Figure 12(a) and Figure 12(b) present the result of this
sweep. For both figures, the baseline is the three-node Spark when
mini-batch size is 10,000, our default setting. Comparing Figure 12(a)
and Figure 12(b) shows that 3-FPGA-CoSMIC is faster across all
combinations of benchmarks and mini-batch sizes. On average, with
the same mini-batch size of b=500,CoSMIC is 16.8⇥ faster. When the
mini-batch size increases to b=100,000,CoSMIC is 9.1⇥ faster. As the
mini-batch size increases, Spark’s overheads diminish. Nevertheless,
CoSMIC outperforms Spark.
Sources of speedup. Figure 14 teases apart the benefits of FPGA
acceleration from the benefits of the specialized system software over
the three-node Spark. On average, the three FPGAs provide 20.7⇥
speedup and the specialized system software–which also includes
the aggregation part of the computation–is 28.4⇥ faster than Spark’s
system software. As we discuss below, six of the benchmarks are
more sensitive to data transfer and thus gain more benefits from the
specialized system software compared to the benefits from FPGA.
These benchmarks specifically benefit from the system software’s
task assignment that utilizes CPUs for both networking and aggrega-
tion of partial results from other nodes, thereby avoiding extra data
transfer to the FPGAs. Nonetheless, all benchmarks gain from both
FPGAs acceleration and specializing the system software.
Sensitivity to FPGA resources and bandwidth.CoSMIC can re-
shape and customize the template to match the resources of the target
FPGAs or P-ASICs. The two main resources that affect performance
are the number of PEs and the off-chip memory bandwidth. How-
ever, the DFG of the learning algorithm determines which resource
is dominant. To study the interplay of algorithms and resources, we
use a performance estimation tool that is validated against the hard-
ware. Figure 15(a) illustrates the performance changes when the
number of PEs varies from 192 to 6144 for a CoSMIC accelerator. The
benchmarks that use the backpropagation (mnist and acoustic) and
collaborative filtering algorithms (movielens and netflix) algorithms

MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

0⇥
1⇥
2⇥
3⇥
4⇥

S
pe

ed
up

mnist

acoustic
stock

texture
tumor

cancer1

movielens
netflix face

cancer2
gmean

128 DSPs
256 DSPs
512 DSPs

1024 DSPs
2048 DSPs
4096 DSPs

(a) Speedup of CoSMIC accelerator with increasing number of PEs
(Baseline: CoSMIC accelerator with 192 PEs)

0⇥
1⇥
2⇥
3⇥
4⇥
5⇥
6⇥

S
pe

ed
up

mnist

acoustic
stock

texture
tumor

cancer1

movielens
netflix face

cancer2
gmean

0.25⇥ Bandwidth
0.5⇥ Bandwidth

1⇥ Bandwidth
2⇥ Bandwidth

4⇥ Bandwidth192 PEs
384 PEs
768 PEs

1563 PEs
3072 PEs
6144 PEs

(b) Speedup of CoSMIC accelerator as off-chip bandwidth changes
(Baseline: CoSMIC accelerator using 25% of UltraScale+ bandwidth)

Figure 15: Speedup comparisonwith varying number of PEs andmemory bandwidth for CoSMIC accelerators.

0x
5x

10x
15x
20x

T1
xR

1
T1

xR
2

T2
xR

2
T1

xR
4

T2
xR

4
T1

xR
8

T2
xR

8
T1

xR
16

T2
xR

16
T1

xR
32

T2
xR

32
T1

xR
48

T2
xR

48

0x
5x

10x
15x
20x

T1
xR

1
T1

xR
2

T2
xR

2
T1

xR
4

T2
xR

4
T4

xR
4

T1
xR

8
T2

xR
8

T4
xR

8
T1

xR
16

T2
xR

16
T4

xR
16

T1
xR

32
T2

xR
32

T4
xR

32
T1

xR
48

T2
xR

48

0x
2x
4x
6x
8x

10x

T1
xR

1
T1

xR
2

T2
xR

2
T1

xR
4

T2
xR

4
T4

xR
4

T1
xR

8
T2

xR
8

T4
xR

8
T8

xR
8

T1
xR

16
T2

xR
16

T4
xR

16
T8

xR
16

T1
6x

R1
6

T1
xR

32
T2

xR
32

T4
xR

32
T8

xR
32

T1
6x

R3
2

T3
2x

R3
2

T1
xR

48
T2

xR
48

T4
xR

48
T8

xR
48

T1
6x

R4
8

T4
8x

R4
8

0x
2x
4x
6x
8x

10x

T1
xR

1
T1

xR
2

T2
xR

2
T1

xR
4

T2
xR

4
T4

xR
4

T1
xR

8
T2

xR
8

T4
xR

8
T8

xR
8

T1
xR

16
T2

xR
16

T4
xR

16
T8

xR
16

T1
6x

R1
6

T1
xR

32
T2

xR
32

T4
xR

32
T8

xR
32

T1
6x

R3
2

T3
2x

R3
2

T1
xR

48
T2

xR
48

T4
xR

48
T8

xR
48

T1
6x

R4
8

T4
8x

R4
8Sp

ee
du

p

mnist stock tumor movielens

Sp
ee

du
p

Sp
ee

du
p

Sp
ee

du
p

Design Points Design PointsDesign PointsDesign Points

T2
xR

48

T2
xR

16

T4
xR

16

T2
xR

48

Figure 16: Design space exploration; Txxx⇥⇥⇥Ryyy, xxx represents the number of threads and yyy represents the number of rows; baseline: T1⇥⇥⇥R1.

Table 3: Number of threads and FPGA resource utilization.

Used Util Used Util Used Util Used Util

mnist 2 851,276 72.0% 772,029 32.7% 8,640 88.9% 4,070 59.5%
acoustic 2 851,276 72.0% 772,029 32.7% 8,128 83.6% 4,070 59.5%
stock 8 278,838 23.6% 249,907 10.6% 8,640 88.9% 1,320 19.3%
texture 1 283,535 24.0% 257,005 10.9% 8,640 88.9% 1,355 19.8%
tumor 4 281,522 23.8% 253,963 10.7% 8,640 88.9% 1,340 19.6%
cancer1 2 282,864 23.9% 255,991 10.8% 8,640 88.9% 1,350 19.7%
movielens 2 851,276 72.0% 772,029 32.7% 8,128 83.6% 4,070 59.5%
netflix 1 851,947 72.1% 773,043 32.7% 8,128 83.6% 4,075 59.6%
face 4 281,522 23.8% 253,963 10.7% 8,640 88.9% 1,340 19.6%

cancer2 2 282,864 23.9% 255,991 10.8% 8,640 88.9% 1,350 19.7%

Name
LUTs BRAM	(Bytes)Flip	Flops DSP	Slices#	Threads

	per
	FPGA

(Total:	1,182,240) (Total:	2,364,480) (Total:	9720	KB) (Total:	6840)

show performance benefits as the number of PEs increases, since they
are compute-bound. The rest of the benchmarks–linear regression,
logistic regression, and support vector machines do not see any per-
formance gains when the number of DSPs increases. Although these
benchmarks are offered more PEs, the limited bandwidth curtails
their performance. Figure 15(b), which sweeps bandwidth, suggests
the same categorization (bandwidth-bound vs. compute-bound) for
our algorithms. These results show that a single fixed design is not
the most optimal for all the algorithms. Therefore, there is a need for
template architectures and solutions, such asCoSMIC, that customize
the accelerator design according to the algorithm. These results also
suggest that modern accelerators need to strike a balance on allocat-
ing resource to off-chip communication and on-chip computation to
maximize benefits for all benchmarks. Nonetheless,CoSMIC finds an
optimal accelerator design considering both compute and bandwidth
resources available on the FPGA.
Design space exploration. The Planner determines the number of
PEs per thread and the number of threads in the accelerator. The Plan-
ner allocates PEs to each thread at the granularity of one row. This
allocation strategy limits the design space that the Planner explores to
find the optimal number of threads and rows-per-thread. In the case of
UltraScale+ VU9P FPGA, the maximum number of possible design
points is 27. Also, recall that the number of threads is also limited
by the size of the model and not all the design points are possible.
Figure 16 illustrates the result of this design space exploration for four
different benchmarks. The performance of each design point is nor-
malized to the design point which runs 1 thread using 1 row (T1xR1)
of PEs. We sweep the number of rows from 1 to 48, which is the max-
imum number of rows in UltraScale+ while the maximum number
of threads varies for every benchmark. The optimal design points are

0×
3×
6×
9×
12×

m
ni
st

ac
ou
st
ic

st
oc
k

te
xt
ur
e

tu
m
or

ca
nc
er
1

m
ov
ie
le
ns

ne
tfl
ix

fa
ce

ca
nc
er
2

gm
ea
n

Sp
ee
du

p	
/	T

ab
la

aco
usticsto

ck
tex

ture
tumor

can
cer

1

movie
len

s
netfl

ix
fac

e

can
cer

2

geo
meanmnistSp

ee
du

p
/ T

ab
la

0×
3×
6×

12×
9×

Figure 17: Speedup of CoSMIC’s template architecture over T����’s.
highlighted with a concentric circle in the graphs. Benchmarks mnist
and movielens see the highest speedup when they use all the 48 rows
since they are compute-bound. In contrast, the performance for stock
and tumor saturates beyond 16 rows. This result is commensurate with
Figure 15(a), which shows that mnist and movielens benefit signifi-
cantly with an increase in the FPGA’s computational resources (PEs),
while stock and tumor do not. The rest of the benchmarks show trends
similar to the ones in Figure 16. Further, the figure shows that for a
fixed number of PE rows, increasing the number of threads improves
performance, which confirms the importance of multi-threading. Ta-
ble 3 shows the resource utilization and the optimal number of threads-
per-FPGA for all the benchmarks corresponding to the optimal design
point chosen by the Planner. The resource utilization is highest for
benchmarks that are compute-bound and lowest for the benchmarks
that are bandwidth-bound. Moreover, the results show the benefits of
our template-based approach that enables optimal utilization of the
limited resources in the FPGA’s reconfigurable fabric.
Comparison with T����. Prior work in TABLA [12] has explored
single-node acceleration using a low-power FPGA (Zynq ZC702
with 220 DSPs). Our work, on the other hand, explores scale-out
acceleration using modern high-power FPGAs (UltraScale+ with
6,840 DSPs). To provide a head-to-head comparison, we use the open-
source TABLA framework [79] to generate accelerators for Ultra-
Scale+. We modify the templates for UltraScale+ and perform design
space exploration to present the best results with TABLA. Figure 17
shows the speedup of CoSMIC compared to TABLA on UltraScale+
when using the same number of PEs. On average, CoSMIC performs
3.9⇥ faster than TABLA. While both CoSMIC and TABLA use the
same number of FPGA compute resources, the gap in performance
shows that CoSMIC uses the compute resources more efficiently.
The bottleneck for performance in TABLA is the communication
of intermediate results due to data dependencies. As the number of
DSPs in the TABLA architecture grows, the communication overhead

Scale-Out Acceleration for Machine Learning MICRO-50, October 14-18, 2017, Cambridge, MA, USA

grows significantly. To reduce the communication overhead, CoS-
MIC architecture uses a scalable tree-bus across rows of our 2-D
PE architecture, and a bidirectional link between columns of PEs.
Moreover, TABLA’s compiler does not consider the overhead of data
communication, which is particularly important when the number
of PEs is large. CoSMIC compiler (Section 6) maps the operations
of the learning algorithm according to the location of data in order
to reduce communication overhead. The combination of CoSMIC’s
scalable architecture, along with compiler optimization ensures that
the FPGA’s computational resources are used effectively.

8 RELATED WORK
Multi-node accelerators formachine learning.DaDianNao [4]
provides a multi-chip ASIC accelerator for DNNs. Other works use
multiple FPGAs for accelerating one specific task [80–82]. Farabet
et al. [80] and Donninger et al. [81] use multiple FPGAs to accelerate
DNNs [80] and a chess game [81], respectively. Walters et al. [82] pro-
pose a multi-FPGA accelerator for the Hidden Markov Models [82].
Putnam et al. [14] provide an FPGA fabric for accelerating Bing’s
ranking algorithms [14]. Microsoft [15] also provides an infrastruc-
ture for deploying FPGAs in datacenters, which is also used for the
inference phase of DNNs. This release does not deal with training nor
does it offer a framework for programming.CoSMIC provides the nec-
essary framework to utilize and program such an infrastructure [15]
for machine learning algorithms without involving programmers in
hardware design. Recently, Microsoft also unveiled Brainwave [83]
that uses multiple FPGAs for DNN inference. In contrast, CoSMIC
is a full stack to accelerate training at scale. Google’s TPU [84] is
a systolic array for acceleration of matrix multiplication, which is
prevalent operation in ML. TPU is also programmable from Tensor-
flow [85] that recently supports distributed execution. In contrast,
CoSMIC enables the use of FPGAs for scale-out acceleration and
comes with its own template architecture.
Template-based acceleration. TABLA [12] is a single-node accel-
erator generator for machine learning, which also uses a template-
based architecture. As discussed in Section 7, TABLA, developed for
a low-power FPGA (Zynq), does not effectively utilize the resources
of a modern server-scale FPGA (UltraScale+). Furthermore, TABLA
generates single-node FPGA accelerators which are inherently lim-
ited by the fine-grained parallelism available in the single-thread of
stochastic gradient descent. In contrast, this paper framework not
only generates scalable accelerators for distributed systems using
a novel multi-threaded template architecture, but also provides the
necessary system software stack for scale-out acceleration. More-
over, the compilation algorithm of this work differs from TABLA.
Our algorithm reduces the data communication by mapping data first.
In contrast, TABLA’s algorithm maps operations first to reduce the
single-threaded latency. Additionally, our algorithm optimizes the
mapping of operation to the FPGA’s resources according to the loca-
tion of data to avoid data marshaling. DNNWEAVER [11] is another
template-based accelerator generator that only generates accelerators
for prediction with Deep Neural Networks (DNNs). DNNWEAVER
does not deal with training, multiple FPGAs, or algorithms besides
DNNs. Cheng, et al. [86] propose predesigned data flow templates
as the intermediate point for HLS from general C/C++ workloads.
LINQits [87] provides a template architecture for accelerating data-
base queries. The last two works [86, 87] do not focus on learning
algorithms nor do they deal with scale-out systems.

Single-nodeaccelerators formachine learning.There is a large
body of work on single-node accelerator design for ML [3, 5–10, 28–
40, 40, 41, 41–49]. These works mostly focus on accelerating one or
a fixed number of learning algorithms. CoSMIC, on the other hand,
is a full stack that targets scale-out acceleration of learning.
HLS for FPGAs. Many related works (e.g., [49, 86, 89, 90]) explore
HLS for FPGAs. HLS targets general applications while CoSMIC
focuses specifically on machine learning. Therefore, HLS does not
leverage any domain-specific knowledge or algorithmic insights. Us-
ing algorithmic commonalities for a range of machine learning algo-
rithms is fundamental to our work and enables further benefits from
hardware acceleration. Acceleration with HLS still requires hardware
expertise. For instance, DNNWEAVER [11] reports that hardware
design to optimize a Vivado HLS implementation of a deep neural
network for FPGA took one month. The resulting implementation was
an order of magnitude slower than a template-based accelerator for
the same FPGA. A more recent work [86] uses dataflow templates as
intermediate compilation target for C/C++ programs and delivers 9⇥
higher performance than state-of-the-art HLS tools. CoSMIC takes
a template-based approach that is driven by the theory of machine
learning and targets distributed FPGA acceleration of training from
a high-level domain-specific language.
System so�ware for distributed FPGA acceleration. Another
inspiring work [91] provides the mechanisms to integrate predesigned
FPGA accelerator with Spark [1]. Melia [92] uses Altera’s OpenCL-
based HLS to offer a MapReduce-based framework for utilizing
FPGAs in distributed systems. Another work [93] provides the frame-
work for using Xilinx Vivado HLS tool for MapReduce [94] applica-
tions. CoSMIC does not rely on pre-developed FPGA accelerators or
HLS for distributed FPGA acceleration, or generic system software.

9 CONCLUSION
While accelerators gain traction, their integration in the system stack
is not well understood. CoSMIC takes an initial step toward such an
integration for an important class of applications while providing
generality and a high-level programming interface. The evaluations
confirm that a full-stack approach is necessary and just designing
efficient accelerators does not yield proportional benefits without a
co-design of the entire system stack. The traditional approaches of
profiling and offloading hot-regions of code lack the flexibility to
support ever-changing algorithms and the emerging scale and hetero-
geneity in the systems. It is clear that a full-stack design is non-trivial
but deeply understanding algorithmic properties of the application
domain can significantly facilitate such approaches. CoSMIC takes
advantage of the algorithmic understanding to simplify the layers of
its stack by specializing them and offers a cohesive hardware-software
solution. The encouraging results show that this paradigm is effective
but the multifaceted nature of the cross-stack approach promises an
exciting yet challenging road ahead.

10 ACKNOWLEDGMENTS
We thank Ali Jalali for insightful discussions and Amir Yazdanbakhsh
for help with the synthesis results. We also thank Sridhar Krishna-
murthy and Xilinx for donating the FPGA boards. This work was
in part supported by NSF awards CNS#1703812, ECCS#1609823,
CCF#1553192, Air Force Office of Scientific Research (AFOSR),
Young Investigator Program (YIP) award #FA9550-17-1-0274, and
gifts from Google, Microsoft, and Qualcomm.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA J. Park et al.

REFERENCES
[1] Apache Spark, 2017. URL h�ps://spark.apache.org/.
[2] Apache Hadoop, 2017. URL h�p://hadoop.apache.org/.
[3] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. DianNao: a small-footprint high-throughput accelerator for
ubiquitous machine-learning. In ASPLOS, 2014.

[4] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. DaDianNao: A machine-learning
supercomputer. In MICRO, 2014.

[5] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. ShiDianNao: shifting vision
processing closer to the sensor. In ISCA, 2015.

[6] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. PuDianNao: A polyvalent
machine learning accelerator. In ASPLOS, 2015.

[7] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-Yeon Wei, and David Brooks.
Minerva: Enabling low-power, highly-accurate deep neural network accelerators.
In ISCA, 2016.

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. EIE: efficient inference engine on compressed deep neural
network. CoRR, abs/1602.01528, 2016. URL h�p://arxiv.org/abs/1602.01528.

[9] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. In ISCA, 2016.

[10] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright
Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free deep neural
network computing. In ISCA, 2016.

[11] Hardik Sharma, Jongse Park, Divya Mahajan, Emmanuel Amaro, Joon Kyung Kim,
Chenkai Shao, Asit Misra, and Hadi Esmaeilzadeh. From high-level deep neural
models to fpgas. In MICRO, October 2016.

[12] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yazdan-
bakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. TABLA: A unified template-
based framework for accelerating statistical machine learning. In HPCA, 2016.

[13] Snickerdoodle: Affordable FPGA platform for powering everything robots, drones,
and computer vision, 2017. URL h�p://krtkl.com/.

[14] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth, Jan
Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young
Kim, Sitaram Lanka, James R. Larus, Eric Peterson, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A reconfigurable fabric for accelerating
large-scale datacenter services. In ISCA, June 2014.

[15] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. A cloud-scale acceleration
architecture. In MICRO, 2016.

[16] Amazon EC2 F1 instances: Run custom FPGAs in the AWS cloud, 2017. URL
h�ps://aws.amazon.com/ec2/instance-types/f1/.

[17] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. Towards a
unified architecture for in-rdbms analytics. In SIGMOD.

[18] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[19] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. On parallelizability
of stochastic gradient descent for speech dnns. In ICASSP, 2014.

[20] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized
stochastic gradient descent. In NIPS, 2010.

[21] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed
online prediction using mini-batches. Journal of Machine Learning Research, 13
(Jan):165–202, 2012.

[22] J. Langford, A.J. Smola, and M. Zinkevich. Slow learners are fast. In NIPS, 2009.
[23] Gideon Mann, Ryan McDonald, Mehryar Mohri, Nathan Silberman, and Daniel D.

Walker. Efficient large-scale distributed training of conditional maximum entropy
models. In NIPS, 2009.

[24] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan Vaidynathan,
Srinivas Sridharan, Dhiraj Kalamkar, Bharat Kaul, and Pradeep Dubey. Distributed
deep learning using synchronous stochastic gradient descent. arXiv:1602.06709
[cs], 2016.

[25] Jianmin Chen, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting
distributed synchronous SGD. In ICLR Workshop Track, 2016.

[26] Intel Altera. Arria 10 architecture, 2017. URL h�ps://www.altera.com/products/
fpga/arria-serqies/arria-10/features.html.

[27] Spark MLlib: Apache spark’s scalable machine learning library. URL
h�p://spark.apache.org/mllib/.

[28] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W.
Keckler. vDNN: Virtualized deep neural networks for scalable, memory-efficient
neural network design. In MICRO, 2016.

[29] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M. Aamodt, and Andreas
Moshovos. Stripes: Bit-serial deep neural network computing. In MICRO, 2016.

[30] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo,
Tianshi Chen, and Yunji Chen. Cambricon-x: An accelerator for sparse neural
networks. In MICRO, 2016.

[31] Yu Ji, Youhui Zhang, Shuangchen Li, and Ping Chi. NEUTRAMS: Neural network
transformation and co-design under neuromorphic hardware constraints. In
MICRO, 2016.

[32] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer cnn
accelerators. In MICRO, 2016.

[33] Ioannis Stamoulias and Elias S. Manolakos. Parallel architectures for the knn
classifier – design of soft ip cores and fpga implementations. ACM Transactions
on Embedded Computer Systems, 13(2):22:1–22:21, September 2013.

[34] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural
acceleration for general-purpose approximate programs. In MICRO, 2012.

[35] Thierry Moreau, Mark Wyse, Jacob Nelson, Adrian Sampson, Hadi Esmaeilzadeh,
Luis Ceze, and Mark Oskin. SNNAP: Approximate computing on programmable
socs via neural acceleration. In HPCA, 2015.

[36] E.S. Manolakos and I. Stamoulias. Ip-cores design for the knn classifier. In ISCAS,
2010.

[37] H.M. Hussain, K. Benkrid, H. Seker, and A.T. Erdogan. Fpga implementation
of k-means algorithm for bioinformatics application: An accelerated approach to
clustering microarray data. In AHS, 2011.

[38] Tsutomu Maruyama. Real-time k-means clustering for color images on
reconfigurable hardware. In ICPR, 2006.

[39] A.Gda.S. Filho, A.C. Frery, C.C. de Araujo, H. Alice, J. Cerqueira, J.A. Loureiro,
M.E. de Lima, Mdas.G.S. Oliveira, and M.M. Horta. Hyperspectral images clus-
tering on reconfigurable hardware using the k-means algorithm. In SBCCI, 2003.

[40] M. Papadonikolakis and C. Bouganis. A heterogeneous fpga architecture for
support vector machine training. In FCCM, 2010.

[41] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E. Cosatto, S. Chakradhar,
and H.P. Graf. A massively parallel fpga-based coprocessor for support vector
machines. In FCCM, 2009.

[42] A. Majumdar, S. Cadambi, and S.T. Chakradhar. An energy-efficient heterogeneous
system for embedded learning and classification. IEEE Embedded Systems Letters,
3(1):42–45, March 2011.

[43] Abhinandan Majumdar, Srihari Cadambi, Michela Becchi, Srimat T. Chakradhar,
and Hans Peter Graf. A massively parallel, energy efficient programmable
accelerator for learning and classification. ACM Transactions on Architecture and
Code Optimization, 9(1):6:1–6:30, Marcg 2012.

[44] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun.
Neuflow: A runtime reconfigurable dataflow processor for vision. In CVPRW, 2011.

[45] Antonio Roldao and George A. Constantinides. A high throughput fpga-based
floating point conjugate gradient implementation for dense matrices. ACM
Transactions on Reconfigurable Technology System, 3(1), January 2010.

[46] G.R. Morris, V.K. Prasanna, and R.D. Anderson. A hybrid approach for mapping
conjugate gradient onto an fpga-augmented reconfigurable supercomputer. In
FCCM, 2006.

[47] D. DuBois, A. DuBois, T. Boorman, C. Connor, and S. Poole. An implementation
of the conjugate gradient algorithm on fpgas. In FCCM, 2008.

[48] D. Kesler, B. Deka, and R. Kumar. A hardware acceleration technique for gradient
descent and conjugate gradient. In SASP, 2011.

[49] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong.
Optimizing fpga-based accelerator design for deep convolutional neural networks.
In FPGA, 2015.

[50] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv:1408.5093, 2014.

[51] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture for
performance-oriented embedded domain-specific languages. ACM Trans. Embed.
Comput. Syst., 13(4s):134:1–134:25, April 2014.

[52] David C Ku and Giovanni De Micheli. High level synthesis of ASICs under timing
and synchronization constraints. Kluwer Academic Publishers, 1992.

[53] Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010. URL
h�p://yann.lecun.com/exdb/mnist/.

[54] A variant of mnist dataset with 8 millions records. URL h�ps:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m.

[55] Joel Praveen Pinto. Multilayer Perceptron Based Hierarchical Acoustic Modeling
for Automatic Speech Recognition. PhD thesis, EPFL, 2010.

[56] Bin Zhou. High-frequency data and volatility in foreign-exchange rates. Journal
of Business & Economic Statistics, 14(1), 2008.

[57] S Dhanya and Roshni VS Kumari. Comparison of various texture classifica-
tion methods using multiresolution analysis and linear regression modelling.
Springerplus, 5(54), 2016.

[58] MR Segal, KD Dahlquist, and BR Conklin. Regression approaches for microarray
data analysis. Journal of Computational Biology, 10(6), 2003.

https://spark.apache.org/
http://hadoop.apache.org/
http://arxiv.org/abs/1602.01528
http://krtkl.com/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.altera.com/products/fpga/arria-serqies/arria-10/features.html
https://www.altera.com/products/fpga/arria-serqies/arria-10/features.html
http://spark.apache.org/mllib/
http://yann.lecun.com/exdb/mnist/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m

Scale-Out Acceleration for Machine Learning MICRO-50, October 14-18, 2017, Cambridge, MA, USA

[59] D Singh, P Febbo, K Ross, D Jackson, J Manola, C Ladd, P Tamayo, A Renshaw,
Amico A D, J Richie, E Lander, M Loda, P Kantoff, T Golub, and W Sellers. Gene
expression correlates of clinical prostate cancer behavior. Cancer Cell, 1(2), 2002.

[60] Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. Movielens dataset. In HetRec,
2011.

[61] Grouplens. Movielens dataset, 2017. URL h�p://grouplens.org/datasets/
movielens/.

[62] Netflix Prize Data Set. URL h�p://www.netflixprize.com/.
[63] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggiott, and V. Vapnik.

Feature selection for svms. In NIPS, 2000.
[64] Spark gpu and simd support. URL h�ps://github.com/kiszk/spark-gpu.
[65] Rajesh Bordawekar. Accelerating spark workloads using gpus. URL

h�ps://www.oreilly.com/learning/accelerating-spark-workloads-using-gpus.
[66] GPUEnabler. URL h�ps://github.com/ibmsparkgpu/gpuenabler.
[67] CUDA-MLlib. URL h�ps://github.com/ibmsparkgpu/cuda-mllib.
[68] Andreas Athanasopoulos, Anastasios Dimou, Vasileios Mezaris, and Ioannis

Kompatsiaris. GPU acceleration for support vector machines. In 12th International
Workshop on Image Analysis for Multimedia Interactive Services, 2011.

[69] Caffe2, 2017. URL h�ps://github.com/ca�e2/ca�e2.
[70] CUDA v8.0, 2017. URL h�ps://developer.nvidia.com/cuda-toolkit.
[71] cuDNN v7.0, 2017. URL h�ps://developer.nvidia.com/cudnn.
[72] Wattsup .net meter., 2017. URL h�p://www.wa�supmeters.com/.
[73] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant

Agarwal, and Martin Rinard. Dynamic knobs for responsive power-aware
computing. In ASPLOS, 2011.

[74] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J. Smola. Efficient mini-batch
training for stochastic optimization. In KDD, 2014.

[75] Andrew Cotter, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Better
mini-batch algorithms via accelerated gradient methods. In NIPS, 2011.

[76] Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Mini-batch
primal and dual methods for svms. In ICML, 2013.

[77] Ofer Dekel, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(1):165–202, 2012.

[78] Richard H. Byrd, Gillian M. Chin, Jorge Nocedal, and Yuchen Wu. Sample
size selection in optimization methods for machine learning. Mathematical
Programming, 134(1), 2012.

[79] TABLA source code. URL h�p://www.act-lab.org/artifacts/tabla/.
[80] Clément Farabet, Yann LeCun, Koray Kavukcuoglu, Eugenio Culurciello, Berin

Martini, Polina Akselrod, and Selcuk Talay. Large-scale fpga-based convolutional
networks. Machine Learning on Very Large Data Sets, 2011.

[81] Chrilly Donninger, Alex Kure, and Ulf Lorenz. Parallel brutus: The first distributed,
fpga accelerated chess program. In IPDPS, 2004.

[82] John Paul Walters, Xiandong Meng, Vipin Chaudhary, Tim Oliver, Leow Yuan
Yeow, Darran Nathan, Bertil Schmidt, and Joseph Landman. Mpi-hmmer-boost: Dis-
tributed fpga acceleration. Journal of VLSI Signal Processing, 48(3):223–238, 2007.

[83] Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengil, Ming Liu, Daniel Lo, Shlomi Alkalay, Michael
Haselman, Christian Boehn, Oren Firestein, Alessandro Forin, Kang Su Gatlin,
Mahdi Ghandi, Stephen Heil, Kyle Holohan, Tamas Juhasz, Ratna Kumar Kovvuri,
Sitaram Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Steve Reinhardt,
Adam Sapek, Raja Seera, Balaji Sridharan, Lisa Woods, Phillip Yi-Xiao, Ritchie

Zhao, and Doug Burger. Accelerating persistent neural networks at datacenter
scale. In HotChips, 2017.

[84] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley,
Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan,
Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James
Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon
MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana
Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani,
Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle,
Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-datacenter performance analysis of a tensor processing unit. In ISCA, 2017.

[85] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous distributed systems.
arXiv:1603.04467 [cs], 2016.

[86] Shaoyi Cheng and John Wawrzynek. High Level Synthesis with a Dataflow
Architectural Template. In OLAF, June 2016.

[87] Eric S. Chung, John D. Davis, and Jaewon Lee. LINQits: Big data on little clients.
In ISCA, 2013.

[88] Andrew R. Putnam, Dave Bennett, Eric Dellinger, Jeff Mason, and Prasanna
Sundararajan. CHiMPS: A high-level compilation flow for hybrid CPU-FPGA
architectures. In FPGA, 2008.

[89] Jason Cong, Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and
Zhiru Zhang. High-level synthesis for fpgas: From prototyping to deployment.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(4):473–491, 2011.

[90] I. Ouaiss, S. Govindarajan, V. Srinivasan, and R. Vemuri. An integrated partitioning
and synthesis system for dynamically reconfigurable multi-fpga architectures.
Lecture Notes in Computer Science, 1385-1388:31–36, 1999.

[91] Muhuan Huang, Di Wu, Cody Hao Yu, Zhenman Fang, Matteo Interlandi, Tyson
Condie, and Jason Cong. Programming and runtime support to blaze fpga
accelerator deployment at datacenter scale. In SoCC, 2016.

[92] Zeke Wang, Shuhao Zhang, Bingsheng He, and Wei Zhang. Melia: A mapreduce
framework on opencl-based fpgas. IEEE Transactions on Parallel and Distributed
Systems, 27(12):3547–3560, 2016.

[93] Dionysios Diamantopoulos and Christoforos Kachris. High-level synthesizable
dataflow mapreduce accelerator for fpga-coupled data centers. In SAMOS, 2015.

[94] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. In OSDI, 2004.

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/
http://www.netflixprize.com/
https://github.com/kiszk/spark-gpu
https://www.oreilly.com/learning/accelerating-spark-workloads-using-gpus
https://github.com/ibmsparkgpu/gpuenabler
https://github.com/ibmsparkgpu/cuda-mllib
https://github.com/caffe2/caffe2
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
http://www.wattsupmeters.com/
http://www.act-lab.org/artifacts/tabla/

	first
	rest
	Abstract
	1 Introduction
	2 Distributed Learning
	2.1 Learning as Stochastic Optimization
	2.2 Parallelizing Stochastic Optimization

	3 CoSMIC System Software
	4 The CoSMIC Stack
	4.1 Programming Layer
	4.2 Compilation Layer
	4.3 System Layer
	4.4 Architecture Layer
	4.5 Circuit Layer

	5 Template Architecture
	5.1 Accelerator Organization
	5.2 Multi-Threaded Acceleration

	6 CoSMIC Compilation
	7 Evaluation
	7.1 Methodology
	7.2 Experimental Results

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

