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AXILOG: ABSTRACTIONS FOR
APPROXIMATE HARDWARE DESIGN

AND REUSE
.................................................................................................................................................................................................................

RELAXING THE TRADITIONAL ABSTRACTION OF “NEAR-PERFECT” ACCURACY IN HARDWARE

DESIGN CAN YIELD SIGNIFICANT GAINS IN EFFICIENCY, AREA, AND PERFORMANCE. AXILOG,

A SET OF LANGUAGE EXTENSIONS FOR VERILOG, PROVIDES THE NECESSARY SYNTAX AND

SEMANTICS FOR APPROXIMATE HARDWARE DESIGN AND REUSE, LETTING DESIGNERS

SAFELY RELAX ACCURACY REQUIREMENTS IN THE DESIGN WHILE KEEPING THE CRITICAL

PARTS STRICTLY PRECISE.

......Several techniques have shown sig-
nificant benefits with approximation at the
circuit level (see the “Related Work in
Approximation” sidebar), but they lack design
abstractions that enable designers to methodi-
cally control which parts of a circuit can be
approximated while keeping the critical parts
precise. Thus, a need persists for approximate
hardware description languages enabling sys-
tematic synthesis of approximate hardware.
To meet this need, we introduce Axilog, a set
of concise, intuitive, and high-level annota-
tions that provide the necessary syntax and
semantics for approximate hardware design
and reuse in Verilog.

A key factor in our language formalism is
to abstract away the details of approximation
while maintaining the designer’s complete
oversight in deciding which circuit elements
can be synthesized approximately and which
ones are critical and therefore cannot be
approximated. Axilog also supports reusabil-
ity across modules by providing a set of spe-
cific reuse annotations. In general, hardware

system implementation relies on modular
design practices in which engineers build
libraries of modules and reuse them across
complex hardware systems. In this article, we
elaborate on the Axilog annotations for
approximate hardware design and reuse.
These annotations are coupled with a safety
inference analysis (SIA) that automatically
infers which circuit elements are safe to
approximate with respect to the designer’s
annotations. Axilog and safety analysis sup-
port approximate synthesis and are com-
pletely independent of the synthesis process.

To evaluate Axilog, we devised two synthe-
sis processes. The first synthesis flow focuses
on current technology nodes and leverages
commercial tools. This synthesis process
applies approximation by relaxing the timing
constraints of the safe-to-approximate subcir-
cuits. Results show that this synthesis flow
provides, on average, 1.54� energy savings
and 1.82� area reduction by allowing a 10
percent quality loss. The second synthesis flow
studies the potential of approximate synthesis
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by using a probabilistic gate model for future
technology nodes. This synthesis flow pro-
vides, on average, 2.5� energy and 2.2�
probabilistic CMOS (PCMOS) area reduc-
tion. Axilog yields these significant benefits
while only requiring between two to 12 anno-
tations, even with complex designs containing

up to 22,407 lines of code. These results con-
firm Axilog’s effectiveness in incorporating
approximation in the hardware design cycle.

Approximate hardware design with Axilog
Our principal objectives for approximate

hardware design with Axilog are to

..............................................................................................................................................................................................

Related Work in Approximation
A growing body of research shows the applicability and significant

benefits of approximation.1–15 However, prior research has not

explored extending hardware description languages for systematic

and reusable approximate hardware design.

Approximate programming languages
EnerJ provides a set of type qualifiers to manually annotate all

the approximate variables in the program.16 If we had extended

EnerJ’s model to Verilog, the designer would have had to manually

annotate all approximate wires and registers. Rely asks for manually

marking both approximate variables and operations, which requires

more annotations.17 With our annotations, the designer marks a few

wires and registers, and then the analysis automatically infers which

other connections and gates are safe to approximate.

Approximate circuit design and synthesis
Prior work proposes imprecise implementations of custom instruc-

tions and specific hardware blocks.3,4,6–9 Other recent work proposes

algorithms for approximate synthesis that leverages gate pruning, tim-

ing speculation, or voltage overscaling.5,10–15 Although these synthe-

sis techniques provide significant improvements, they do not focus on

approximate hardware design and reuse. In fact, our framework can

benefit and leverage all these synthesis techniques.
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� craft a small number of Verilog anno-
tations that provide designers with
complete oversight over the approxi-
mation process;

� minimize the number of manual anno-
tations while relying on SIA to auto-
matically infer the designer’s intent for
approximation, thereby relieving the
designer of the details of the approxi-
mate synthesis process; and

� support the reuse of Axilog modules
across different designs without the
need for reimplementation.

Furthermore, Axilog is a backward-com-
patible extension of Verilog. That is, an
Axilog code with no annotations is a normal
Verilog code. To this end, Axilog provides
two sets of language extensions, one for the
design and one for the reuse of hardware
modules. Table 1 summarizes the syntax for
the design and reuse annotations.

The annotations for design dictate which
operations and connections are safe to ap-
proximate in the module. Henceforth, for
brevity, we refer to operations and connec-
tions as design elements. The annotations for
reuse let designers use the annotated approxi-
mate modules across various designs without
any reimplementation. We provide detailed
examples to illustrate how designers can
appropriately relax or restrict the approxima-
tion in hardware modules. In the examples,
we use background shading to highlight the
safe-to-approximate elements inferred by the
analysis.

Design annotations relaxing accuracy requirements
By default, all design elements are precise.

The designer can use the relax(arg)
statement to implicitly approximate a subset
of these elements. The variable arg is either
a wire, reg, output, or inout. Design
elements that exclusively affect signals desig-
nated by the relax annotation are safe to
approximate. The following example illus-
trates the use of relax:

module full adder(a, b, c in,
c out, s);

input a, b, c in; output
c out;

approximate output s;
assign s¼ aˆ bˆ c in;
assign c out ¼ a & b þ b &

c inþ a & c in;
relax(s);

endmodule

In this full adder example, the
relax(s) statement implies that the analy-
sis can automatically approximate the XOR
operations. The unannotated c out signal
and the logic generating it are not approxi-
mated. Furthermore, because s will carry
relaxed semantics, its corresponding output
is marked with the approximate annota-
tion that is necessary for reusing modules.
With these annotations and the automated
analysis, the designer does not need to indi-
vidually declare the inputs (a, b, c in) or
any of the XOR (ˆ) operations as approxi-
mate. Thus, while designing approximate

Table 1. Summary of Axilog’s language syntax.

Phase Annotation Argument Description

Design relax Wire, reg, output, inout Declare an argument as safe to approximate. Design elements that

affect the argument are safe to approximate.

relax local Similar to relax, but the approximation does not cross module

boundaries.

restrict Any design element that affects the argument is made precise unless

explicitly relaxed.

restrict global All the design elements affecting the argument are precise.

Reuse approximate Output, inout Indicates that the output carries relaxed semantics.

critical Input Indicates the input is critical and approximate elements cannot drive it.

bridge Wire, reg Allow connecting an approximate element to a critical input.

..............................................................................................................................................................................................
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hardware modules, this abstraction signifi-
cantly reduces the burden on the designer to
understand and analyze complex dataflows
within the circuit.

Scope of approximation. The scope of the
relax annotation crosses the boundaries of
instantiated modules, as shown in Figure 1.

The relax(x) annotation in the
nand gate module in Figure 1a implies
that the AND (&) operation in the and gate
module is safe to approximate. In some cases,
the designer might not prefer the approxima-
tion to cross the scope of the instantiated
modules. Axilog provides the relax local
annotation, which does not cross module
boundaries.

On the other hand, the code in Figure 1b
shows that the relax local annotation
does not affect the semantics of the instanti-
ated and gate module, a1. However the
NOT (�) operation, which shares the scope of
the relax local annotation, is safe to
approximate. The scope of approximation of
relax and relax local is the module in
which they are declared.

Restricting approximation. In some cases, the
designer might want to explicitly restrict
approximation in certain parts of the design.
Axilog provides the restrict(arg) anno-
tation, which ensures that any design element
affecting the annotated argument (arg)
is precise, unless a preceding relax or
relax local annotation has made the
driving elements safe to approximate. The
restrict annotation crosses the boundary
of instantiated modules.

Restricting approximation globally. In some
cases, the designer might intend to override
preceding relax annotations. For instance,
the designer might intend to keep certain
design elements that are used to drive critical
signals, such as the control signals for a state
machine, write enable of registers, address lines
of a memory module, or even clock and reset.
To ensure the precision of these signals, Axilog
provides the restrict global annota-
tion, which has precedence over relax and
relax local. The restrict global
(arg) penetrates through module bounda-

ries and ensures that any design element that
affects arg is not approximated.

Reuse annotations
Our principal idea for these language

abstractions is to maximize the reusability of
the approximate modules across designs that
might have different accuracy requirements.

Outputs carrying approximate semantics. As
we mentioned earlier, designers can use anno-
tations to selectively approximate design ele-
ments in a module. The reusing designer must
be aware of the accuracy semantics of the I/O
ports without delving into the details of the
module. To enable the reusing designer to
view the port semantics, Axilog requires that

module  and_gate(n,a,b); 

input a, b; output n;

assign n = a & b; 

endmodule

module  nand_gate(x, a, b); 

input a, b; 

approximate output x; 

wire w0; 

 and_gate a1(w0, a, b);

assign x =  ̃w0; 
relax(x); 

endmodule

(a)

module  and_gate(n,a,b); 

input a,b; output n; 

assign n = a & b; 

endmodule

module  nand_gate(x, a, b); 

input a, b; 

approximate output x; 

wire w0; 

 and_gate a1(w0, a, b);

assign x = ̃w0;

 relax_local (x);

endmodule

(b)

Figure 1. Code segments showing the

difference in the scope of relax and

relax local annotation. (a) Scope of

relax annotation. (b) Scope of

relax local annotation.

.............................................................
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all output ports that might be influenced by
approximation be marked as approximate.
The two code snippets in Figure 2 illustrate
the necessity of the approximate annota-
tion. In Figure 2a, output n carries relaxed
semantics due to the relax annotation and
is therefore declared as an approximate
output. Consequently, the a1 instance in the
nand gate module will cause its x output to
be relaxed. Therefore, x is marked as an
approximate output.

In Figure 2b, the x output is explicitly
relaxed, and x is marked as an approximate
output. The and gate module here does not

carry approximate semantics by default. There-
fore, the output of the and gate is not
marked as approximate, because the
approximation is limited to the a1 instance.

Critical inputs. A designer might want to
prevent approximation from affecting certain
inputs, which are critical to the circuit’s func-
tionality. To mark these input ports, Axilog
provides critical annotation. Wires that
carry approximate semantics cannot drive the
critical inputs without the designer’s
explicit permission at the time of reuse.

Bridging approximate wires to critical inputs.
We recognize that there may be cases when
the reusing designer entrusts a critical input
with an approximate driver. For such situa-
tions, Axilog provides an annotation called
bridge that shows designer’s explicit intent
to drive a critical input by an approximate
signal.

Summary
The semantics of the relax and

restrict annotations provide abstractions
for designing approximate hardware modules
while enabling Axilog to provide formal guar-
antees of safety that approximation will be
restricted to only those design elements that
the designer specifically selected. Moreover,
the approximate output, critical
input, and bridge annotations enable reus-
ability of modules across different designs. In
addition to the modularity, the design and
reuse annotations enable approximation poly-
morphism, implying that the modules with
approximate semantics can be used in a pre-
cise manner, and vice versa, without any reim-
plementation. These abstractions naturally
extend current hardware-design practices and
let designers apply approximation with full
control without adding substantial overhead
to the conventional hardware design and veri-
fication cycle.

Safety inference analysis
After the designer provides annotations,

the compiler must perform a static analysis to
find the approximate and precise design ele-
ments in accordance with these annotations.
We present the SIA, a static analysis that
identifies these safe-to-approximate design

module and_gate(n,a,b); 

input a,b; 

approximate output n; 

assign n = a & b;  

relax(n); 

endmodule

module nand_gate(x, a, b); 

input a, b; 

approximate output x; 

wire w0; 

 and_gate a1(w0, a, b); 

assign x =  ̃w0;

endmodule

(a) 

module and_gate(n,a,b); 

input a, b; 

output n; 

assign n= a & b;  

endmodule

module nand_gate(x, a, b);

input a, b; 

approximate output x; 

wire w0; 

 and_gate a1(w0, a, b); 

assignx =  ̃w0; 

relax(x); 

endmodule

(b) 

Figure 2. Code segments showing the

necessity of the approximate
annotation. (a) Approximate output when

relax annotation applied within the

submodule (and gate). (b) Approximate

output when relax annotation is applied

within the main module (nand gate).

..............................................................................................................................................................................................
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elements. The design elements are organized
primarily according to the circuit’s structure
and not necessarily on the order of the state-
ments in the HDL source code. This property
is a fundamental property of Verilog that
Axilog inherited. Thus, we first translate the
RTL design to primitive gates, while main-
taining the module boundaries. Then, we
apply the SIA after the code is translated to
primitive gates and the structure of the circuit
is identified. Consequently, the SIA can apply
all the annotations while considering the cir-
cuit’s structure. The SIA is a backward slicing
algorithm that starts from the annotated wires
and iteratively traverses the circuit to identify
which wires must carry precise semantics.
Subtracting the set of precise wires from all
the wires in the circuit yields the safe-to-
approximate set of wires. The gates that
immediately drive these safe-to-approximate
wires are the ones that the synthesis engine
can approximate. Figure 3 illustrates the pro-
cedure that identifies the precise wires.

This procedure is a backward-flow analy-
sis that has three phases. The first phase
identifies the sink wires, which are either
unannotated outputs or wires explicitly anno-
tated with restrict. The procedure then
identifies the gates that are driving these sink
wires and adds their input wires to the precise
set. The algorithm repeats this step for the
newly added wires until it reaches an input or
an explicitly relaxed wire. However, this phase
is limited to the scope of the module under
analysis.

The second phase identifies the relaxed out-
puts of the instantiated submodules. Because
of the semantic differences between relax
and relax local, a submodule’s output
will be considered relaxed if two conditions
are satisfied:

� the output drives another explicitly
relaxed wire, which is not inferred
due to a relax local annotation;
and

� the output is not driving a wire
already identified as precise.

The algorithm automatically annotates
these qualifying outputs as relaxed. The anal-
ysis repeats these two phases for all the instan-
tiated submodules. For correct functionality
of this analysis, all the module instantiations

are distinct entities in the set M and are
ordered hierarchically.

In the final phase, the algorithm marks
any wire that affects a globally restricted wire
as precise. Finally, the SIA identifies the safe-
to-approximate subset of the gates and wires
with regards to the designer annotations. An
approximation-aware synthesis tool can then
generate an optimized netlist.

Approximate synthesis
In our framework, approximate synthesis

involves two stages. In the first stage, anno-
tated Verilog source code is converted to a
precise gate-level netlist while preserving the
approximate annotations. The SIA then iden-
tifies the safe-to-approximate subset of the
design based on designer annotations. In the
second stage, the synthesis tool applies
approximate synthesis and optimization tech-
niques only to the safe-to-approximate subset
of the circuit elements. The tool may apply
any approximate optimization technique—
including gate substitution, gate elimination,
logic restructuring, voltage overscaling, and
timing speculation—as it deems prudent.
The objective is to minimize a combination
of error, delay, energy, and area considering
final quality requirements. As Figure 4 shows,
we developed two approximate synthesis
flows to evaluate Axilog.

AST: Approximate synthesis through relaxing
timing constraints

The AST synthesis flow is applicable to
current technology nodes and leverages com-
mercial synthesis tools. As Figure 4a shows,
we first use the Synopsys Design Compiler to
synthesize the design with no approximation.
We perform a multiobjective optimization
targeting the highest frequency while mini-
mizing power and area. We will refer to the
resulting netlist as the baseline netlist and
its frequency as the baseline frequency. We
account for variability using Synopsys Prime-
TimeVX, which, given timing constraints,
provides the probability of timing violations
due to variations. In case of violation, the syn-
thesis process is repeated by adjusting timing
constraints until PrimeTimeVX confirms no
violations. Second, as Figure 4b shows, we
relax the timing constraints only for the safe-
to-approximate paths. We then extract the

.............................................................
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Inputs:    : Set of all the ordered modules within the circuit

ℝ: Queue of all the globally restricted wires

Output:  ℙ: Set of precise wires 

 Initialize ℙ → ∅
for each mi ∈   do

I: Set of all inputs ports in mi

A: Set of all wires annotated as relaxed wires in mi

LA: Set of all wires annotated as locally relaxed wires mi

Sink: Queue of all explicitly restricted wires in mi ∪ Set of 

unannotated output ports 

UW: Set of wires driven by modules which are instantiated within mi

//Phase1: This loop identifies the mi module’s local precise wires (wi)

  Initialize N ← ∅ A set of relaxed wires in each module mi
while (Sink ≠ ∅) do

wi  ←  Sink.dequeue()

if (wi ∉ I and wi ∉(A ∪ LA)) then

if (wi ∈ UW) then

N.append(wi)

else

ℙ.append(wi)

end if

Sink.enqueue(for all input wires of gate wi in mi)

end if

  end while

//Phase 2: Identifying the relaxed wires (wj) that are driven by the mj
  submodules; the mj submodules are the instantiated modules in mi

for (wj ∈ UW) do

if (wj ∈ N and wj drives wire ∈ A) then

mj ← module driving the wire wj
mj.A.append(wj)

end if

end for

end for

//Phase 3: Identifying the precise wires (wk) that are globally restricted

while (ℝ ≠ ∅) do

wk ← ℝ.dequeue()

ℙ.append(wk)

ℝ.append(input wires of the gate that drive wk)

end while

Figure 3. The part of the safety inference analysis (SIA) that identifies precise wires according to the designer’s annotations.

..............................................................................................................................................................................................
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post-synthesis gate delay information in
Standard Delay Format and perform gate-
level timing simulations with a set of input
datasets.

We use the baseline frequency for the tim-
ing simulations even though some of the
safe-to-approximate paths are synthesized
with more timing slack. Timing simulations
yield output values that may incur quality
loss at the baseline frequency. We then meas-
ure the quality loss, and if the quality loss is
higher than the designer’s requirements, we
tighten the timing constraints on the safe-to-
approximate paths. We repeat this step until
the quality requirements are satisfied. This
methodology could reduce energy and area
by using slower and smaller gates for the
paths that use relaxed timing constraints.

ASG: Approximate synthesis through gate resizing
The ASG synthesis flow studies the poten-

tial of approximate synthesis for future tech-
nology nodes. Because the characteristics of

transistors and gates for future technologies
are unknown, we assume that the probability
of error for a gate is an inverse function of its
size. As a result, gate size, referred to as the
PCMOS area,1 should be treated as a proxy
for the cost we would pay in a future technol-
ogy node to get more robust gates. That cost
could be thicker gate oxides, higher threshold
voltage, and higher flow VDD to make the
transistors more robust. The ASG and syn-
thesis applies approximation by selectively
downsizing the gates as shown in Figure 4c.
In this framework, smaller gates dissipate less
energy and have smaller PCMOS area, but
they may generate incorrect output with
some probability.

Probabilistic error models for gates. Owing to
the unavailability of future nodes, we aug-
ment a currently available library—NanGate
FreePDK 45 nm—with a probabilistic error
model for all the gates in the library. The
error model provides the probability of a bit

Verilog code

Strict timing constraints

Design compiler PrimeTime VXSynthesized netlist
Timing

violation

Yes

Baseline
netlist

No

Synthesis

Statistical error analysis
and safe-to-approximate gates identification

Axilog
compiler

Statistical
error analysis

Profiling inputs

Acceptable error for
output pins

Safe-to-approximate
gates

TILOS gate sizing
using probabilistic

models

Resized gate-
level netlist

Simulation

Gate-level simulation

Simulation
inputs

Simulation Final
output error

Probablistic TILOS gate sizing

Determines the acceptable percentage 
of error on each output pin and identifies 
the safe-to-approximate gates

Resizes safe-to-approximate gates

Axilog
code

Worst-
case error
calculation

Output
requirements

satisfied

No

Yes

Determines the output error
for test inputs

Timing
simulation

Quality
measurement

SDF file

Synthesized
approximate

 netlist

Axilog
compiler

Strict and relaxed
timing constraints

Design
compiler

Synthesis phase Quality observation phase

Input dataset

Quality
requirement

satisfied

No

Final
approximate

 netlist

Yes
Axilog code

Safe to
approximate

gates

(a)

(b)

(c)

Figure 4. Synthesis flows for the baseline, for approximate synthesis through relaxing timing constraints (AST), and for

approximate synthesis through gate resizing (ASG). (a) Synthesis flow for baseline error-free gate netlist. (b) Synthesis flow

AST for safe-to-approximate gates. (c) Synthesis flow for ASG, which uses probabilistic models as a proxy for future nodes.
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flip in the gate output. We use transistor-level
Spice simulations to find the probability of
an error at the gate output using the Cadence
Virtuoso toolset. We take inspiration from
the PCMOS models described by Cheemala-
vagu et al.1

We simulated each gate at different sizes
and injected the gate inputs with Gaussian
noise through a minimum-sized buffer. Gate
error also depends on threshold voltage; how-
ever, we focused on gate sizing and its effects
on gate error for a fixed threshold voltage. For
each input combination, the noise was injected
on gate inputs in the form of a piecewise linear
voltage source, and the output was sampled
for 10,000 inputs. Finally, we computed the
probability of correct output as follows:

Pcorrect output ¼

1�Number of incorrect samples

Total number of samples
:

We repeat this measurement for all the
input combinations of the gate and assign the
gate with the worst observed error. Next, we
use this error model to optimize the circuit’s
power and area by upsizing the fewest gates
in a circuit while satisfying the designer-
specified error requirements.

Gate sizing optimization. The ASG optimiza-
tion algorithm shown in Figure 5 trades off
accuracy for reductions in PCMOS area and
energy. We extended the Tilos algorithm2 to
incorporate probabilistic models and changed
the objective from minimizing delay to mini-
mizing error and cost.

The ASG optimization algorithm com-
prises four phases. In the first phase, we
extract the adjacency list (a space-efficient
way of representing a circuit) of the safe-to-
approximate subcircuit and determine its
inputs and outputs.

In the second phase, the algorithm uses a
Monte Carlo simulation to determine the
error-free probability of obtaining a 1 or a 0
at each node of the subcircuit. For the Monte
Carlo simulation, random input vectors are
applied to the subcircuit’s inputs, and a topo-
logical traversal propagates the values through
the circuit for each input vector. This process
gives us the probability of getting a 1 or 0 at
each gate’s output. We then initialize all gates

in the safe-to-approximate subcircuit to their
minimum size (that is, having maximum
error). We calculate the initial error map at
each gate’s output by propagating the error
through the circuit using the Boolean Error
Propagation (BEP) algorithm.3 The BEP
algorithm then estimates the worst-case error
probability for the design’s outputs using each
gate’s error probability model. If the calcu-
lated output error is not within the error
requirements, we enter phase 3.

In the third phase, for each safe-to-
approximate output, we identify the gates
driving that output, called the fan-in cone,
and add it to the fan-in hashmap beta.

In the fourth phase, for each gate in the
fan-in cone of safe-to-approximate output,
we calculate the sensitivity of the output error
to that gate by temporarily increasing the
gate’s size to the next possible size and calcu-
lating the ratio of decrease in error to increase
in gate size. Finally, after calculating the sensi-
tivity for each fan-in gate, we permanently
upsize only the gate that shows the largest
impact toward the output error. We perform
the BEP using the changed gate size and
update the error map. We repeat the fourth
phase for each safe-to-approximate output
until user-specified error bounds are satisfied
for each safe-to-approximate output.

The most computationally intensive part of
the entire algorithm is phase 3’s BEP function,
with a complexity of Oðn3Þ. We optimized
this function and reduced its complexity to
Oðn2Þ by decreasing its iteration count by
grouping gates together. These groups are
resized together.

Evaluation
We evaluated Axilog and the approximate

synthesis processes using a set of benchmark
designs.

Benchmarks and code annotation
Table 2 lists the Verilog benchmarks. We

used Axilog annotations to judiciously relax
some of the circuit elements. The bench-
marks span many domains, including arith-
metic units, signal processing, robotics,
machine learning, and image processing.
Table 2 also includes the input datasets,
application-specific quality metrics, number
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Require: K: Netlist for the entire circuit 

Θ: Set of safe-to-approximate gates 
Σ: Error bound on the approximate output 

Ensure:  ℜ: Different gate sizes for safe-to-approximate gates
 Initialize ℜ ← ∅ Minimum gate size  
 Initialize ψ ← ∅ {Monte Carlo simulation map}
 Initialize γ ← ∅ {Error propagation map}  
 Initialize Π ← ∅  {Primary inputs of the safe-to-approximate circuit}  
 Initialize δ ← ∅  {Queue for primary inputs of the safe-to-approximate circuit} 
 Initialize Φ ← ∅ {Primary outputs of the safe-to-approximate circuit}  
 Initialize β ← ∅ {Fan-in hash-map}  

//Phase 1: Identifying inputs (Π) and outputs (Φ) of the safe-to- approximate subset of the circuit.//
for each mi ∈ Θ do

if fanin_of mi ⊄ Θ then
Π ← (Π ∪ {mi})

Φ ← (Φ ∪ {mi})

   enqueue(δ, mi) 
else if mi fanout ⊄ Θ then

end if 
 end for 

//Phase 2: Performing Monte Carlo Simulations to calculate probability of 1 or 0 (Ψ) at every node
Ψ ←  monte_carlo_simulation (δ, K,Θ, Ψ) 

//Calculating the initial error map (γ) for every output node using Boolean Error Propagation
γ ←  boolean_error_propagation (δ, K, Θ, Ψ, γ)

 while (∃ wi ∈ Φ s.t. Σ(wi) < γ(wi)) do

while (∃ wi ∈ Φ s.t. Σ(wi) < γ(wi)) do

 //Phase 3: Iteratively calculating the fan-in of every output node using
       back-propagation and adding the gates to (β)

β ← Gates ∈ Φ that have a path to wi
δ ← Primary inputs ∈ Φ that have a path to wi

   define m -999 //Max sensitivity initialized

//Phase 4: Calculates the sensitivity of each gate to the output

   error and permanently resizes the gate with highest sensitivity
G ← ∅
for each yi ∈ β do

if  (sensitivity of yi > m) then

m = sensitivity of yi
G ← yi

end if 

end for

ℜ (G) ← ℜ(G)*2 //upsize gate permanently
γ ← boolean_error_propagation (δ, K, Θ, Ψ, γ)

end while 

 end while

Figure 5. Gate-sizing algorithm for approximate synthesis through gate resizing (ASG) approximate synthesis flow. The

algorithm upsizes the fewest gates in a circuit to reduce cost.
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of lines, and number of Axilog annotations
for design and reuse.

Axilog annotations
We annotated the benchmarks with the

Axilog extensions. The designs were either
downloaded from open-source IP providers
or developed without any initial annotations.
After development, we analyzed the source
Verilog codes to identify safe-to-approximate
parts. The last two columns of Table 2 show
the number of design and reuse annotations
for each benchmark. The number of annota-
tions ranges from two for Brent-Kung with
352 lines to 12 for InverseK with 22,407
lines. The Axilog framework let us use only a
handful of annotations to effectively approxi-
mate designs that are implemented with
thousands of lines of Verilog.

The safe-to-approximate parts are more
common in the benchmarks’ datapaths rather
than their control logic. For example,
k-means involves a large number of multiplica-
tions and additions. We used the relax anno-
tations to declare these arithmetic operations

approximable; however, we used restrict
to ensure the precision of all the control
signals. For smaller benchmarks, such as
Brent-Kung, Kogge-Stone, and Wallace
Tree, we annotated only a subset of the
least-significant output bits in order to limit
the quality loss. We also annotated the
benchmarks with reuse annotations. The
last column in Table 2 lists the number of
reuse annotations. Overall, one graduate
student was able to annotate all the bench-
marks within two days without being
involved in their design. The intuitive
nature of Axilog extensions makes annotat-
ing straightforward.

Application-specific quality metrics
Table 2 shows the application-specific

error metrics to evaluate the quality loss due
to approximation. Using application-specific
quality metrics is commensurate with prior
work on approximate computing and lan-
guage design.4,5 In all cases, we compared the
output of the original baseline application to
the output of the approximated design.

Table 2. Benchmarks, input datasets, and error metrics.

Benchmark name Domain Input dataset

Quality

metric No. of lines

No. of annotations

Design Reuse

Brent-Kung (32-bit adder) Arithmetic

computation

1,000,000

32-bit integers

Average

relative error

352 1 1

FIR (8-bit finite impulse

response filter)

Signal

processing

1,000,000

8-bit integers

Average

relative error

113 6 5

ForwardK (forward

kinematics for two-joint arm)

Robotics 1,000,000

32-bit fixed-point

values

Average

relative error

18,282 5 4

InverseK (inverse

kinematics for two-joint arm)

Robotics 1,000,000

32-bit fixed-point

values

Average

relative error

22,407 8 4

k-means (K-means clustering) Machine learning 1,024-�-1,024-pixel

color image

Image

difference

10,985 7 3

Kogge-Stone (32-bit adder) Arithmetic

computation

1,000,000

32-bit integers

Average

relative error

353 1 1

Wallace tree (32-bit multiplier) Arithmetic

computation

1,000,000

32-bit integers

Average

relative error

13,928 5 3

Neural Network (feedforward

neural network)

Machine learning 1,024-�-1,024-pixel

color image

Image difference 21,053 4 3

Sobel (Sobel edge detector) Image processing 1,024-�-1,024-pixel

color image

Image difference 143 6 3
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Figure 6. Energy and area reduction for AST flow and energy and PCMOS area reduction for ASG flow. (a) Energy reduction

for AST flow¼ (Precise circuit energy)/(Approximate circuit energy). (b) Area reduction for AST flow¼ (Precise circuit area)/

(Approximate circuit area). (c) Energy reduction for ASG flow when the quality degradation limit is set to 10 percent for two

different PVT corners. (d) Proxy for energy reduction¼ (Precise circuit energy)/(Approximate circuit energy). (e) Proxy for

PCMOS area reduction¼ (Precise circuit PCMOS area)/(Approximate circuit PCMOS area).
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Experimental results
Both synthesis techniques used Synopsys

Design Compiler (G-2012.06-SP5) and Syn-
opsys PrimeTime (F-2011.06-SP3-2) for syn-
thesis flows and energy analysis, respectively.

AST evaluation. We used Cadence NC-Veri-
log (11.10-s062) for timing simulation with
Standard Delay Format back annotations
extracted from various operating corners. We
used the Taiwan Semiconductor Manufactur-
ing Company 45-nm multi-Vt standard cells
libraries and reported the primary results for
the slowest process, voltage, and temperature
corner (Slow Slow, 0.81 V, 0�C). The AST
approach generates approximate netlists for
the current technology node and provides,
on average, 1.45� energy and 1.8� area
reduction for the 5 percent limit. With the
10 percent limit, the average energy and area
gains grow to 1.54� and 1.82�, as shown in
Figures 6a and 6b.

Benchmarks with a larger datapath, such
as InverseK, Wallace Tree, Neural Network,
and Sobel, provide a larger scope for approxi-
mation and are usually the ones that see
larger benefits. The circuit’s structure also
affects the potential benefits. For instance,
Brent-Kung and Kogge-Stone adders benefit
differently from approximation because of
the structural differences in their logic trees.
The finite impulse response (FIR) bench-
mark shows the smallest energy savings
because it is a relatively small design that does
not provide many opportunities for approxi-
mation. Nevertheless, FIR still achieves 11
percent energy savings and 7 percent area
reduction with 10 percent quality loss, sug-
gesting that even designs with limited
opportunities for approximation can benefit
significantly from Axilog.

We also evaluated our AST technique’s
effectiveness in the presence of temperature
variations for a full industrial range of 0 to
125�C. We measured the impact of tempera-
ture fluctuations on the energy benefits for
the same relaxed designs. Figure 6c compares
the energy benefits at the lower and higher
temperatures (the quality loss limit is set to
10 percent). In this range of temperature var-
iations, the average energy benefits range
from 1.54� (at 0�C) to 1.48� (at 125�C).

These results confirm our framework’s ro-
bustness; it yields significant benefits even
when temperature varies.

ASG evaluation. For ASG, we used the Nan-
Gate FreePDK 45-nm multispeed standard
cells library. The AST and ASG techniques
use different libraries because the FreePDK
45-nm library allows Spice simulations
required for the ASG flow. As we mentioned
earlier, the ASG flow aims to study the trends
in future technology nodes when gates might
show probabilistic behavior. We developed
PCMOS models with the available libraries
at 45 nm. The area numbers reported here
are the ones set by the PCMOS model to sat-
isfy the fixed-gate robustness. These numbers
do not necessarily correspond to actual area
numbers in any future technology. The
PCMOS area shows the relative cost savings
across benchmarks and delineates the antici-
pated trends. As Figures 6d and 6e show, the
ASG flow provides, on average, 2� energy
and 1.9� PCMOS area reduction for the 5
percent error limit. With the 10 percent
limit, the average energy and area gains grow
to 2.5� and 2.2�.

A xilog’s automated analysis enables ap-
proximate hardware design and reuse

without exposing the intricacies of synthesis
and optimization. We aim to extend Axilog’s
annotations to enable designers to specify
their desired quality requirements. We also
aim to refine the capabilities of the synthesis
techniques to better control the approxima-
tion versus performance-energy tradeoff such
that the designer’s quality requirements are
met while maximizing the benefits from
approximation. Furthermore, the ASG tech-
nique now has a complexity on the order of
Oðn2Þ, and we aim to devise techniques that
would reduce ASG’s computational complex-
ity. Finally, we will make Axilog tools and
benchmarks open source and available at
www.act-lab.org/artifacts/axilog to further
facilitate research and development in approx-
imate hardware design. MICRO
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