
Appears in the Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture, 2016

From High-Level Deep Neural Models to FPGAs
Hardik Sharma Jongse Park Divya Mahajan Emmanuel Amaro

Joon Kyung Kim Chenkai Shao Asit Mishra† Hadi Esmaeilzadeh
Alternative Computing Technologies (ACT) Lab

School of Computer Science, Georgia Institute of Technology †Intel Corporation
{hsharma, jspark, divya mahajan, amaro, jkkim, cshao}@gatech.edu asit.k.mishra@intel.com hadi@cc.gatech.edu

ABSTRACT
Deep Neural Networks (DNNs) are compute-intensive learning
models with growing applicability in a wide range of domains.
FPGAs are an attractive choice for DNNs since they offer a
programmable substrate for acceleration and are becoming
available across different market segments. However, obtaining
both performance and energy efficiency with FPGAs is a
laborious task even for expert hardware designers. Furthermore,
the large memory footprint of DNNs, coupled with the FPGAs’
limited on-chip storage makes DNN acceleration using FPGAs
more challenging. This work tackles these challenges by
devising DNNWEAVER, a framework that automatically
generates a synthesizable accelerator for a given (DNN, FPGA)
pair from a high-level specification in Caffe [1]. To achieve large
benefits while preserving automation, DNNWEAVER generates
accelerators using hand-optimized design templates. First,
DNNWEAVER translates a given high-level DNN specification to
its novel ISA that represents a macro dataflow graph of the DNN.
The DNNWEAVER compiler is equipped with our optimization
algorithm that tiles, schedules, and batches DNN operations to
maximize data reuse and best utilize target FPGA’s memory and
other resources. The final result is a custom synthesizable accel-
erator that best matches the needs of the DNN while providing
high performance and efficiency gains for the target FPGA.

We use DNNWEAVER to generate accelerators for a set of
eight different DNN models and three different FPGAs, Xil-

inx Zynq, Altera Stratix V, and Altera Arria 10. We use hardware
measurements to compare the generated accelerators to both mul-
ticore CPUs (ARM Cortex A15 and Xeon E3) and many-core GPUs
(Tegra K1, GTX 650Ti, and Tesla K40). In comparison, the gen-
erated accelerators deliver superior performance and efficiency
without requiring the programmers to participate in the arduous
task of hardware design.

1 Introduction
Deep Neural Networks (DNNs) are rapidly gaining traction
in a wide range of applications such as vision, robotics, video
analytics, speech recognition, natural language processing,
targeted advertising, and web search [2–9]. Although DNNs
offer great prediction accuracy, they require a significant amount
of computing power. With diminishing benefits from technology
scaling [10, 11], the research community is increasingly turning
to specialized accelerators for deep networks [12–15] and other
workloads [16–22]. Even though ASICs provide significant
gains in performance and efficiency for DNNs [12, 13, 23–26],
they may not cope with the ever-evolving DNN models.
Furthermore, ASICs and customized cores come at the price
of high non-recurring engineering costs over long design periods.
Since FPGAs represent an intermediate point between the
efficiency of ASICs and the programmability of general purpose
processors, they are an attractive alternative for accelerating

DNNs. Nonetheless, FPGAs still require extensive hardware
design expertise and long design cycles. In fact, several research
works [14, 15, 27, 28] have made extensive efforts to provide
FPGA accelerators for specific DNN models, or parts of DNN
computation, targeted for a particular FPGA platform.

Using FPGAs as an acceleration platform for DNNs is chal-
lenging as they offer a limited preset on-chip memory and often
possess limited off-chip bandwidth, both of which are critical for
high performance. This restriction is particularly limiting for FP-
GAs since ASIC designs can circumvent this issue by optimally
allocating die area to on-chip memory for a single or set of target
DNNs. The FPGA’s memory and bandwidth limitations are
further exacerbated for DNNs due to their high memory footprint,
as well as high variability in the number of operations and model
sizes for different DNN models (Section 7.1). A rigid accelerator
architecture for DNNs may not fully utilize the FPGA’s limited
resources for every DNN model. It is thus essential co-optimize
both the accelerator architecture and the corresponding execution
schedule to overcome the FPGA’s limited on-chip memory for
each DNN model. This work seeks to provide such a solution
by developing DNNWEAVER, a framework that generates
synthesizable accelerators for a variety of FPGA platforms,
while completely disengaging the programmers from hardware
design. DNNWEAVER provides a comprehensive and automated
solution to make FPGAs available to a broader community of
DNN application developers who use a wide range of DNN
models and often lack any hardware design expertise.

This paper makes the following contributions to enable FPGA
acceleration for a variety of DNNs:
(1) We develop a novel macro dataflow Instruction Set
Architecture (ISA) for DNN accelerators. The ISA enables
DNNWEAVER to expose a high-level programming interface.
The programming interface is the same as Berkeley Caffe [1].

(2) Instead of just designing an accelerator for DNNs, we
develop hand-optimized template designs that are scalable
and highly customizable. The templates constitute a clustered
hierarchical architecture that is contracted or expanded by
DNNWEAVER to generate an accelerator that matches the
needs of the DNN and the available resources on the FPGA.

(3) We provide a heuristic algorithm to co-optimize both the
accelerator architecture and the corresponding execution
schedule to minimize off-chip memory accesses and maximize
performance. This algorithm strikes a balance between parallel
operations and data reuse by slicing the computation and config-
uring the accelerator to best match the constraints of the FPGA.

Matching computation slice with the configuration of the
accelerator is a unique challenge that needs to be addressed to
create a framework that can generate highly efficient FPGA
accelerators for DNNs. The aforementioned contributions enable
DNNWEAVER to exploit the reconfigurability of the FPGAs
while managing the large memory footprint of DNNs in the

Xeon E3Tegra K1

GTX 650Ti

Tesla K40

Stratix V

Arria 10

0⨉

40⨉

80⨉

120⨉

160⨉

0 20 40 60 80 100 120 140

Sp
ee

du
p

/ A
R

M
 A

15

Power (Watt)

FPGA CPU GPU

Figure 1: DnnWeaver generated accelerators for Zynq and Arria 10 lie
on the Pareto frontier (the dashed line). Tesla K40 represents the other
Pareto optimal point. These results suggest that for high power setting
GPUs are better programmable accelerators while DnnWeaver makes
FPGAs a compelling alternative when the power budget is limited.

layer {
name: "conv1"
type: CONVOLUTION
bottom: "data"
top: "conv1"
convolution_param {

num_output: 20
stride: 1
kernel_size: 5 } }

layer {
name: "pool1"
type: POOLING
bottom: "conv1"
top: "pool1"
pooling_param {

pool: MAX
stride: 2
kernel_size: 2 } }

Figure 2: DnnWeaver programming interface.

limited on-chip storage of FPGAs.
We use DNNWEAVER to generate accelerators for eight

different deep networks targeted for three different FPGAs, Xilinx
Zynq, Altera Stratix V, and Altera Arria 10. We rigorously compare
the generated accelerators to both multicore CPUs (ARM A15

and Xeon E3) and many-core GPUs (Tegra K1, GTX 650Ti, and
Tesla K40). The results are summarized as follows:
Table 1: Speedup and Performance-per-Watt comparison of
DnnWeaver generated accelerators. Each cell represents the benefits
of the FPGA in row-heading relative to the platform in column-heading.

FPGA ARM A15 Xeon E3 Tegra K1 GTX 650Ti Tesla K40
Speedup Comparison

Zynq 4.7× 0.59× 0.52× 0.15× 0.03×
Stratix V 22.39× 2.81× 2.43× 0.7× 0.15×
Arria 10 47.26× 5.94× 5.08× 1.48× 0.33×

Performance-per-Watt comparison
Zynq 11.5× 16.6× 1.7× 3.2× 1.6×

Stratix V 5.5× 7.9× 0.8× 1.5× 0.8×
Arria 10 9.6× 13.9× 4.8× 2.7× 1.3×

These results show that DNNWEAVER generated accelerators
outperform CPUs in performance and in two of three cases (Zynq
and Arria 10) deliver higher Performance-per-Watt than GPUs. To
achieve these benefits, the programmer only defines the topology
and layers of the DNN (< 300 lines of code) without dealing with
hardware design or optimization. The relatively low programmer
effort is particularly significant since the source code for our
templates is over 10,000 lines of code and is optimized hardware
by experts over the course of one year. As Figure 1 illustrates,
the DNNWEAVER generated accelerators for Zynq and Arria 10

lie on the Pareto frontier. The Tesla K40 GPU represents the
high-power high-performance Pareto optimal point. The results
suggest that when power is limited, DNNWEAVER enables
FPGAs to operate as a platform of choice for deep networks.

2 Overview of DNNWEAVER
This work seeks to alleviate the long design cycle necessary for
using FPGAs to accelerate a wide variety of DNNs. We aim to
create an automated framework that (1) completely dissociates
programmers from the details of hardware design and optimiza-

tion; (2) deals with the limited availability of on-chip resources
(e.g., on-chip memory); and (3) provides a scalable and reusable
FPGA acceleration framework, which delivers high performance
and large efficiency gains for continuously evolving DNN mod-
els on different FPGA platforms. To achieve these conflicting
objectives, we develop DNNWEAVER which combines hand-
optimized scalable template designs with an automated work-
flow that customizes the templates to match the specifications
of a given (DNN, FPGA) pair. The foremost task required by
DNNWEAVER is that the programmer specifies the DNN models
using a high-level programming interface as discussed below.
Programming interface. The input to DNNWEAVER is a
high-level specification of the DNN in Berkeley Caffe format [1].
Caffe is a widely used open-source deep learning framework that
takes the DNN specification as input and computes the given
model on CPUs and GPUs. The code snippet in Figure 2 shows
how two DNN layers, convolution and pooling, are described
and connected in Caffe. Section 3 describes the functionality
of DNN layers in detail.

As Figure 3 illustrates, DNNWEAVER automatically trans-
forms the programmer-provided DNN model to an accelerator
by generating FPGA synthesizable verilog code. DNNWEAVER
comprises four software components; (1) the Translator, (2) the
Design Planner, (3) the Design Weaver, and (4) the Integrator.
1 Translator. The Translator converts the DNN’s specification

to our macro dataflow instruction set architecture (ISA). Each
instruction in the ISA represents a node in the macro dataflow
graph of the DNN model. Note that the accelerator does not
directly execute these instructions. DNNWEAVER compiler stati-
cally maps these instructions to control signals in the accelerator
and creates an execution schedule. We choose this abstraction to
provide a unified hardware-software interface and enable layer-
specific optimizations in the accelerator microarchitecture with-
out exposing them to the software. Hence, with this ISA, a variety
of accelerator implementations which can be tuned to match the
constraints of the target FPGA are possible. Furthermore, the
ISA can be extended to support forthcoming layers or parame-
ters. A one-time effort is required to develop the corresponding
hardware templates. Section 4 describes this ISA in detail.
2 Design Planner. Design Planner accepts the instructions

representing the macro dataflow graph of the DNN and uses
our Template Resource Optimization algorithm to optimize the
hardware templates for the target FPGA platform. The Design
Planner then partitions the computation of each layer to groups
of operations that share and reuse data. We refer to each group’s
output as a slice. The slice is spilled to memory after compu-
tation and the accelerator proceeds to compute the next slice.
Accelerating DNNs is particularly challenging due to their large
memory footprint. By slicing its computations, DNNWEAVER
manages this large footprint with the limited on-chip FPGA
memory. Our Template Resource Optimization algorithm
aims to strike a balance between parallel operations and data
reuse by slicing computations and configuring the accelerator
to best match the constraints of the FPGA (on-chip memory
and external memory bandwidth). The Planner schedules slices
of operations on the accelerator to generate a static execution
schedule and the model layout in memory. Static scheduling
simplifies the hardware and maximizes its efficiency and
performance. Section 6 elaborates on the details of the Design
Planner and our Template Resource Optimization algorithm.
3 Design Weaver. Design Weaver is the penultimate

Design
Planner

High-Level
DNN

Specification
Translator

Macro
Dataflow
Graph

Design
Weaver

Accelerator
Core Design Integrator Synthesizable

Accelerator

FPGA

MemoryBerkeley Caffe Weaver ISA

Hand-Optimized
Templates

VerilogWeaver Parameters
FPGA

Specification

Verilog

Verilog
21 3 4

Memory
Interface

DNN Model
Layout

Execution
Schedule

Resource
Allocation

Figure 3: Overview of DNNWEAVER which takes as input high-level specification of a DNN and the target FPGA and generates the accelerator design
as synthesizable Verilog along with the accelerator execution schedule and the layout of the DNN model in the memory.

component of DNNWEAVER which takes as input the resource
allocation and the execution schedule determined by the planner
to generate the accelerator core. The Design Weaver uses a
series of hand-optimized design templates and customizes
them in accordance to the resource allocation and hardware
organization provided by the planner. These templates provide
a highly customizable, modular, and scalable implementation for
the Design Weaver that automatically specializes the templates
to accommodate a variety of DNN that are translated to our
macro dataflow ISA. Furthermore, the Design Weaver converts
the planner-provided execution schedule into state machines and
microcodes, embedded within the hardware modules. Section 5
details the template designs and Section 6 discusses how the
Design Weaver specializes the templates.
4 Integrator. The last component of DNNWEAVER is

the Integrator, which adds the memory interface code to the
accelerator code. As different FPGAs use different interfaces to
the external DRAM, the Integrator contains a library of DRAM
interfaces and adds the appropriate code for each target FPGA.
DNNWEAVER currently includes the DRAM interface for three
series of FPGAs (Xilinx’s Zynq, and Altera’s Stratix V and Arria

10) from the two major vendors. After the integration, the final
Verilog code is ready to be synthesized on the target FPGA to
accelerate the specified DNN.

3 Background: Deep Neural Networks
The advent of deep learning, or more precisely, deep structured
learning, can be traced back to Convolutional Neural Net-
works [29]. Convolutional Neural Networks are commonly used
deep learning models, and hence are the focus of our work. As
follows, a typical DNN consists of several back-to-back layers
that represent increasingly abstract representations of the input.
Convolution layer. A convolution operation generates its
output by sliding a window of parameters referred to as filters
or kernels, over its inputs. A convolution layer is a set of these
convolution operations that combine multiple input features and
kernels to generate a single or multiple output feature maps. The
initial layers of DNN are generally these convolution layers.
Pooling layer. A pooling layer down-samples its input to
reduce its size. This layer subsamples each window of the input
feature maps to a single pooled output, which is usually the
average, maximum, or minimum of the features in the window.
Inner product layer. This layer computes the inner product
of an input vector and a weight matrix. Before computing
this inner product, the previous layer output that might be
multidimensional is arranged as a single dimensional vector.
Activation layer. An activation layer is a dimensionality
preserving operation that applies an element-wise transfer
function on its input feature map. Typical transfer functions are
non-linear, (e.g., sigmoid , tanh), or piece-wise linear functions
(e.g., rectified linear, absolute value).
Normalization layer. A normalization layer performs local
inhibition by sliding a window over its input feature map. The

Bits 63	–	60 59	–	56 55	–	32 31 30	–	24 23	–	17 16 15	–	10 9	–	4 3	–	0
input Opcode	=	0 1
conv Opcode	=	1
pool Opcode	=	2
norm Opcode	=	3
ip Opcode	=	4
act Opcode	=	5
fanout Opcode	=	6 #	Destinations	
output Opcode	=	7 0

Fu
nc
tio

n Destination	
Instruction	ID

#	of	Dimensions

W
in
do

w
	

W
id
th

W
in
do

w
	

He
ig
ht

W
in
do

w
	

St
rid

e

Fi
xe
d-
Po

in
t/
	F
lo
at
in
g	
Po

in
t

Va
lu
e	
Bi
tw

id
th

Fr
ac
tio

n	
Bi
ts
/	E

xp
on

en
t	

Bi
ts Us
e	
th
e	

Ne
xt
	W

or
d

Reserved0

#	of	Neurons

(a) IWORD1
Bits 63	–	48 47	-	32 31		–	16	 15	–	0

input
conv
pool
norm
ip
act
fanout
output

Not	Used

Reserved	
Window	Width Window	Height

Window	
Stride

#	of	Neurons

Length	of	Dimension	0 Length	of	Dimension	1

(b) IWORD2 (Optional)
Figure 4: Instructions of the macro dataflow ISA.

normalization operation first produces the square-sum of the
elements in the sliding window and then applies a non-linear
function to the square-sum, which is multiplied with the input
element being normalized to generate the output.

The programmer specifies the DNN using the layers described
above. DNNWEAVER then converts this specification into a
macro dataflow ISA that implements the operations of these
layers as an abstraction for hardware acceleration. The details
of this ISA are discussed in the next section.

4 Instruction Set Architecture Design
DNNWEAVER provides a macro dataflow ISA to (1) abstract
away the details of accelerator design from the software; (2)
enable layer-specific optimizations; (3) facilitate portability
across different FPGA platforms; and (4) allow static execution
scheduling at compile time. We chose a dataflow architecture to
alleviate the von Neumann overhead of general-purpose architec-
tures such as instruction fetch, decode, etc. The accelerator is not
expected to execute these instructions. The compiler statically
translates these instructions to microcodes and state machines.
This dataflow architecture does not have explicit registers, which
enables DNNWEAVER to impose significantly fewer restrictions
on the accelerator architecture and allows portability across
different FPGAs. Using an explicit dataflow architecture also
allows DNNWEAVER to perform static optimizations at compile
time and avoid data dependencies (e.g., register renaming) at
runtime. Additionally, the coarse-grained nature of the ISA
enables the microarchitecture to incorporate layer-specific
optimizations without exposing them through the software stack.

Figure 4 shows the eight instructions of our ISA. These
instructions are variable-sized and are designed to be able
to express a large variety of deep neural networks. These
instructions are further translated to state machines and
microcodes at compile time. We use 64-bits to encode each
word of the instruction. Since the ISA is a dataflow architecture,

each instruction is assigned a unique 24-bit static ID and
none of the instructions include source operands. Instead, a
part of instruction opcode encodes the unique static ID of the
destination instruction that will receive the results. Below, we
discuss each instruction type in our macro dataflow architecture.
Instruction input. The input instruction reads a DNN input
(e.g., an entire image) from memory and sends it to another in-
struction for processing. As Figure 4(a) shows, bits 63–60 in the
IWORD1 contain the opcode, which in this case is 0. Bits 59–56
are the function bits and are not used for this instruction. Bits
55–32 contain the unique ID of the destination instruction that
will consume the inputs. Bit 31 indicates whether the generated
values by this instruction are fixed-point or floating point. Bits
30–24 specify the total bit width of the generated values (e.g.,
32). The bits 23–17 encode the number of fraction bits or the
exponent, if the generated values are fixed point or floating point,
respectively. Bit 16 indicates whether the next 64-bit word is part
of the instruction. Bits 15–0 encode the number of dimensions
in the DNN input (e.g., two for an input image.) The next
instruction word, IWORD2, specifies the size of each dimension
as presented in Figure 4(b). If the number of dimensions
exceeds two, then more words are added to specify the size of
dimensions. After specifying the size of all the dimensions, the
next 64-bit value contains the address of the input in the memory.
Instruction conv. This instruction type performs the con-
volution operation by sliding a window over its inputs. The
dimensions of the window and the sliding stride are encoded
in bits 15-0, with six bits for the width and the height of the
window, and four bits for the sliding stride. If these bits are
not enough for specifying the window dimensions, bit 16 is
set to 1 and IWORD2 is used to specify the structure of the
window. The other fields in the IWORD1 are similar to the input
instruction. After the IWORDs, an array of immediate values
is used to specify the weights for the convolution operation.
Instruction pool. This instruction performs pooling on its in-
puts. Similar to conv, the structure of the pooling window and its
stride is either specified in bits 15–0 or in IWORD2. The func-
tion field specifies the pooling type, such as max, min, or average.
Instruction norm. This instruction performs normalization and
its window specification is similar to previous two instructions.
The parameters are listed as immediate values after the IWORDs.
Instruction ip. This instruction corresponds to an inner product
layer. Bits 15–0 specify the number of neurons in this layer,
up to a maximum of 65536. For a larger number of neurons,
IWORD2 is used. The immediate value after the IWORD is the
address of the inner product weights in the memory.
Instruction act. This instruction corresponds to an activation
layer and takes only one IWORD. The function field encodes
the type of the activation function (e.g., sigmoid).
Instruction fanout. Since our ISA is dataflow and each instruc-
tion only encodes one destination, we provide a fanout instruc-
tion. This instruction is single IWORD and the bits 55–32 encode
the number of destinations. The following immediate values after
the IWORD encode the ID of the destination instructions.
Instruction output. The output instruction does not have a
destination instruction. It writes the outputs of the DNN to the
memory address specified in the immediate values.

As discussed above, the instructions are translated to state
machine and microcodes at compile time. Translation from
Caffe to this ISA is straightforward since the instructions match
the DNN layers. The Design Planner uses this ISA to customize
the pre-designed templates and generate a static schedule for

…

>

Ac
%v
a%

on
Lo
ok
up

	
f(
x) ×

Bu
ffe

r ₀

…

Co
nv

	W
ei
gh
t	

Bu
ffe

rPUm-₁

PE₀

PEn-₁

Bu
ffe

r n
-₁

N
or
m
al
iza

%o
n

Po
ol
in
g

>

Ac
%v
a%

on
Lo
ok
up

	
f(
x) ×

Bu
ffe

r ₀

…

Co
nv

	W
ei
gh
t	

Bu
ffe

rPU₀

PE₀

PEn-₁

Bu
ffe

r n
-₁

N
or
m
al
iza

%o
n

Po
ol
in
g

Memory	Interface

Data	Buffer

Figure 5: Overview of a clustered hierarchical template design. The
template accelerator is divided into Processing Units (PUs) that are
comprised of multiple smaller Processing Engines (PEs).

the operations within this macro dataflow, that is best suited for
a given (DNN, target FPGA) pair. The next section discusses
the hand-optimized template.

5 Template Accelerator Architecture
The template designs are highly customizable and scalable. The
scalable architecture enables the Design Planner to shrink or ex-
pand the accelerator based on the requirements of the DNN and
the resource constrains of the target FPGA. Templates are also de-
signed to be general. That is, the templates include exchangeable
components that realize different layers of DNNs. If a DNN does
not require a certain layer (e.g., normalization), the corresponding
component is excluded to free resources for other layers.
5.1 Overall Organization
Figure 5 illustrates the template architecture that provides
these necessary characteristics. As depicted, the template
architecture is clustered with two levels of hierarchy; a collection
of self-contained Processing Units (PUs) that comprise a set
of smaller Processing Engines (PEs). The PEs and the buffers
in the template PU architecture provide compute capabilities
for convolution and inner product layers. The customizable
normalization, pooling, and activation modules provide support
for the other possible layers in DNNs. This clustered architecture
provides scalability via modularity and by making the data
traffic local to PUs and utilizing a unified bussing fabric across
them. These features allow the Design Weaver to generate a
concrete accelerator with any number of PUs and PEs-per-PU.
Furthermore, the Design Weaver tunes the parameters of the
hardware modules; all of which are extensively parameterized.
Specializing the design for a target FPGA. Each FPGA of-
fers a certain number of hard blocks including DSP slices (ALUs)
and Block RAMs (on-chip SRAM units, called BRAMs). Using
these hard blocks is essential for exploiting the compute capa-
bilities of the FPGA and achieving reasonably high frequency.
Thus, the template architecture in Figure 5 maps the PU Buffers
to the BRAMs and the ALUs to the DSP slices. The availability
of these resources determines the maximum possible number
of PEs and PUs for a given FPGA. However, as described in
Section 6, the Design Planner determines the composition of the
PU based on the size of the feature maps produced by the con-
volution/pooling/normalization/inner product layers to maximize
resource utilization and the overall computation throughput. The
next resource is the available off-chip bandwidth which deter-
mines the parameters of the Data Buffer that is connected to
the memory interface as shown in Figure 5. The Design Planner
performs static data marshaling and determines the layout of the

Accumulate

FIFO

ALU

PEi

Bufferi

PEi	output

Forward	
output
to	PEi-1

Forward	
input	from	

PEi₊1

Conv	
Weights

Input	
data

Inner	
Product	
Weights

Figure 6: Processing Engine PEi.

C0
10 C0

11 C0
12 C0

13

FIFO

P0
00 P0

01 P0
02 P0

03

Convolu*on	output	from	PEs

max (C0
00, C

0
01)

P0
00

Pooled	output

>

Figure 7: Pooling operations to
compute P0

00.

PE0 PE1 PE2 PE3

Inner	product	weights Input	
data

W00 W01 W02 W03 X0Cycle	0

W10 W11 W12 W13 X1Cycle	1
W20 W21 W22 W23 X2Cycle	2

W30 W32 W32 W33 X3Cycle	3

Y0 Y1 Y2 Y3
Output	Neurons

Figure 8: Execution of the Inner Product
layer using MACC operations in PEs.

C¹	size	8x8

Input	Feature	Map Convolu6on	Layer Pooling	layer Inner	Product	layer

10x10	Input

C⁰	size	8x8

P⁰	size	4x4

P¹	size	4x4

size	32

Weight⁰3x3

Weight¹3x3

size	8

… …

Figure 9: DNN example. Input elements are indexed as Xi, j.

DNN weights and parameters to streamline transfer of param-
eters from the memory in contiguous chunks; maximizing the
bandwidth utilization. The Design Planner also generates a static
schedule for the Data Buffer to fetch data from the external mem-
ory and feed the PUs through the inter-PU bus. Static scheduling
avoids contention on the bus and alleviates the need for PUs to
perform complex handshaking. This approach, in turn, improves
the scalability and efficiency of the template architecture.
Processing engines. PEs are the basic compute units that per-
form convolution, inner product, and parts of normalization. As
shown in Figure 6, each PE contains a hard ALU that supports
Multiply, and Multiply-Add operations. Neighboring PEs have a
unidirectional link that forwards input data from a PE with higher
index (PEi+1) to the adjacent PE with lower index (PEi). This for-
warding link is used to reuse data across the adjacent PEs to min-
imize data transfer from memory. As depicted in Figure 5, each
PE in a PU is associated with a dedicated buffer that feeds inner
product weights and input data to the PE. Inner product weights
typically require larger storage. These weights are streamed in
the dedicated buffers that are mapped to the hard BRAM blocks.

Below, we use a running example (Figure 9) to demonstrate
the operations and scheduling of different DNN layers.
5.2 Accelerating Layers of DNN
The first layer of the DNN in Figure 9 contains convolution ker-
nels with a window size of 3×3 that produce two 8×8 outputs.
Each convolution output is sub-sampled with a 2×2max-pooling
operation. Outputs from the pooling layer are arranged in a 1×32
vector, as the input to the inner product layer. The inner product
layer has eight output neurons and requires a weight matrix
of size 32×8. The example accelerator contains one PU with
four PEs. For the running example, we assume that the model
parameters are contained within the FPGA’s on-chip storage.
In Section 6, we relax this assumption and account for external
memory accesses required when the data cannot fit on-chip.

X21 X22 X31 X32 X41 X42X40X30X20

X11 X12 X21 X22 X31 X32X10 X30X20

X11 X12 X21 X22X01 X02X00 X10 X20

In
pu

t V
ec

to
rs

O
ut

pu
t E

le
m

en
ts

W0
1 W0

2 W0
4 W0

5 W0
7 W0

8W0
6W0

3W0
0

W() =
W() =
W() =

00
0C

10
0C

20
0C

W=
Figure 10: Convolution operations. Xi0, Xi1, and Xi2 are input elements
in the ith row of the input feature map.

5.2.1 Convolution Layer
As shown in Figure 9, the first layer convolves the input using
two set of weights (Weight0 and Weight1) and produces two
output feature maps (C0 and C1). The convolution operation can
be expressed as a vector dot product between input elements and
corresponding weights. The following operations are performed
to generate the {0,0}th element of output feature map C0.

C0
00=Input00 . Weight0

Input00=[X00,X01,X02,X10,X11,X12,X20,X21,X22]

Weight0=[W0
0 ,W

0
1 ,W

0
2 ,W

0
3 ,W

0
4 ,W

0
5 ,W

0
6 ,W

0
7 ,W

0
8]

Dedicated buffer for convolution weights. To produce
each output element in C0, we require Weight0. We minimize
the overhead of accessing weights from the memory by using
a convolution weight buffer in the PU that stores all the required
weights and is shared across the PEs of the PU.
Parallelism across output elements. Convolution operations
within an output feature map have no data dependencies on each
other, and can be executed in parallel (e.g. C0

01, C0
00, etc.). These

parallel calculations are performed by the PEs within a PU.
Saving partial results to minimize data communication.
As shown in Figure 10, the convolution operations that generate
the three outputs C0

00, C0
10, and C0

20 require accesses to the same
inputs three times. These input elements {X20, X21, X22} are
highlighted in gray in Figure 10. To reduce these redundant
accesses, the PEs read the input row by row and generate partial
results. The PEs then store the partial results in a local FIFO
as depicted in Figure 6. When the PEs read the next set of the
input elements, they also dequeue the partial results from the
previous row and calculate the next set of partial results.
Data forwarding. Figure 11 shows another optimization that re-
duces remote data transfer through re-use. Convolution windows
that produce adjacent outputs share input elements. Therefore,
PEs computing adjacent output elements use partially shared data.
We add a dedicated unidirectional link between adjacent PEs to
forward these shared input elements. The arrows in Figure 11
show this data forwarding to re-use data for convolution. The
unique data read accesses for each PE are highlighted in gray.

X01 X02X00

X02 X03X01

PE0

PE1

X03 X04X02

X04 X05X03

PE2

PE3

X11 X12X10

X12 X13X11

X13 X14X12

X14 X15X13

Cycle 1 20 7 86

W0
1 W0

2W0
0Weight W0

4 W0
5W0

3

.. 11109

X11 X12X10

X12 X13X11

X13 X14X12

X14 X15X13

W0
1 W0

2W0
0

Figure 11: Convolution operation execution pattern.

Reusing data across convolution kernels. Using the
sequence of operations in Figure 11, the four PEs compute four
adjacent output elements using the first kernel (Weight0).
5.2.2 Pooling Layer
The example uses a window of size 2×2 and a stride of two
for max pooling. The input feature map for the pooling layer is
divided into 16 non-overlapping windows of size 2×2, each cor-
responding to an output element. As Figure 7 illustrates, to com-
pute pooling output element P0

00, the unit require C0
00,C

0
01,C

0
10,C

0
11.

Since the convolution layer produces adjacent elements in a row,
the unit first compute max(C0

00, C0
01) for the first row and push

it to the FIFO. When the second row is available, the FIFO is
popped and we compute max(max(C0

00, C0
01), C0

10, C0
11).

Hiding latency. To hide execution latency, the pooling module
overlaps its operations with the convolution operations in PEs.
Since the kernel size for convolution in the previous layer is 3×3,
the four PEs in the PU generate four output elements every nine
cycles. As shown in Figure 7, the convolved output elements are
sent to the shared pooling module with a single 3:1 comparator.
5.2.3 Inner Product layer
Inner product layer can be expressed as a vector-matrix multipli-
cation. In the running example, the pooling layer produces two
outputs, P0 and P1 of size 4×4 each or 32 elements in total. P0

and P1 are flattened and concatenated to generate a 1×32 input
vector that is multiplied with the weight matrix of size 32×8
to generate the output vector of size 1×8, shown in Figure 9.
Parallelism across output elements. In inner product layer,
each output neuron Yj is generated as Yj=∑iXi∗Wi j, where Xis
are the inputs to the layer and Wi js are the weights. To exploit
the parallelism between output computations, each output
neuron Yj is assigned and computed on a single PE using a
series of multiply-accumulate operations. With four PEs, the PU
simultaneously calculates outputs Yj in groups of four starting
from {Y0, Y1, Y2, Y3} as shown in Figure 8.
5.2.4 Normalization and Activation
As Figure 5 depicts, a part of normalization (sum of squares)
uses the convolution hardware and the other part (scaling) is
implemented as a separate unit. The activation transfer functions
are implemented using lookup tables in each PU.

The Design Planner exploits the FPGA’s reconfigurability by
customizing the described template architecture for the target
FPGA and DNN model as discussed in the following section.

6 Design Planner
The template architecture described in the previous section serves
as a scalable template for the accelerator’s microarchitecture.
DNNWEAVER takes advantage of the FPGA’s reconfigurability
using Template Resource Optimization, a heuristic search
algorithm, that co-optimizes both the accelerator architecture

and the corresponding execution schedule to minimize off-chip
accesses and maximize performance. The two key factors
affecting performance are: (1) the allocation of compute and
memory resources to the various components in the template
architecture, which determines the degrees of parallelism in the
accelerator; and (2) the schedule of operations on the accelerator,
which determines the required external memory accesses. This
algorithm aims to strike a balance between parallel operations
and data reuse and configuring the accelerator to best match the
constraints of the FPGA (on-chip memory and memory interface
bandwidth). As the memory requirement of DNNs is typically
much higher than the on-chip storage available on FPGAs, we
divide the output feature map of each layer into slices. A slice
is a portion of the output feature map that is spilled to memory
after computation. Template Resource Optimization maximizes
performance by varying (1) PEs-per-PU and (2) slice dimensions.
Below, we discuss the two variables in further detail.
Variable (1) Number of PEs-per-PU. The template
architecture exposes two levels of parallelism: (1) parallelism
between PEs in a PU that generate adjacent output elements,
and (2) parallelism between PUs generating independent output
feature maps. Due to a fixed number of resources on the FPGA,
increasing the number of PEs-per-PU would decrease the
total number of PUs and vice versa. Our Template Resource
Optimization algorithm aims to find a PEs-per-PU configuration
that strikes a balance between the two degrees of parallelism
and provides the best performance for the (DNN, FPGA) pair.
Variable (2) Output slice. The next variable is the slice of
the output feature map that is computed within each epoch of
the PU execution. This slice is the fraction of the output feature
map that fits in the on-chip storage of the PU. The amount of this
storage depends on the number of PEs1 in each PU. The slicing
dictates the number of external memory accesses and determines
the degree of reuse in the computation. Convolution-like layers
operate on overlapping input elements. Reusing these overlap-
ping elements can only happen within a slice but not across slices.
Therefore, the slice determines the degree of data reuse. The al-
gorithm first tries to fit a row of the output in the on-chip memory
of the PU. The stride is based on the number of PEs-per-PU to
match the outputs with the PEs. If extra storage is still available,
it tries to store more output rows. With this approach, the Design
Planner picks a slice that maximizes data reuse and minimizes
external memory accesses for each PU. By doing so, all the
output slice computations can be done with local information
in the PU. Another aspect of this approach is that the next layer
can start operating on the slice before spilling it to memory. This
optimization further reduces the off-chip memory accesses.
Template Resource Optimization search algorithm.
Algorithm 1 illustrates our heuristic search which solves the
following optimization objective:

arg min executionCycles = ∑
l

f (nPEperPU , sliceSizel)

subject to 1 ≤nPEperPU ≤FPGA.max_PEs
sliceSizel ≤min(BRAM×nPEperPU , outputsize)

Here, nPEperPU is the number of PEs-per-PU and sliceSizel
is the dimensions of the slice in layer l, FPGA.max_PEs is the
maximum PEs that can the accommodated on the FPGA, and
outputsize is size of a single channel in the output feature map.
1Note that each PE is assigned a BRAM.

Algorithm 1: Template Resource Optimization search.
Inputs :D: DNN Macro Dataflow Graph

F: FPGA Constraints
Output :nPEperPU: number of PEs per PU

sliceSizel: Slice dimension in each layer
arg min :eec: execution_cycles
Function findSliceSize(pe, F)

Initialize widthr = pe Initialize heightc = 1
while (widthr × heightc ≤min (F.BRAM× pe, outputsize) do

widthr = widthr + pe
end
while (widthr × heightc ≤min (F.BRAM× pe, outputsize) do

heightc = heightc + 1
end
return widthr, heightc

end
Initialize eec = ∞; Initialize l = D.numLayers
Initialize nPEperPU = 1; Initialize ∀ sliceSizel in l = φ

for pe in range (1,F.maxPE) do
Initialize ∀ ssl in l = φ

for ∀ l in l do
ssl = findSliceSize(pe, F)

end
cycles = g(D, F, pe, ssl)
if (cycles < eec) then

eec = cycles
nPEperPU = pe
∀ l in L sliceSizel = ssl

end
end

The algorithm takes in as input the DNN macro dataflow graph
(D) and the constraints of the FPGA platform (F). The FPGA
constraints (F) provide the maximum number of PEs and the
capacity of the BRAM in each PE. The algorithm finally outputs
the nPEperPU and the sliceSizel by taking the following steps:
(1) Initialize. Initialize the number nPEperPU and sliceSizel
(for each layer). Initialize the estimated2 execution cycles (eec)
to ∞. The eec is an estimation of the number of cycles to
execute a particular DNN with an organization that complies
with nPEperPU and sliceSize.
(2) Increment nPEperPU. Vary the nPEperPU iteratively
starting from 1 to the maximum number of PEs that can be
synthesized on the FPGA platform.
(3) Calculate sliceSizel. For the current choice of the
nPEperPU, calculate the dimensions of the slice that fits in the
PU. This calculation is done for each layer of the DNN.
(4) Estimate execution cycles. Estimate the execution cycles
given the current choices of nPEperPU and sliceSizel.
(5) Reiterate or terminate. If the cycles is less than eec, record
the choices. Terminate if nPEperPU has reached the maximum
value, otherwise reiterate from step (2).

Figure 12 illustrates the result of search for Altera’s Arria10
FPGA for AlexNet [30] and Overfeat [31]. We use Xeon E3 as the
baseline to better visualize the trends. Performance for a layer in
a DNN is highest when the output feature map size is a multiple
of PEs-per-PU. Thus, the PEs-per-PU configuration that achieves
best performance varies for the layers in a DNN, resulting in mul-
tiple peaks as shown in Figure 12. The peak performance occurs
at 14 PEs-per-PU for AlexNet and 12 PEs-per-PU for Overfeat.
The sliceSizels are different for each point of the graph.
2We have built a mathematical model g to estimate the execution cycles.

5 10 15 20 25 30 35 40

PEs-per-PU

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
pe

ed
up

ov
er

X
eo

n
E

3
ba

se
lin

e

Overfeat AlexNet

Figure 12: Design space exploration for optimizing resource allocation.

Table 2: FPGA Platform Details.
Xilinx	Zynq	ZC702 Altera	Stratix	V	SGSD5 Altera	Arria	10	GX115

53K	LUTs 172K	LUTs 427K	LUTS
106K	Flip-Flops 690K	Flip-Flops 1708K	Flip-Flops

Peak	Frequency 250	MHz 800	MHz 800	MHz
BRAM 630	KB 5035	KB 6782	KB

MACC	Count 220 1590 1518
Evaluation	Kit	Price $895 $6,995 $4495

Technology TSMC	28nm TSMC	28nm TSMC	20nm

FPGA	Capacity

Table 3: Benchmark DNNs and their input datasets. The model size
provides the size inMega Bytes of the weights required for the network.

Network Data	set Domain
Model	Size	
(MegaBytes)

Multiply-Accumulate	
Operations

CIFAR-10	Full CIFAR-10 Object	Recognition 0.17	MB 12,390,400
LeNet MNIST Handwritten	Digit	Recognition 0.82	MB 2,293,000
NiN ImageNet Object	detection	and	classification 14.50	MB 1,105,996,320
Djinn	ASR Kaldi Speech-to-text	decoder 48.40	MB 25,366,528
AlexNet ImageNet Object	detection	and	classification 116.26	MB 736,332,416
VGG-CNN-S ImageNet Object	detection	and	classification 196.26	MB 2,666,222,720
Overfeat ImageNet Object	detection	and	classification 278.30	MB 2,797,535,776
VGG-16 ImageNet Object	detection	and	classification 323.87	MB 16,361,995,456

Table 4: Evaluated CPUs and GPUs.

ARM	Cortex	A15 4+1 2.300 2	(shared) 5 28 $191
Intel	Xeon	E3-1246	v3	 4 3.600 16 84 22 $290
Tegra	K1	GPU 192 0.852 2	(shared) 5 28 $191
NVIDIA	GTX650Ti	 768 0.928 1 110 28 $150
Tesla	K40 2880 0.875 12 235 28 $2,599

CostPlatform Cores	
Clock	freq	
(GHz)	

Memory	
(GB)	

TDP	
(W)	

Technology
(nm)	

7 Evaluation
To evaluate the effectiveness of DNNWEAVER, we use three
off-the-shelf FPGA platforms, Xilinx Zynq ZC702, Altera Stratix

V GS D5, and Altera Arria 10 GX-AX115. Table 2 summarizes
their specifications. Henceforth, we refer to DNNWEAVER
generated accelerator for Zynq, Stratix V, and Arria 10 as DW-Zynq,
DW-Stratix, and DW-Arria, respectively.
7.1 Methodology
7.1.1 Benchmark DNNs and Their Input Datasets
Table 3 shows our benchmark DNN models, their input
datasets, size of model parameters, and the number of multiply-
accumulate operations required. The selected DNNs are used for
various applications ranging from handwritten digit recognition,
object recognition, to speech-to-text decoders. Among these,
CIFAR-10 Full targets object detection in the CIFAR-10 thumbnail
dataset [32]. LeNet targets the MNIST handwritten digit recog-
nition dataset [33]. The DjiNN ASR network is a DNN speech-
to-text decoder obtained from the DjiNN and Tonic benchmark
suite [7]. NiN [34], AlexNet [30], Overfeat [31], VGG-CNN-S [35],
and VGG-16 [35] target the ILSVRC ImageNet dataset [36].
7.1.2 CPU and GPU Execution
Table 4 lists the five evaluated CPU and GPU platforms.
Runtime measurements. We compare the execution time
of DNNWEAVER generated accelerators to the execution time

on CPUs and GPUs using Berkeley Caffe. The CPU and GPU
baselines are compiled with GCC 4.8 and NVCC 6.5, respectively.
We obtain the baseline timings by using the timing feature of
Caffe. For Arria 10 and Stratix V, we synthesize the accelerator
using Qaurtus II v14.1 tool and use a cycle estimator to measure
performance for the synthesized accelerator. Across all other
platforms, we run each DNN 100 times and use the average.
Multi-threaded vectorized CPU execution. We use Open-
BLAS for the BLAS backend required by Caffe to produce CPU-
specific optimized binaries. Hence, we used Haswell-specific
optimization for the Xeon E3 CPU, and the A15 optimization for
the ARM A15 processor (Jetson TK1). The Haswell version of
OpenBLAS uses AVX2 and Fused Multiply-Add (FMA) instruc-
tions whereas the A15 version uses the NEON SIMD engine.
When evaluating the Xeon E3 CPU we used 4 threads, as we em-
pirically found that this provided the best performance – enabling
SMT affected the performance negatively. For the ARM A15 CPU
we used 4 threads as well since it does not have SMT support.
Optimized GPU execution with cuDNN. For fastest GPU
execution, Caffe can be configured to use the NVIDIA cuDNN
library. We use the latest cuDNNv5 for GTX 650Ti and Tesla K40,
and cuDNNv2 for Tegra K1, separately compiled for each GPU
with architecture-specific compiler optimization. Tegra K1 does
not support newer versions of cuDNN.
FPGA platforms details. In the Zynq board, the interface
between DRAM and programmable logic is a standard AXI
bus. In the Arria 10 and Stratix V boards, we used Altera’s Avalon
interface IP for interfacing the DRAM with the programmable
logic. We implement a custom controller on the programmable
logic to interface with the main memory. We synthesize the
hardware with 64-bit Vivado v2015.1 for the Zynq board and
Qaurtus II v14.1 for the Stratix V and Arria 10 boards. We use the
synthesis tools to generate the area utilization numbers presented
in Table 5. The frequency of operation of the accelerator on the
Zynq board is 150 MHz and the frequency of operation on the
Stratix V and Arria 10 FPGAs is 200 MHz.
Power measurements using vendor libraries. We employ
a variety of strategies in order to gather power measurements
for most tested platforms. We use the NVIDIA Management
Library (NVML) to obtain the average power of Tesla K40. Given
that GTX 650Ti does not support the NVML library, and since
the GTX 650Ti and Tesla K40 share the same microarchitecture,
we make a conservative estimation of the GTX 650Ti power by
scaling the Tesla K40 measurements using the two chips’ TDPs.
For each DNN, we calculated the ratio of measured power in
Tesla K40 over its TDP. We multiply this ratio with the GTX 650Ti

TDP and use the 95% of this number.
We utilize the Intel Running Average Power Limit (RAPL)

energy consumption counters available in the Linux kernel for
power measurements on the Xeon E3.
Power measurements in hardware. The ARM A15 CPU and
the Tegra K1 GPU are a part of the Jetson TK1 development
board. Jetson TK1 does not provide software means to gather
power readings. Therefore, we use the Keysight E3649A
Programmable DC Power Supply to get the power consumption
of the Jetson TK1 board. To do so, we subtract the idle average
power 3.12W from the power reading we obtain during
benchmark execution. For Arria 10 and Stratix V, we use the TDP
as a measure of power consumed during execution. Finally, we
use a GPIO to USB adapter to read the power directly from the
power controllers in the Zynq board.

7.2 Comparison to High Level Synthesis
As an alternative to DNNWEAVER, HLS can also generate
hardware implementations for DNNs, where the programmer
uses HLS’s C-like syntax to express layers of the DNN model.
Although HLS provides a high level abstraction to programmers,
optimizing the hardware implementation for a DNN model on
a target FPGA requires expertise in both hardware design and
the specific programming tool used for HLS. In our experiments,
two Masters students with moderate amount of experience in
hardware design spent one month to optimize a Vivado HLS
implementation of the LeNet Benchmark for the Xilinx Zynq

ZC702 FPGA. The resulting implementation ran at 100 MHz
and provided a slow-down of 19.7× compared to DNNWEAVER
generated accelerator for the same FPGA platform. The benefits
of the template approach is more evident when considering a
recent work [14] that uses commercial HLS tool and yet spends
significant effort to implement the convolution layers of just
one DNN, AlexNet. Moreover, another recent work [37] shows
that using dataflow templates as an intermediate compilation
target for high-level synthesis of C/C++ programs delivers 9×
higher performance than the state-of-the-art HLS tools. Recall
that for none of the FPGA acceleration, DNNWEAVER requires
anything beyond just expressing the DNN in Caffe format.
7.3 Experimental Results
7.3.1 Performance Comparison with CPUs
Speedup compared to Xeon E3. Figure 13a illustrates the
performance benefits when the DW-Zynq, DW-Stratix, and
DW-Arria are used to compute the models under evaluation. The
performance of Xeon E3 for the eight DNN models using Caffe’s
framework is used as a baseline for comparison. The average
speedup for DW-Zynq, DW-Stratix, and DW-Arria is 0.59×, 2.81×,
and 5.94×, respectively; thus, DW-Arria provides 10× more
speedup than DW-Zynq. Among the evaluated models, Cifar-10
Full sees the highest speedup of (2.9×, 13.8×, and 30.9×)
while Overfeat shows the lowest speedup of (0.2×, 1.0×, and
2.2×) over DW-Zynq, DW-Stratix, and DW-Arria, respectively. The
significant gap in performance benefits comes from the disparity
in the model topology, some layers are more favorable to the
DNNWEAVER generated accelerators than the others. We will
further discuss the difference in per-layer computation efficiency
later in Section 7.3.3.
Speedup compared to ARM A15. Figure 13a also shows
the performance comparison with a low-end processor, ARM

A15. ARM A15 exhibits an 8× slowdown with respect to Xeon

E3. Compared to the low-end ARM A15 processor, DW-Zynq,
DW-Stratix, and DW-Arria provide 4.7×, 22.39×, and 47.26×
speedup respectively. As expected, the low power ARM A15,
which is not intended for high performance computing is
significantly outperformed by the Xeon E3 server class processor.

These results demonstrate the performance benefits provided
by DNNWEAVER generated accelerators over both low-end and
high-end CPUs, as well as their scalability over various FPGAs.
7.3.2 Performance Comparison with GPUs
Speedup compared to GTX 650Ti. We compare our accelera-
tors with GPU platforms including GTX 650Ti, Tegra K1, and Tesla

K40 in Figure 13b. The baseline is GTX 650Ti, a middle-tier GPU.
DW-Zynq and DW-Stratix provide 6.60× and 1.4× slowdown com-
pared to GTX 650Ti, while DW-Arria shows a 1.48× speedup. Tesla
K40 provides a speedup of 4.5× over the baseline. For the three
FPGAs, (DW-Zynq, DW-Stratix, and DW-Arria), maximum speedup

0×
2×
4×
6×
8×

10×
12×
14×
16×

S
pe

ed
up

/X
eo

n
E

3

Cifar10
full LeNet NiN

Djinn
ASR AlexNet VGG-CNN-S Overfeat VGG-16 Gmean

0.
3

0.
1

0.
1

0.
2

0.
1

0.
1

0.
1

0.
1

0.
1

2.
9

1.
2

0.
3 0.
7

0.
5

0.
7

0.
2

0.
2 0.
6

13

5.
8

1.
4

3.
6

2.
2 3.

3

1.
0

1.
3 2.

8

30

12

2.
5

8.
0

4.
2

7.
3

2.
2 2.

9

5.
9

ARM A15
DW-Zynq

DW-Stratix
DW-Arria

(a) Speedup and comparison with CPUs (baseline=Xeon E3)

0×
1×
2×
3×
4×
5×
6×
7×
8×

S
pe

ed
up

/G
TX

65
0

Ti

Cifar10
full LeNet NiN

Djinn
ASR AlexNet VGG-CNN-S Overfeat VGG-16 Gmean

0.
5

0.
3

0.
2

0.
2

0.
3

0.
3

0.
1

0.
1

0.
2

2.
9

2.
0

4.
5

3.
7

4.
7

7.
2

10

5.
3

4.
5

0.
4

0.
2

0.
1

0.
1

0.
1

0.
2

0.
2

0.
1

0.
1

1.
7

1.
1

0.
4

0.
5

0.
4 0.

8 1.
0

0.
5 0.
7

3.
8

2.
5

0.
8 1.

0

0.
7

1.
7 2.

0

1.
2 1.
5

Tegra K1
Tesla K40
DW-Zynq

DW-Stratix
DW-Arria

(b) Speedup and comparison with GPUs (baseline=GTX 650Ti).
Figure 13: Speedup of DnnWeaver generated accelerators in comparison to a range of CPU and GPU platforms.

0%

20%

40%

60%

80%

100%

B
re

ak
do

w
n

Cifar10
full

X
eo

n
E
3

T
es

la
K

40

LeNet

X
eo

n
E
3

T
es

la
K

40

NiN

X
eo

n
E
3

T
es

la
K

40

Djinn
ASR

X
eo

n
E
3

T
es

la
K

40

AlexNet

X
eo

n
E
3

T
es

la
K

40

VGG-CNN-S

X
eo

n
E
3

T
es

la
K

40

Overfeat

X
eo

n
E
3

T
es

la
K

40

VGG-16

X
eo

n
E
3

T
es

la
K

40

Average

X
eo

n
E
3

T
es

la
K

40

Conv+Pool IP+Act Norm

Figure 14: Runtime breakdown across the DNN layers for Xeon E3
and Tesla K40. (Conv: Convolution, Pool: Pooling, IP: Inner Product,
Act: Activation, Norm: Normalization).

of (0.4×, 1.7×, and 3.8×) is observed from Cifar-10 Full, whereas
AlexNet shows the minimum speedup of (0.1×, 0.4×, and 0.7×).
Speedup compared to Tegra K1 and Tesla K40. In Figure 13b,
we also show a comparison with a low-end GPU, Tegra K1, and
a high-end GPU, Tesla K40. The low-end Tegra K1 offers a 0.2×
average speedup over the baseline. In contrast, the high-end
GPU Tesla K40 presents a 4.5× speedup. In comparison with
Tesla K40, (DW-Zynq, DW-Stratix, and DW-Arria) show an average
speedup of (0.03×, 0.15×, and 0.33×), respectively.
7.3.3 Per-Layer Performance Benefits
To understand the per-layer efficiency of the DNNWEAVER
generated accelerators, we examine the runtime breakdown
across the model layers and the speedup for individual layers.
Runtime breakdown. Figure 14 shows the runtime breakdown
of the models computed from the Caffe framework using two
baselines platforms, Xeon E3 and Tesla K40. For convenience,
we combine (1) Convolution and Pooling layers (Conv+Pool),
(2) Inner Product and Activation layers (IP+Act), and (3) Nor-
malization layer (Norm). On average, Conv+Pool occupies 68%
and 74% of the computation runtime, while the IP+Act occupies
16% and 21% when run on Xeon E3 and Tesla K40, respectively.
The larger proportion of execution time is spent on Conv+Pool

than the other layers as the convolution layer has significantly
higher number of operations than the inner product layer.

The composition of runtime varies between the network
models depending on the network topology and layer sizes.
Cifar10 Full, AlexNet, and VGG-CNN-S are the only networks that
include a normalization layer, which is executed for 16% and
5% of the runtime on Xeon E3 and Tesla K40, respectively. With
the exception of Djinn ASR, which consists of just IP+Act, most
of the time in the rest of the benchmarks is spent on Conv+Pool.
Per-layer speedup. Figure 15 shows the per-layer speedup
of the DNNWEAVER generated accelerators compared to the
baseline software execution with Xeon E3 (Figure 15a) and Tesla

K40 (Figure 15b). As shown in Figure 15a, for the set of (DW-

Zynq, DW-Stratix, DW-Arria), the average speedup for Conv+Pool,
IP+Act, and Norm in comparison with Xeon E3 is (0.5×, 2.2×,
and 4.6×), (2.3×, 12.5×, and 28.7×), and (68.5×, 139×, and

393×), respectively. Norm shows high speedup, particularly over
CPUs, as the non-linear operations within normalization are
implemented efficiently in FPGAs using lookup tables. Norm is a
significant portion of the runtime for Cifar10 Full and VGG-CNN-S,
leading to a high speedup for these models. Overfeat’s runtime
is dominated by Conv+Pool, which presents the lowest speedup.
Similarly, Figure 15b shows the per-layer speedup with the
baseline of GTX 650Ti. For Norm and IP+Act, DW-Stratix

outperforms the baseline, while it closely follows the baseline
performance for Conv+Pool. DW-Arria also follows the same
trend and the speedup for IP+Act is higher than that for Norm.
7.3.4 Sensitivity to on-chip storage
Figure 16 illustrates the impact of limited on-chip storage over
performance on the Arria 10 board. We use a cycle accurate
simulator, which we validate against hardware measurements,
to generate the figure. The figure compares the performance
of DNNWEAVER generated accelerator to Xeon E3 CPU baseline
when varying the size of on-chip BRAM resource from 1×
to 256× the available. The impact of memory size is most
prominent for inner product layers, since the inner product
weights are significantly large, and seldom fit in on-chip memory.
Storing inner product weights off-chip reduces the accelerator
performance due to the overhead of external memory accesses.
As illustrated in Figure 16, the amount of on-chip storage
required to store the inner product weights and overcome this
memory wall is more than 16× the available storage.

We reduce this overhead by sharing inner product weights
over a batch of inputs. Figure 16 compares the performance
of the generated accelerator with and without batching. The
speedup from batching is most prominent in Djinn ASR, where
the model consists of back-to-back inner product and activation
layers. On the other hand, the performance of NiN is unaffected
by batching as it does not contain an inner product layer.
The benchmarks AlexNet, Overfeat, and VGG-16 observe a
2.2× increase in performance through batching. Benchmarks
VGG-CNN-S, LeNet and Cifar10 Full observe a similar trend.
7.3.5 Performance-per-Watt Comparison with CPUs
As shown in the speedup results, the performance benefits from
diverse CPU, GPU, and FPGA platforms vary substantially. In
fact, these hardware platforms occupy different design points
in the underlying performance vs. energy efficiency tradeoff.
To understand the performance benefits with the fixed energy
efficiency, we measure the power consumption and evaluate the
performance-per-Watt for each hardware platform.
Comparison with Xeon E3. Figure 17a delineates the com-
parison of performance-per-Watt for ARM A15, DW-Zynq, and
DW-Arria with the baseline of Xeon E3. On average, DW-Zynq

shows 16.6×, DW-Stratix shows 7.9×, and DW-Arria shows

1.
6

15
8.

8

17
6.

5

1.
4

87

0.
3 0.

7

0.
5

0.
2

30
.2

0.
2 0.

3

60
.3

0.
2 0.

3

0.
3 0.

6

0.
5

2.
3

68
.5

7.
7

74
7.

1

83
0.

3

6.
7

40
9.

3

1.
4 3.

6

2.
3

1.
4

40
.2

1.
2 2.

2

80
.4

1 1.
4

1.
3 3 2.

2

12
.5

13
9

17
.4

16
80

.9

15
.1

92
1

2.
5

8.
2

4.
3

3.
2

13
7.

5

2.
6 5.

1

23
6.

9

2.
1 3.

2

2.
9 7 4.

6

28
.7

39
3.

3

0⨉

2⨉

40⨉

800⨉
Co

nv
+P

oo
l

IP
+A

ct

No
rm

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

No
rm

Co
nv

+P
oo

l

IP
+A

ct

No
rm

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

No
rm

Cifar10 Full LeNet NiN Djinn
ASR

AlexNet VGG-CNN-S Overfeat VGG-16 Geomean

Sp
ee

du
p

/ X
eo

n
E3

 (l
og

)
DW-Zynq DW-Stratix DW-Arria

(a) Speedup for each DNN layer with the baseline of Xeon E3.

0.
1

26
.3

29

15
.3

17

0.
1

0.
1

0.
1

0.
3

0.
3

0.
1

1.
1

0.
3

0.
1

1.
6

0.
1

1.
7

0.
2

2.
7

1.
3

0.
7

12
3.

8

13
6.

3

72
.1

79
.9

0.
4 0.
5

0.
3

1.
7

0.
3 0.

6

8.
3

0.
4 0.

7

8

0.
5

8.
3

1

14
.5

2.
6

1.
5

27
8.

6

30
6.

6

16
2.

2

17
9.

7

0.
8 1

0.
6

3.
9

1.
2

1.
3

19
.2

1.
1 1.
4

18
.5

1.
1

19
.2

2.
2

33
.1

7.
3

0⨉

2⨉

40⨉

800⨉

Co
nv

+P
oo

l

IP
+A

ct

No
rm

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

No
rm

Co
nv

+P
oo

l

IP
+A

ct

No
rm

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

Co
nv

+P
oo

l

IP
+A

ct

No
rm

Cifar10 Full LeNet NiN Djinn
ASR

AlexNet VGG-CNN-S Overfeat VGG-16 Geomean

Sp
ee

du
p

/ G
TX

 6
50

Ti
 (l

og
)

DW-Zynq DW-Stratix DW-Arria

(b) Speedup for each DNN layer with the baseline of GTX 650Ti.
Figure 15: Per-layer speedup when accelerated with DW-Zynq and DW-Arria.

NiN Djinn ASR

Memory
0⇥

2⇥

4⇥

6⇥

8⇥

10⇥

S
pe

ed
up

/X
eo

n
E

3

1⇥ 4⇥ 16⇥ 64⇥ 256⇥

0.
2

0.
2

7.
9

7.
9

7.
9

7.
7

7.
7

7.
7

7.
7

7.
7

w/o batching
w/ batching

AlexNet

Memory
0⇥

2⇥

4⇥

6⇥

8⇥

10⇥

S
pe

ed
up

/X
eo

n
E

3
1⇥ 4⇥ 16⇥ 64⇥ 256⇥

1.
5

1.
5

1.
5

4.
3

4.
3

4.
3

4.
3

4.
3

4.
3

4.
3

w/o batching
w/ batching

Overfeat

Memory
0⇥

2⇥

4⇥

6⇥

8⇥

10⇥

S
pe

ed
up

/X
eo

n
E

3

1⇥ 4⇥ 16⇥ 64⇥ 256⇥

0.
8

0.
8

0.
8

2.
2

2.
2

2.
2

2.
2

2.
2

2.
2

2.
2

w/o batching
w/ batching

VGG-16

Memory
0⇥

2⇥

4⇥

6⇥

8⇥

10⇥

S
pe

ed
up

/X
eo

n
E

3

1⇥ 4⇥ 16⇥ 64⇥ 256⇥

2.
1

2.
1

2.
1 2.

9

2.
9

2.
9

2.
9

2.
9

2.
9

2.
9

w/o batching
w/ batching

Memory
0⇥

2⇥

4⇥

6⇥

8⇥

10⇥

S
pe

ed
up

/X
eo

n
E

3

1⇥ 4⇥ 16⇥ 64⇥ 256⇥

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

2.
5

w/o batching
w/ batching

Figure 16: Speedup over Xeon E3 when varying the available on-chip storage. We use a validated cycle-accurate simulator to generate these results.

0×

10×

20×

30×

40×

50×

Pe
rfo

rm
an

ce
pe

rW
at

t

Cifar10
full LeNet NiN

Djinn
ASR AlexNet VGG-CNN-S Overfeat VGG-16 Gmean

3.
3

2.
3

1.
4

1.
7

1.
1

0.
9

1.
0

1.
0

1.
4

74

38

11

21

10

13

7.
5 8.
3

16

34

17

4.
5

11

5.
0 6.
4

3.
6

4.
2 7.

9

64

33

6.
7

20

7.
8 11

6.
3 8.
0

13
ARM A15
DW-Zynq

DW-Stratix
DW-Arria

(a) CPU Performance-per-Watt Comparison (Baseline=Xeon E3)

0×

1×

2×

3×

4×

5×

Pe
rfo

rm
an

ce
pe

rW
at

t

Cifar10
full LeNet NiN

Djinn
ASR AlexNet VGG-CNN-S Overfeat VGG-16 Gmean

2.
5

1.
2

1.
8

1.
3

2.
0 2.

3

0.
5 0.

9

1.
4

1.
3

0.
9

2.
0

1.
7 2.

1

3.
2

4.
5

2.
4

2.
0

6

3.
2

2.
7

2.
0

1.
9

3.
8

5

2.
5

3.
2

3.
1

1.
5

1.
1

1.
1

0.
9

1.
8

2.
7

1.
3 1.

5

5

2.
8

1.
6 2.

0

1.
4

3.
4

4.
7

2.
5 2.

7

Tegra K1
Tesla K40
DW-Zynq

DW-Stratix
DW-Arria

(b) GPU Performance-per-Watt Comparison (Baseline=GTX 650Ti)
Figure 17: Performance-per-Watt of the DnnWeaver generated accelerators in comparison to a range of CPU and GPU platforms.

13.9× higher performance-per-Watt than the baseline. Note that
although DW-Stratix provides about 10× higher speedup, the
increased power consumption by DW-Stratix (2W vs. 25W) leads
to the lower performance-per-Watt than DW-Zynq. However,
DW-Arria provides higher performance that DW-Stratix, without
a commensurate increase in power consumption, leading to
higher performance-per-Watt. This trend is observed for all the
evaluated DNN models.
Comparison with ARM A15. Low-end processors such as ARM

A15 are commonly used in mobile devices and are known to have
high energy-efficiency. We also compare the ARM A15 processor
with our accelerators and Xeon E3. The ARM A15 processor shows
1.4× higher performance-per-Watt compared to Xeon E3. When
compared with ARM A15, DW-Zynq, DW-Stratix, and DW-Arria

show 11.5×, 5.5×, and 9.6× higher performance-per-Watt,
which demonstrates the energy efficiency of the DNNWEAVER
generated accelerators.
7.3.6 Performance-per-Watt Comparison with GPUs
Comparison with GTX 650Ti. Figure 17b shows the
performance-per-Watt in comparison of Tegra K1, Tesla K40,
DW-Zynq, and DW-Arria with the baseline, GTX 650Ti. The
pair of (DW-Zynq, DW-Stratix, and DW-Arria) provides (3.2×,
1.5×, and 2.7×) higher performance-per-Watt than the baseline.
Although DW-Arria outperforms DW-Zynq with the speedup
of 10× shown in Figure 13b, DW-Zynq offers a 1.2× higher
performance-per-Watt compared to DW-Arria.
Comparison with Tegra K1 and Tesla K40. Figure 17b also
compares the performance-per-Watt of Tegra K1 and Tesla K40

with the baseline. On average, Tegra K1 and Tesla K40 have 1.4×

and 2.0× higher performance-per-Watt than GTX 650Ti.
7.3.7 Area and FPGA Utilization
Table 6 shows the framework determined number of PUs
and the number of PEs-per-PU for DW-Zynq, DW-Stratix, and
DW-Arria. The resource utilization in DW-Stratix is limited by
the LUTs available on chip, and the resource utilization in
DW-Zynq is bounded by the number of BRAM blocks available
on-chip. Table 5 shows the resource utilization to generate the
DNNWEAVER accelerators for each DNN model.

8 Related Work
There have been several proposed and realized hardware
designs that accelerate machine learning algorithms and
DNNs. However, this work differs from other efforts in that
DNNWEAVER is not an accelerator, but an accelerator generator.
Our work produces an optimized design for a given (DNN,
FPGA) pair. Furthermore, DNNWEAVER provides a novel ISA
to unify DNN accelerators across different FPGA platforms.
In this section we discuss the most related work in the area of
FPGA implementations and ASIC accelerators for DNNs.
FPGA implementations for machine learning. Tabla [22]
provides an FPGA accelerator generator for the training phase of
statistical machine learning algorithms. However, DNNWEAVER
focuses on inference with DNNs. In addition, Tabla uses
stochastic gradient descent as the abstraction between hardware
and software, and has no notion of ISA or Deep Neural
Networks. Tabla provides its own mathematical language, while
DNNWEAVER uses Berkeley Caffe for model specification.

The work by Chen, et al. [14] focuses on using an analytical

Table 5: Resource utilization on the three FPGA platforms for each benchmark DNN.

Utilization Utilization Utilization Utilization Utilization Utilization Utilization Utilization Utilization Utilization
Cifar-10 Full 61.44% 98.57% 30.77% 61.82% 85.29% 95.33% 46.90% 37.74% 84.99% 84.92% 45.85% 94.86%
Djinn ASR 42.43% 100.00% 18.25% 63.64% 53.98% 85.80% 28.12% 36.23% 68.96% 94.36% 39.27% 98.81%

LeNet 47.57% 100.00% 21.90% 61.82% 66.53% 80.44% 32.83% 33.96% 84.99% 84.92% 45.85% 94.86%
VGG_CNN_S 62.22% 97.14% 29.73% 61.82% 88.07% 78.50% 50.81% 37.04% 84.64% 89.64% 47.59% 88.54%

VGG_16 65.92% 100.00% 31.23% 63.64% 87.65% 78.20% 50.68% 37.42% 84.64% 89.64% 47.59% 88.54%
AlexNet 64.56% 100.00% 30.78% 63.64% 86.70% 77.16% 50.04% 37.23% 82.19% 86.69% 46.24% 88.54%

NiN 68.59% 100.00% 34.62% 63.64% 86.70% 77.16% 50.04% 37.23% 84.64% 89.64% 47.59% 88.54%
Overfeat 61.52% 94.29% 29.28% 60.00% 84.68% 75.07% 48.79% 36.98% 85.57% 86.25% 48.19% 88.93%

Flip-Flops
(Total: 1708800)

DSP Slices
(Total: 1518)

Utilization Utilization

Xilinx Zynq ZC702

LUTs
(Total: 53200)

Flip-Flops
(Total: 106400)

LUTs
(Total:

Altera Arria 10 GX115

LUTs
(Total:

BRAM (Bytes)
(Total: 5035KB)

Flip-Flops
(Total: 690000)

DSP Slices
(Total: 1590)

BRAM (Bytes)
(Total: 6782KB)Benchmark

DNN

Altera Stratix V SGSD5

BRAM (Bytes)
(Total: 630KB)

DSP Slices
(Total : 220)

Table 6: Total number of PUs and the number of PEs per PU built on
the three FPGA platforms for each benchmark DNN.

Benchmark # of PUs # of PEs # of PUs # of PEs # of PUs # of PEs
Cifar10 full 8 17 8 60 8 135
Djinn ASR 7 20 23 24 23 54
MNIST LeNet 8 17 8 60 8 135
VGG_CNN_S 17 8 17 31 19 64
VGG_16 10 14 15 35 19 64
AlexNet 14 10 14 37 14 84
NiN 7 20 14 37 19 64
Overfeat 12 11 12 42 13 90

Altera Arria 10 GX115Xilinx Zynq ZC702 Altera Stratix V SGSD5

design scheme based on the roofline model to find the fastest
design for a particular DNN for FPGA acceleration. However,
their design does not support some DNN layers such as pooling
and normalization. The work by Farabet, et al. [15, 28] develops
an FPGA accelerator for a specific DNN. Gokhale, et al. [27]
propose a mobile co-processor for DNNs and evaluate it
on a Zynq board. Chakradhar, et al. [38] present a VLIW
co-processor for DNNs and emulate it on a Virtex 5 FPGA.
They propose a special switch that allows to dynamically group
the convolution engines in different ways. The design has a
low-level VLIW ISA but the paper does not include any details
about its design. Unlike DNNWEAVER, they do not generate
Verilog code for FPGA accelerators. The works by Qiu et al.
and Suda et al. [39, 40] present implementations of accelerators
for particular DNN models. Neither of these works support
generation of accelerators for arbitrary DNN topologies.

DNNWEAVER makes FPGAs accessible to the machine
learning community by automatically generating an optimized
accelerator from high level DNN specifications. On the other
hand, previous works come short of providing at least one of
the following features: optimized accelerator generation, ISA
support, a workflow starting from high level abstractions.
ASIC accelerators for DNNs. Recent research efforts present
low-power deep learning ASICs. For example, (Da)Diannao
[12, 13] provide DNN accelerators with a low-level fine-grained
ISA, yet they do not define an ISA to unify DNN accelerators.
In contrast, DNNWEAVER uses a ISA for deep neural networks
(DNN) representing high-level operations (layers) that provides
the flexibility necessary to optimize the accelerator microar-
chitecture for the FPGA platform and DNN model. Sim, et
al. [24] showcase a DNN ASIC for IoT devices. However, the
article doesn’t make a reference to classification layer support.
Qadeer, et al. [25] propose Convolution Engine which reduces
the number of operations required in convolution layers. Conti,
et al. [26] develop convolution cores designed to integrate with a
shared-memory cluster of RISC processors. PuDianNao [20] is
an ASIC accelerator for machine learning algorithms but lacks
deep convolutional networks support.

All of these previous efforts require ASIC design, not FPGA
realization, which is the focus of our work.
Concurrent submissions. Hardware implementation for
DNNs is a thriving and active area of research. The follow-
ing efforts have been published concurrently to our work. Wang,

et al. [41] use a library of fixed-function blocks to accelerate
DNNs on Xilinx Z7020 and Z7045 FPGAs. Unlike the PEs in
DNNWEAVER, the architecture in their work lack explicit data
sharing. Liu, et al. [42] propose an ISA for neural networks op-
timized for high code density over vector and matrix operations.
Chen, et al. [23, 43] develop an ASIC design with a 2D spatial ar-
ray of PEs for Convolutional Neural Networks. Song, et al. [44]
propose an ASIC implementation with adaptive data-level par-
allelism for DNN accelerators. EIE [45], Minerva [46], and Cn-
vlutin [47] propose ASIC accelerators that use operation pruning
and quantization in DNNs for power and performance benefits.

9 Conclusion
Deep Neural Networks are gaining increasing applicability and
are amongst the most important workloads that can significantly
benefit from acceleration. However, DNNs are in a state of flux
and new disruptive advances require hardware solutions that
can adapt to these changes. DNNWEAVER is an initial step in
providing such solutions that support a wide variety of DNN
models and can be further extended for more advanced models.
While GPUs serve as an attractive platform for DNNs, our results
shows that FPGAs can be a Pareto optimal choice when power
is constraining. Nonetheless, reducing the programmer involve-
ment in hardware design is imperative to the adoption of FPGAs
in this domain. To this end, DNNWEAVER converts high-level
specification of DNNs into highly efficient accelerators that op-
erate within a limited power budget and on-chip memory of the
FPGA. The conversion is made possible by a novel dataflow ISA
and a heuristic search algorithm that generates high performance
accelerator by customizing the hand-optimized template designs
for a given (DNN, FPGA) pair. DNNWEAVER takes an effective
step in making FPGAs available to a broader community of
DNN developers who often do not possess hardware design
expertise. Community engagement and contribution are vital for
providing a general platform for DNN acceleration. To facilitate
such engagement, DNNWEAVER has been made publicly
available at http://act-lab.org/artifacts/dnnweaver.

10 Acknowledgements
We thank the anonymous reviewers for their insightful comments
and feedback. We thank Bradley Thwaites, Manan Chugh,
Sushant Kumar Singh, and Payal Bagga. This work was
supported in part by NSF awards CCF #1553192 and CNS
#1526211, Semiconductor Research Corporation contract #2015-
TS-2636, and gifts from Google, Qualcomm, and Microsoft.

References
[1] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe:
Convolutional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[2] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ron Dreslinski, Trevor Mudge, Vinicius
Petrucci, Lingjia Tang, and Jason Mars. Sirius: An open end-to-end voice

http://act-lab.org/artifacts/dnnweaver

and vision personal assistant and its implications for future warehouse
scale computers. In ASPLOS, 2015.

[3] Alex Graves, A-R Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In ICASSP, 2013.

[4] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural computation,
1(4):541–551, 1989.

[5] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning al-
gorithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In NIPS, 2012.

[7] Johann Hauswald, Yiping Kang, Michael A Laurenzano, Quan Chen,
Cheng Li, Trevor Mudge, Ronald G Dreslinski, Jason Mars, and Lingjia
Tang. Djinn and tonic: Dnn as a service and its implications for future
warehouse scale computers. 2015.

[8] Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. Deep im-
age: Scaling up image recognition. arXiv preprint arXiv:1501.02876, 2015.

[9] Adam Coates, Adam Coates, Brody Huval, Tao Wang, David J. Wu, and
Andrew Y." Ng. Deep learning with cots hpc systems.

[10] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan
Sankaralingam, and Doug Burger. Dark silicon and the end of multicore
scaling. In ISCA, 2011.

[11] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark
silicon in servers. IEEE Micro, 31(4):6–15, July–Aug. 2011.

[12] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning. In ASPLOS, 2014.

[13] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang,
Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A
machine-learning supercomputer. In MICRO, 2014.

[14] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional
neural networks. In FPGA, 2015.

[15] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio
Culurciello, and Yann LeCun. Neuflow: A runtime reconfigurable
dataflow processor for vision. In CVPRW, 2011.

[16] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. In ASPLOS, 2010.

[17] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam.
Dynamically specialized datapaths for energy efficient computing. In
HPCA, 2011.

[18] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David
August. Bundled execution of recurring traces for energy-efficient general
purpose processing. In MICRO, 2011.

[19] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi
Prashanth, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir
Hormati, Joo-Young Kim, Sitaram Lanka, James R. Larus, Eric Peterson,
Aaron Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. A reconfig-
urable fabric for accelerating large-scale datacenter services. In ISCA, 2014.

[20] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou,
Olivier Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. Pudiannao:
A polyvalent machine learning accelerator. In ASPLOS, 2015.

[21] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao
Luo, Xiaobing Feng, Yunji Chen, and Olivier Temam. Shidiannao: shifting
vision processing closer to the sensor. In ISCA, 2015.

[22] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir
Yazdanbakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. Tabla: A
unified template-based framework for accelerating statistical machine
learning. In HPCA, pages 14–26. IEEE, 2016.

[23] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 14.5 eye-
riss: An energy-efficient reconfigurable accelerator for deep convolutional
neural networks. In ISSCC, 2016.

[24] J. Sim, J. S. Park, M. Kim, D. Bae, Y. Choi, and L. S. Kim. 14.6 a
1.42tops/w deep convolutional neural network recognition processor for
intelligent ioe systems. In ISSCC, 2016.

[25] Wajahat Qadeer, Rehan Hameed, Ofer Shacham, Preethi Venkatesan,

Christos Kozyrakis, and Mark A Horowitz. Convolution engine: balancing
efficiency & flexibility in specialized computing. In ACM SIGARCH
Computer Architecture News, volume 41, pages 24–35. ACM, 2013.

[26] Francesco Conti and Luca Benini. A ultra-low-energy convolution engine
for fast brain-inspired vision in multicore clusters. In DATE, 2015.

[27] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and
Eugenio Culurciello. A 240 g-ops/s mobile coprocessor for deep neural
networks. In CVPRW, 2014.

[28] Clément Farabet, Berin Martini, Polina Akselrod, Selçuk Talay, Yann
LeCun, and Eugenio Culurciello. Hardware accelerated convolutional
neural networks for synthetic vision systems. In ISCAS, 2010.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[30] Alex Krizhevsky. One weird trick for parallelizing convolutional neural
networks. arXiv preprint arXiv:1404.5997, 2014.

[31] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob
Fergus, and Yann LeCun. Overfeat: Integrated recognition, localization
and detection using convolutional networks. CoRR, abs/1312.6229, 2013.

[32] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Computer Science Department, University of Toronto,
Tech. Rep, 1(4):7, 2009.

[33] Yann LeCun and Corinna Cortes. MNIST handwritten digit database, 2010.
[34] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR,

abs/1312.4400, 2013.
[35] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of

the devil in the details: Delving deep into convolutional nets. In British
Machine Vision Conference, 2014.

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. IJCV, 115(3):211–252, 2015.

[37] Shaoyi Cheng and John Wawrzynek. High level synthesis with a dataflow
architectural template. CoRR, abs/1606.06451, 2016.

[38] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari
Cadambi. A dynamically configurable coprocessor for convolutional
neural networks. In ACM SIGARCH Computer Architecture News,
volume 38, pages 247–257. ACM, 2010.

[39] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei
Ma, Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized
opencl-based fpga accelerator for large-scale convolutional neural networks.
In FPGA, 2016.

[40] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with
embedded fpga platform for convolutional neural network. In FPGA, 2016.

[41] Ying Wang, Jie Xu, Yinhe Han, Huawei Li, and Xiaowei Li. Deepburning:
Automatic generation of fpga-based learning accelerators for the neural
network family. In Proceedings of the 53rd Annual Design Automation Con-
ference, DAC ’16, pages 110:1–110:6, New York, NY, USA, 2016. ACM.

[42] Shaoli Liu, Zidong Du, Jinhua Tao, Dong Han, Tao Luo, Yuan Xie, Yunji
Chen, and Tianshi Chen. Cambricon: An instruction set architecture for
neural networks. In ISCA, 2016.

[43] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. 2016.

[44] Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei
Li. C-brain: A deep learning accelerator that tames the diversity of cnns
through adaptive data-level parallelization. In Proceedings of the 53rd
Annual Design Automation Conference, DAC ’16, pages 123:1–123:6,
New York, NY, USA, 2016. ACM.

[45] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. EIE: efficient inference engine on
compressed deep neural network. CoRR, abs/1602.01528, 2016.

[46] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama,
Hyunkwang Lee, Sae Kyu Lee, Jose Miguel Hernandez-Lobato, Gu-Yeon
Wei, and David Brooks. Minerva: Enabling low-power, highly-accurate
deep neural network accelerators. In ISCA, 2016.

[47] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie En-
right Jerger, and Andreas Moshovos. Cnvlutin: Ineffectual-neuron-free
deep neural network computing. In ISCA, 2016.

